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Summary. — Modern nucleus-nucleus collision experiments require the use of
advanced particle identification techniques. However, similar tasks are often time-
consuming, enhancing the complexity of the data analysis process. We develop a
novel approach capable to automatically identify charge and mass of detected ions
with almost zero human supervision. Our method uses evolutionary computing
and clustering algorithms and exploits previously developed analytical functionals
to provide physics constraints. The new algorithm is successfully tested on ΔE-E
telescopes based on annular silicon strip detectors and could be integrated in online
and offline analysis pipelines of existing detection arrays.

1. – Introduction

The physics interpretation of nuclear collision data often relies on the detailed knowl-
edge of the collision event, which, in turn, requires detecting and identifying particles and
fragments produced in the collision. In charged particle experiments, the identification
task consists in assigning a given reconstructed particle its precise nature, e.g., charge
(Z) and mass (A) of an ion. This is equivalent to grouping data into some meaningful
physics classes: particle-identification (PID) in nuclear physics can be therefore seen as
a data classification problem. However, PID procedures traditionally used in nuclear
physics are typically time-consuming, especially for complex multi-detectors character-
ized by numerous detection units [1-14], demanding for new, faster, methodologies for
data analysis.

Although the methodology discussed in this manuscript could be in principle applica-
ble to numerous other experimental methods used for PID, in the present work we focus
exclusively on the ΔE-E identification technique with stacks of two detection layers. In
similar arrays, if organized in a 2D correlation plot, data recorded by pairs of independent
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layers assemble into bi-dimensional non-overlapping clusters, each representing a certain
(Z,A) class. Consequently, the problem of PID using the ΔE-E technique is equivalent
to the clusterization in a bi-dimensional space.

In the literature, numerous algorithms based on Cluster Analysis (CA) or Vector
Quantization (VQ) have been developed (see, for example, [15-18]), with optimal per-
formance in standard cluserization cases, where one needs to obtain clusters of nearly
equal distortion. Unfortunately, these algorithms are not directly applicable to the bi-
dimensional assemblies typical of the ΔE-E technique because the peculiarities of the
stopping power of ions in the matter generates clusters with a large variability of size
and dispersion [19]. For this reason, only a few works previously tried to exploit CA/VQ
methods in nuclear data classification problems (see, e.g., [20]).

Most of the approaches commonly used for the analysis of ΔE-E data involve human-
supervised techniques, where the operator manually extracts information by visually in-
specting bi-dimensional distributions of data, which is then used as input for supervised
learning procedures. Among the latter, particularly popular are error minimization algo-
rithms based on mathematical models [21, 22], which contain Z and A-values explicitly,
even if artificial neural networks have been also proposed [23]. Mathematical models offer
the advantage of requiring information only for a reduced number of clusters, allowing
extrapolation to the entire dynamic range of the detector and reducing the effort for the
operator. The amount of information required for these algorithms can be further re-
duced, as an example, following the prescriptions of ref. [24], which have been effectively
tested for the FAZIA multi-detector.

In this work, we describe a novel algorithm for PID in multi-detector data based
on advanced artificial intelligence approaches typically used in data classification tasks.
The novel algorithm combines Evolutionary Computing (EC) and Cluster Analysis and
is capable to classify data in a physically meaningful way reducing the time required
for this task to a few minutes or hours of CPU-time with nearly zero supervision by
the operator. The search performed in the algorithm consists in two separate lev-
els: the upper level performs a global search through an EC algorithm that treats
each solution as an individual of a given population and applies some suitable evo-
lutionary criteria; the lower level, used as a local hill-climbing operator for the EC
process, performs a fast local search through a suitable VQ algorithm to speed-up
the process.

2. – The algorithm

The algorithm proposed in this work implements a constrained evolutionary clustering
approach. The goal is that of partitioning the bi-dimensional ΔE-E distribution separat-
ing data in the various (Z, A) classes. To obtain a physically meaningful classification,
a given partitioning is described by an analytical functional with an explicit dependence
on Z and A. For the present work, we used the functional proposed in ref. [21],

(1)
ΔE =fP (E,Z,A)

=
[
(P0E)P1+P2+1 + (P3Z

P4AP5)P1+P2+1 + P6Z
2AP1(P0E)P2

](1/(P1+P2+1))
,

being P = {P0, P1, P2, P3, P4, P5, P6} a given set of free parameters. For a given choice
of the parameters Pi one finds a different partitioning of the ΔE-E distribution. The
upper and lower levels of the algorithm, described below, are aimed to find the optimal
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Fig. 1. – Representation of an individual, e.g., a solution to the PID problem. Npar is the
number of the free parameters {Pi} required by the functional and NC is the number of clusters
identified in the ΔE-E distribution.

