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Summary. — Nuclear matter at subsaturation densities is expected to be inho-
mogeneous due to the emergence of many-body correlations, which are crucial for
constructing a reliable equation of state. Specifically, large-scale correlations are
responsible for fragmentation processes, experimentally observed in heavy-ion col-
lisions at intermediate energies as the result of mechanical (spinodal) instabilities
driven by the mean field, in connection to the occurrence of a liquid-gas phase
transition. On the other hand, even at lower densities, owing to residual few-body
correlations, light clusters like deuterons and strongly bound α particles also form
but dissolve with increasing density due to the Pauli principle. Phenomenological
models that make use of energy density functionals offer a way to include these
clusters as additional degrees of freedom, yet a consistent description of both light
clusters and heavy fragment formation through spinodal instabilities is still lacking.
In this work, we propose a novel approach to incorporate in-medium modified clus-
ters within a non-relativistic kinetic framework, unifying the description of clustering
phenomena and heavy fragment formation at low densities.

1. – Introduction

The theoretical understanding of the properties of nuclear systems as a function of
mass number, isospin asymmetry, excitation energy, or temperature requires address-
ing various many-body correlations and clustering phenomena. For instance, large-scale
correlations may arise due to spinodal instabilities related to the liquid-gas phase transi-
tion, which is associated with the multifragmentation processes observed experimentally
in heavy-ion collisions (HICs) at intermediate energies [1]. These reactions provide a
unique tool to create transient states of nuclear matter (NM), possibly locally equili-
brated, under conditions far from saturation in terrestrial laboratories, offering valuable
insights into the NM equation of state (EOS) [2], in connection with astrophysical ob-
servations [3, 4].
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On the other hand, few-body correlations induced by short-range nucleon-nucleon
interactions are responsible for the formation of bound states of nucleons, as the system
can minimize its energy at low densities by forming light clusters such as deuterons
or α particles [5]. However, despite recent progress [6-9], a consistent description of
the concurrent emergence of light clusters and heavier fragments remains challenging,
particularly in dynamical studies. Phenomenological models utilizing energy density
functionals (EDFs) provide a reliable avenue, at least from a thermodynamic perspective,
as they incorporate clusters as explicit degrees of freedom (DOF), describing dilute NM
as a mixture of nucleons and nuclei [5, 10, 11].

However, light clusters should dissolve at high densities due to the so-called Mott
effect, primarily driven by Pauli blocking [12]. Recent approaches, such as the gener-
alized relativistic density functional (gRDF) model, address this phenomenon assuming
the medium modifies the effective binding energy of a cluster through a mass-shift [5].
The latter can be determined microscopically, at least at low densities, by solving the
in-medium many-body Schrödinger equation and then parameterized as a function of
density, temperature, isospin asymmetry, and center of mass (c.m.) momentum [12, 13].
However, these parameterizations rely on heuristic extrapolations to predict cluster disso-
lution beyond the Mott density, defined as the density where the effective binding energy
of a cluster with zero c.m. momentum vanishes. Beyond this point, bound clusters exist
only if their c.m. momentum exceeds a critical value known as the Mott momentum [12].
Yet, few-body correlations in the continuum might persist, even though they are not
accounted for in phenomenological EDF-based models like the gRDF. An extension of
the gRDF model was then recently proposed in ref. [14] to effectively incorporate resid-
ual few-body short-range correlations (SRCs) at supra-saturation densities in established
EOS models.

The aim of this work is to consider a more general kinetic framework to address the
dynamics of NM in the heterogeneous dilute regime, incorporating light (bound) clusters
and their in-medium effects. To this end, in sect. 2, we review a novel approach first
proposed in ref. [15], which we develop as a first attempt to provide a unified framework
for both light and heavy cluster formation at low densities, when out-of-equilibrium
processes, such as those occurring in nuclear reactions, are considered. In sect. 2, we
present both theoretical formalism and the results. Conclusions and outlooks are outlined
in sect. 3.

