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(4) Eötvös Loránd Tudományegyetem - Pázmány Péter sétány 1/A, 1111, Budapest, Hungary
(5) Hungarian University of Agriculture and Life Sciences, KRC - Mátrai út 36, 3200,
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Summary. — Within the model of Partial Chemical Equilibrium (PCE) we cal-
culate the multiplicity ratios of selected unstable resonances to given stable species.
We focus on those ratios that have been measured either in Pb+Pb collisions at
the LHC or in Au+Au collisions at the top RHIC energy. The model provides an
interpretation how in an expanding hadronic fireball with decreasing temperature
the final numbers of stable hadrons after decays of all resonances remain unchanged.
Each stable species acquires its own chemical potential and the resonances are kept
in equilibrium with them. Multiplicities of unstable resonances provide a test of this
scenario. We observe that the ratios of K∗/K and ρ0/π fit reasonably well into the
picture of single kinetic freeze-out of the single-particle spectra, but the φ-meson
and hyperon resonances are not reproduced by this model.

1. – Introduction

Abundances of stable hadrons and even nuclear clusters are rather well reproduced by
the Statistical Hadron Resonance Gas Model [1,2]. The model represents an interacting
hadron gas, where interactions are accounted for by the inclusion of resonances as free
particles [3] and even better description is encountered by including (some) interactions
by using the scattering phase shifts [4,5]. The crucial point for our discussion is that the
chemical freeze-out temperature inferred from hadron multiplicities is above 150 MeV
for nuclear collisions at the LHC and top RHIC energies [1, 2]. Note that the matter
appears to be in chemical equilibrium. This means that the only relevant parameters
in addition to volume and temperature are chemical potentials for conserved quantum
numbers, notably the baryon number. Only the quantum numbers of a hadron species
determine their chemical potentials.
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On the other hand, a locally thermalised and expanding system is also assumed when
one interprets the observed single-particle pt spectra of identified hadrons. There is quite
a large spread in the results for the kinetic freeze-out temperature, with values from about
150 MeV [6] down to as low as 80 MeV [7].

The upper value would mean that the chemical and the kinetic freeze-out happen
simultaneously. However, if the kinetic freeze-out temperature is low, then we can take
the values of chemical and kinetic freeze-out temperatures as the initial and final temper-
atures of the hadron gas, respectively. We thus have an expanding and cooling system
which still keeps its chemical composition such that after decays of all unstable resonances
the abundances of stable hadrons remain equal to the values at the chemical freeze-out.
Later on, we refer to the abundances with added contributions from resonance decays as
effective.

The usual lore is that the inelastic processes stop after the chemical freeze-out but
the elastic ones continue. This would certainly guarantee the desired outcome, but is not
strictly necessary to ensure it.

As for the resonances, in general there are several effects that will influence their
observed numbers. Note that they can only be reconstructed through the measurement
of their daughter particles. If a resonance decays early in the hadronic system and
(at least one of) the daughters scatter, the invariant mass of the resonance will not
be reconstructed. On the other hand, in a system of interacting hadrons, resonances
can also be regenerated. The actual number of finally observed resonances results from
an interplay between the loss through daughter particle scattering and the gain due to
regeneration in hadronic interactions.

One of the possible scenarios for such an evolution goes under the name Partial
Chemical Equilibrium (PCE) [8]. Here, the word “equilibrium” refers to the relation
between unstable resonances and the ground state hadrons. This is specific assumption
about the decays and regeneration of the resonances discussed above. Here, we report on
a calculation of resonance abundances in the PCE scenario applied to different centralities
of collisions of Au+Au at top RHIC energy and Pb+Pb at LHC energy [9].

We explain the PCE model in the next section, show the results in sect. 3, and
conclude in sect. 4.