P set of the parametrization (1). After having found the optimal free parameters, the
identification is done through linearization of the ΔE-E distribution in the usual way [22].

2
.
1. Upper Level: the evolutionary computing part . – EC is a scientific field that

concerns the resolution of optimization problems through concepts and ideas derived
from natural selection in biological systems [25]. EC is widely applied in numerous
domains of science (see, e.g., [26-33] and references therein). In the present work, the
EC part foresees the evolution of solutions of the PID problem. For a given ΔE-E
distribution to analyze, a solution is encoded as schematically described in fig. 1. In such
an encoding, {Pi} is a set of Npar free parameters required by the functional of eq. (1),
NC is the number of identified clusters, and {ni} are the identified species in the given
ΔE-E distribution. The parameters {Pi}, NC , {ni} are optimized in the upper level
according to the following programming scheme, derived from the Darwinian Theory of
Evolution:

1) A set of possible solutions according to the encoding of fig. 1 is randomly generated.
Each of such solutions is an individual of a given population.

2) A numerical value, called fitness, is associated to each individual. The fitness
quantifies how much a given solution is suitable to the problem to solve. In
the present application, higher fitness corresponds to better solutions. The fit-
ness function chosen in this work accounts for the distortion of each cluster,
i.e., the average dispersion of points around the cluster center, as described in
ref. [34].

3) Until the average fitness in the population is maximized, the following steps are
iterated:
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a) Two individuals are selected (parents) to be used as a starting point for the
generation of a new individual (offspring). The selection criterion is stochastic
and accounts for the fitness of the individuals.

b) The offspring is obtained through a mechanism of parents encoding recombina-
tion (crossover, see ref. [34] for more details). In this phase, the chromosomes
of the parents, i.e., their encoding, are suitably combined to generate new
individuals. With a suitably low probability, some portions of the derived
encoding are randomly varied (mutation). Such a process has a crucial im-
portance as it allows to introduce missing genetic code and to keep genetic
diversity in the population. The fitness is calculated for the new individual.

c) The new individual replaces another individual in the original popula-
tion, which is randomly chosen with a probability larger for low fitness
individuals.

2
.
2. Lower level: the clustering analysis part . – This level is invoked when a promising

individual, i.e., an individual with a good fitness is produced by the upper level (sect. 2
.
1).

This part allows to rapidly optimize the parameters derived in the upper level through
a procedure derived from standard CA/VQ algorithms.

The goal of a typical VQ algorithm consists in the representation of a given set of
vectors x ∈ X ⊆ �k through a set, Y = {y1, . . . ,yNC

}, of NC reference vectors in �k.
Each reference vector is called codeword, while a set of codewords Y = {yi} is called
codebook. In VQ, a codebook is derived to represent the entire initial dataset, while CA,
equivalently, deals with identifying clusters of data. In the present, peculiar, application,
X contains the bi-dimensional data points of a given ΔE-E distribution, while Y contains
hyperbolic loci predicted by the functional of eq. (1).

A given solution of the VQ problem can be represented by a function q : X −→ Y , i.e.,
a function that associates a given bi-dimensional ΔE-E point to the nearest hyperbolic
locus. The determination of q allows to obtain a partition S of the original dataset X
constituted by NC subsets, Si, called cells :

(2) S = {Si; i = 1, . . . , NC}.

The Quantization Error (QE) can be then used to quantify the quality of a given partition
of the ΔE-E distribution. QE is the value deduced by d(x, q(x)), being d a suitable
distance operator between ΔE-E data points belonging to X and hyperbolic loci from
eq. (1), as defined in ref. [34]. The performance of a given quantizer q is evaluated
through the Mean QE (MQE)

(3) MQE ≡ D(Y,S) = 1

NP

NC∑

i=1

Di,

where NP is the number of data points in the ΔE-E distribution, and Di is the total
distortion of the i-th cell, being it defined by the following equation:

(4) Di =
∑

n:xn∈Si

d(xn, q(xn)).