2. – Dynamics of dilute matter with light clusters as degrees of freedom

The need to study the dynamics of nuclear matter arises from the fact that,
as already anticipated in the introduction, a relevant source of information on
the EOS comes from investigating out-of-equilibrium processes. In particular, cen-
tral HIC at Fermi/intermediate energies (in the range of beam energies E/A ≈
30−300MeV/nucleon) allow for the exploration of low-density regions and moderate
temperatures during the expansion phase subsequent the initial compression [16, 17],
probing a similar region of the phase diagram as in astrophysical phenomena, such as
core-collapse supernovae or binary neutron star mergers [18]. Dynamical processes are
commonly modeled with transport theories, which however fail to consistently account
for the description of light clusters, emerging from few-body correlations and mean-field
(MF) instabilities, which lead to the formation of intermediate mass fragments through
spinodal mechanism. In particular, in a recent work [8], a kinetic approach based on the
Boltzmann equation for the distribution function in the phase-space was developed. In
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this model, the in-medium Mott effect is taken into account by introducing a cut-off for
the production of light clusters in the collision integral, providing a reasonable descrip-
tion of the yields measured by the FOPI Collaboration [19], with mass number up to
4. Inspired by this work, we delve into this context and investigate the fragmentation
dynamics of a low-density system at a given temperature, composed of nucleons and
light clusters. Our focus is on understanding how light clusters, which mainly arise from
few-body correlations in the compression phase, influence the MF evolution and the
development of spinodal instabilities, occurring in the expansion stage and ultimately
leading to the disassembly of the system into fragments of various sizes. For that pur-
pose, a non-relativistic framewok will be adopted, which allows for a more easily carried
out dynamical treatment. The corresponding theoretical formalism is detailed in the
next section.

2
.
1. Theoretical formalism. – Let us consider a system of nucleons —neutrons (n) and

protons (p)— and one light cluster species (deuterons (d), for the sake of illustration),
all in thermodynamic equilibrium at temperature T . The total baryon density, ρb =∑

j ρjAj , is defined using the densities ρj and mass numbers Aj of the constituents

(j = n, p, d). The phase-space distribution functions fj are given by

(1) fj (εj) =

[
exp

(
εj − μ∗

j

T

)
− (−1)Aj

]−1

,

where μ∗
j is the effective chemical potential and εj = p2

2mj
. Here, mj = Ajm − Bj , with

m = 939MeV being the bare nucleon mass, and Bj the binding energy (zero for free
nucleons). The number density ρj for each species is given by

(2) ρj = gj

∫
Λj

dp

(2π�)3
fj ,

where gj is the spin-degeneracy, and Λj is a momentum cut-off (Mott momentum) in-
troduced for clusters (Λj = 0 for j = n, p) to account for in-medium effects like Pauli-
blocking [8, 12, 15]. The cut-off Λj generally depends on the densities and temperature,
thus simulating a momentum-dependent binding energy-shift. We assume surviving clus-
ters retain their vacuum mass regardless of the medium density. The effects related to
mass shift and momentum cut-off, as well as continuum correlations at higher densities,
are beyond the scope of this work and are therefore neglected.

The thermodynamic properties of the system are fully described by its thermodynamic
potential. At finite temperature, the relevant quantity is the free-energy density, F =
E − TS, where S is the entropy density, and E is the energy density, comprising kinetic
(K) and potential (U) components. Within EDF theory, U is derived from a density-
dependent effective interaction.

Our goal is to explain the formation of heavy fragments due to volume instabilities
and the presence of light clusters within a unified theoretical framework. To achieve
this, we perform a linear response analysis of the collisionless (Vlasov) limit of the Boltz-
mann equation, considering the interaction between nucleonic and light-cluster DOF
while including in-medium effects [15]. By applying a small perturbation δfj to the
initial distribution functions fj , the linearized Vlasov equations become

(3) ∂t(δfj) +∇r(δfj) · ∇pεj −∇pfj · ∇r(δεj) = 0,
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where the single-particle energy εj is defined as

(4) εj ≡
(2π�)3

gj

δE
δfj(p)

.

For simplicity, we use a momentum-independent Skyrme-like effective interaction as in
ref. [2], leading to the single-particle energy

(5) εj = εj + Uj + ε̃λj ,

where Uj =
∂U
∂ρj

is the MF potential, and the effective potential term

(6) ε̃λj = −λd + Ud

1 + Φdd
λ

Φdj
λ ,

with

(7) Φdj
λ = αd

√
λdfd (λd)

∂λd

∂ρj
,

and αd = gd
(2md)

3/2

4π2�3 arises froms the density-dependent kinetic energy cut-off λd =
Λ2

d

2md
.