2. – Partial chemical equilibrium

The PCE scenario has been introduced in [8].
In order to keep the (effective) numbers of stable hadrons constant while the temper-

ature is decreasing, there must be proper chemical potential assigned directly to each of
them. Thus the overall equilibrium is lost and chemical potentials are no longer deter-
mined by the conserved quantum numbers. Resonances are assumed to be in equilibrium
with their decay products. This means that their chemical potentials are given in terms
of the chemical potentials of their decay products. Figure 1 illustrates the scheme. To
start, let us look at resonances that decay into one sort of particles, e.g., ρ. Since the
process ρ ↔ 2π is assumed to be in equilibrium, neither of its directions should cost
additional energy and therefore μρ = 2μπ. For a similar reason, μω = 3μπ. Resonances
that decay into two different stable species get chemical potential by summing those of
the daughter species, e.g., μK(892) = μK + μπ, or μΔ = μN + μπ. Finally, there are
resonances with multiple channels open for decay. In their case, the general formula for
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Fig. 1. – A scheme of (selected) ground states of stable hadrons (π, N , K) with resonances. The
vertical position of the states corresponds to their masses and the resonance states are drawn
above the stable hadrons that they decay into.

chemical potential of resonance R can be applied

(1) μR =
∑

h

pR→hμh ,

where pR→h is the average number of stable hadrons h that are produced in decays of R,
and μh is the chemical potential of that species. Here, the sum runs through all stable
species that develop their own chemical potentials. If a resonance decays into another
unstable resonance, then all such decay chains are traced all the way down to the stable
daughter hadrons and their average numbers appear as pR→h.

The average final number of hadron species h consists of directly thermally produced
particles and those resulting from decays of all unstable resonances

(2) 〈N eff
h 〉 = 〈Nh〉+

∑

R

pR→h〈NR〉 =
∑

r

pr→h〈Nr〉 .

In order to streamline the formalism, the first sum (over capital R) includes only unstable
resonances, but the second one sums over all species. We generalise ph′→h = δh′h, where
both h′ and h refer to stable hadron species. In terms of number densities nr(T, {μi(T )})
and the volume we write

(3) 〈N eff
h 〉 = V (T )

∑

r

pr→hnr(T, {μi(T )}) .

It is preferable to use the density as it can be calculated from the temperature T and
the set of chemical potentials {μi(T )}, where i numbers all stable hadron species. Since
the effective numbers must stay constant in a cooling system, d〈N eff

h 〉/dT = 0, and we
obtain

(4) −
dV
dT

V (T )

∑

r

pr→hnr(T ) =
∑

r

pr→h
dnr

dT
.
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The chemical potentials will be determined from the evolution of nr(T ) in temperature.
However, to do this we would need the term dV

dT /V . To get this, conservation of total
entropy S is assumed: 0 = dS/dT = d(sV )/dT , where s is the entropy density. This
leads to

(5) −
dV
dT

V
=

ds
dT

s
.

Inserting into eq. (4) leads to the evolution equation for the number densities

(6)

∑
r pr→h

dnr

dT
ds
dT

=
1

s

∑

r

pr→hnr(T, {μi(T )}) .

It is important that s is independent from the densities and can be calculated from T
and μi’s. Thus the set of equations (6) for each h can be used to evolve the densities and
ultimately the chemical potentials. One starts at the chemical freeze-out with equilibrium
values of the chemical potentials and proceeds to lower temperatures. In general, the
chemical potentials increase in a cooling system.

3. – Results

The yields of resonances are calculated similarly to those of stable hadrons. We also
include higher states which decay into the resonance of interest. Moreover, since we
always look at ratios of abundances, it is adequate to calculate just the ratios of their
number densities.

We present the results in a way explained in fig. 2 on the example of the ρ0/π ratio.
Experimental data [10] can be interpreted as coming from PCE with temperatures that
can be extracted via comparison with the theoretical result [9]. For these data, ratios
measured in more central collisions indicate lower temperature at which they have been
fixed. Such a result is consistent with the picture that in central collisions a large system
is created that stays together longer than in non-central collisions.

Figure 3 summarises centrality dependence of the ratioK∗0/K from STAR [11,12] and
ALICE [13,14] together with the theoretical predictions. Again, the feature of decreasing
temperature with increasing centrality is observed.