Given the definitions elucidated above, the lower level of the algorithm proceeds with
the following steps:
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Fig. 2. – Representation of the best individual in the population after 0, 800, and 3500 genetic
iterations. The bottom right panel is a zoom to light isotopes after 3500 iterations.

1) Initialization: the result of the EC part is chosen as the initial codebook.

2) Partition calculation: given the codebook determined in the previous step, the
ΔE-E data are grouped into clusters, i.e., each data point is associated with a
given isotope following the Z-A-hyperbolic loci.

3) Termination condition: the MQE at the current iteration Dcurr is compared with
the one obtained in the previous iteration Dprev. If the ratio |Dprev −Dcurr|/Dprev

is less than a prefixed threshold (ε) then the algorithm ends; otherwise, it continues
with the next step;

4) Codebook calculation: by using the partition calculated in step 2), a new codebook
is calculated based on a fit of clustered data with eq. (1).

5) Return to step 2).

3. – Results

The performance of the present algorithm in identifying isotopes via the ΔE-E
technique has been tested on experimental data obtained with a detector made of six
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Fig. 3. – Functional used for PID with the parameters obtained after the CA part is invoked.

wedge-shaped (70μm/1500μm) telescopes arranged in a lampshade. Each telescope
was segmented into 16 annular strips. Consequently, the number of independent bi-
dimensional distributions to classify is 96. The experiment was performed at the ISAC-
II rare-isotope ion beam facility at the TRIUMF laboratory of Vancouver (Canada). A
9Li accelerated beam was delivered on a LiF target at an energy of 65MeV. 9Li + 6Li,
9Li + 7Li and 9Li + 19F collisions were investigated. They resulted in the production
of several ions especially in the range 1 ≤ Z ≤ 5. This experiment represents a valid
benchmark for advanced PID methods because all the detection units were capable to
resolve nearly all Z and A values in the range of interest.

Figure 2 shows the capabilities of the EC level of the algorithm in maximizing the
fitness. In the figure, we showed the best individual in the population after 0 (top panel),
800 (middle panel), and 3500 (bottom panel) iterations. The right panel contains a zoom
of the low-Z region with the best individual after 3500 iterations. Red lines represent
the individual, with each line representing the center of the corresponding hyperbolic
locus, each corresponding to a given codeword. After 0 iterations, the best individual
in the population (which, we remind, is generated randomly) gives an unsatisfactory
classification. A better performance for light isotopes is obtained after about 800 itera-
tions. However, the distortion of the heavier isotope is much larger than the rest. The
solution obtained after 3500 genetic iterations is very close to a good maximum of the
fitness function. In general, a number of 3500 iterations is found to be largely sufficient
to obtain a fully satisfactory codebook for all cases explored in this paper.

A further improvement of the identification shown in fig. 2 can be obtained invoking
the CA part on the best individual obtained after 3500 iterations. The result of the
clustering algorithm is shown in fig. 3. Semi-quantitatively, it can be easily seen that
the various codewords significantly better approximate observed clusters with respect to
the pure EC individual improvement. This a result of the CA optimization. The result
looks satisfactory for all clusters. The improvement is seen especially by comparing
the results for hydrogen isotopes before and after the CA is invoked (figs. 2 and 3). In
addition, despite the punch-through effect visible for hydrogen isotopes, low Z codewords
are in fully satisfactory agreement with clusters corresponding to 1H, 2H and 3H isotope,
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testifying the robustness of the approach.
The analysis discussed in this section involved the data from 96 independent ΔE-E

distributions. The task was completed in about 440 seconds on a commercial Intel i7-
9700K (8 cores) processor at a frequency of 3.4 GHz, without human supervision.

4. – Conclusions and perspectives

This paper describes a novel approach for the analysis of nuclear physics data, capable
to automatically, and with minimal human supervision, perform the task of PID. Even
if the approach is developed and tested for ΔE-E distributions obtained with silicon
telescopes, the idea could be implemented for various other identification techniques,
given a specific mathematical parametrization of the observed loci.

The new algorithm exploits evolutionary computing and clustering analysis, and is
constrained with existing functionals for PID.

For the data used in the present work, the new method allowed to accurately identify
charge and mass of all resolved species for 96 individual detection cells without human
supervision.

In the future, the present algorithm could be further developed to be included in the
online and offline analysis pipelines of existing multi-detectors [35-40].
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[15] Patanè G. and Russo M., Neural Netw., 14 (2001) 1219.
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