In fig. 4 we present data on φ/K− ratio from Au+Au collisions at
√
sNN = 200 GeV

as measured by STAR [11, 12, 15] and from Pb+Pb collisions at
√
sNN = 2.76 GeV by

the ALICE collaboration [13]. Again, they are compared with theoretical calculations.
In most cases, the measured ratios are clearly above the calculated ones, except for the
most central collisions at the LHC. This may indicate that the φ-meson survives in the
hadronic system and does not equilibrate with its decay products.

The temperatures that we obtained from the K∗0/K− and φ/K− ratios are compared
in fig. 5 with values inferred from fits with the blast-wave model to the identified single-
particle pt spectra [16]. While from φ/K− barely any reasonable temperatures can be
obtained, the values from K∗0/K− coincide with the results from fitting of the pt spectra.
We also provide a comprehensive summary of all extracted temperatures in fig. 6. While
the ratios of ρ0/π and K∗0/K fit into the overall picture with TFO that decreases with
increasing centrality of the collisions, the ratios of φ/K and those involving excited
hyperons either largely depart from the common centrality dependence or even cannot
be interpreted by any temperature within the PCE model.
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Fig. 2. – The ratio of 2ρ0/(π+ + π−) from Pb+Pb collisions at
√
sNN = 2.76 TeV [10] as a

function of centrality, which is parametrised with the help of the charged particle multiplicity
as (dNch/dη)

1/3. Most central collisions correspond to the highest values of (dNch/dη)
1/3.

The theoretical result is calculated as function of temperature, which is shown on the upper
horizontal axis. To read off the temperature that corresponds to a measured data point, the
data are horizontally projected onto the theoretical curve and the temperature is read off from
the upper axis.

Fig. 3. – Ratio of K0(892)/K− as function of centrality from Au+Au collisions at
√
sNN =

200 GeV [11,12] and Pb+Pb collisions at
√
sNN = 2.76 TeV [13,14]. Different (but very close)

theoretical curves for the Au+Au collisions correspond to different centralities.
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Fig. 4. – Ratios of φ/K− from Pb+Pb collisions at
√
sNN = 2.76 TeV [13] and Au+Au collisions

at
√
sNN = 200 GeV [11, 12, 15]. Theoretical curves show the temperature dependence of the

ratio. For the RHIC energy, different curves show the dependence for different centralities.

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 2  3  4  5  6  7  8  9  10  11  12

T
F

O
 [G

eV
]

(dNch/d)1/3

(#1) ALICE 2760 GeV K*/K
(#4) ALICE 2760 GeV K*/K
(#1) ALICE 2760 GeV /K

JPhysG43(2016)015102

Fig. 5. – Temperatures obtained from the K∗0/K− [13,14] and φ/K− [13] as function of central-

ity. Centrality is expressed by (dNch/dη)
1/3, with most central collisions corresponding to its

highest values. The data are superimposed with temperatures obtained from fitting identified
single-particle pt spectra with blast-wave model [16].

4. – Conclusions

We have shown [9] that while PCE can nicely interpret centrality dependence of ρ0/π
and K∗0/K− ratios, it cannot reproduce φ/K−. The φ mesons appear to be too copious
in comparison with the model.
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Fig. 6. – Summary of all temperatures depending on centrality (expressed via (dNch/dη)
1/3).

The temperatures are extracted from ratios of resonances. If only uncertainty intervals are
shown without a data point, then the experimental result could not fit on the theoretical curve,
but its uncertainty interval had some overlap with it. Data from ALICE on K∗0/K− [13, 14],
ρ0/π [10], φ/K [13], Λ∗/Λ [17], and from STAR on K∗0/K− [11, 12], Λ∗/Λ [11], Σ∗/Λ [11],
and φ/K− [11,12]. Horizontal dashed line indicates the temperature of the chemical freeze-out,
which is the maximum temperature in this model.

The model relies on several simplifying assumptions which may be revisited. It as-
sumes isentropic expansion in order to represent the growth of the volume through the
decrease of the entropy density. Also, resonances are accounted for as narrow stable
particles. This treatment can be improved by explicitly including the interactions via
phase shifts.
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