Notably, using eq. (2), the fluctuation in density can be expressed as

(8) δρj(r, t) = gj

∫
Λj

dp

(2π�)3
δfj − δjd

∑
l

Φdl
λ δρl,

where the Kronecker function δjd is used. The meaning of the second term in the right-
hand side of the above equation is that the local density of light nuclei may vary, not
just because of fluctuations in the distribution function, but also due to the impact of
density fluctuations along their propagation on in-medium effects driven by the density-
dependent cut-off. Dynamically, this would also suggest that the rate of cluster formation
or dissolution is much faster than the rate of local baryon density changes. However, to
better understand the influence of in-medium effects, the opposite scenario might also
be considered in the calculations, where the cut-off momentum remains constant during
the propagation of density fluctuations (Φdj

λ = 0).
Equation (3) allows for plane-wave solutions where δfj oscillates with a frequency ω

and wave vector k, represented as δfj ∼
∑

k δf
k
j ei(k·r−ωt). Using the Landau proce-

dure [20], this leads to a system of three coupled equations for neutrons, protons, and
deuterons which can be compactly written as [15]

(9) δρj = −χj

∑
l

(F jl
0 + F̃ jl

λ )δρl − δjd
∑
l

Φdl
λ δρl,

where χj = χj(ω,k) is the Lindhard function with a momentum cut-off. The parameters
are defined as

(10) F jl
0 = Nj

∂Uj

∂ρl
, F̃ jl

λ = Nj

∂ε̃λj
∂ρl

, j, l = n, p, d.
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Fig. 1. – Left panel: Mott momentum of deuteron Λd =
√
2mdλd obtained by eq. (11) as a

function of the cubic root of the (reduced) total baryon density, (ρb/ρ0)
1/3 with ρ0 = 0.16 fm−3,

for three temperature values. Readapted from ref. [15]. Right panel: ρb dependence of the
deuteron mass fraction Xd for the same temperatures as in the left panel.

Here, F̃ jl
λ are analogous to the Landau parameters F jl

0 , and Nj represents the thermally
averaged level density, considering the momentum cut-off.

2
.
2. Results . – In this section we show the results obtained in the simplest case of

symmetric nuclear matter (SNM) with deuterons as the only additional DOF. Indeed,
although at low temperatures both quantum statistical (QS) and relativistic MF (RMF)
calculations predict a dominance of α particles, in SNM at T � 5 MeV (the range
of interest here), the leading role is played by two-body correlations [15]. To model in-
medium effects, we use the microscopic results from ref. [12] and define the kinetic energy
cut-off as

(11) λd(ρb, T ) = βd ρ
γd

b

[
1 + tanh

(
1− ξd

ρMott
d (T )

ρb

)]
,

where βd = 440MeV fm2, ξd = 2, and γd = 2/3. This expression assumes a power-law
dependence on baryon density, smoothed near the Mott density ρMott

d to prevent discon-
tinuities in the density derivatives of the cut-off. It also incorporates the temperature
dependence of ρMott

d as described in ref. [13]. The adopted deuteron Mott momentum
parameterization, as plotted in fig. 1 (left panel) as a function of the total baryon den-
sity, was chosen in order to obtain, under chemical equilibrium conditions, a total baryon
density behavior for the deuteron mass fraction Xd = Adρd/ρb, as shown in fig. 1 (right
panel), which closely matches trends from QS or RMF calculations in ref. [5], in the
region of temperatures of our interest. However, it is worthwhile to notice that the
chemical equilibrium may actually not be achieved during the expansion phase of a nu-
clear reaction and can be relaxed in our calculations without affecting the results. These
conditions represent indeed only the starting point of the dynamical treatment, which is
presented hereafter.

The results are obtained by solving the homogeneous system given by eq. (9). In
such a way, the dispersion relation, connecting the frequency ω to the wave number k, is
correspondingly extracted. In particular, we are interested to the spinodal region, where
the frequency becomes imaginary and the density fluctuations are amplified as a function
of time, eventually leading to the disassembly of the system into pieces of various sizes.
The onset of spinodal instabilities is identified by setting the determinant of the matrix in
eq. (9) to zero for ω = 0 (χq = χd = 1) [1,21]. The main panel of fig. 2 shows the spinodal
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Fig. 2. – Spinodal boundary in the (ρb, T )-plane for three scenarios: 1) pure nucleonic matter
(SNM, black); 2) nuclear matter with deuterons, including in-medium effects along the dynamics

(red); 3) nuclear matter with deuterons, neglecting in-medium effects along the dynamics (Φdj
λ =

0, cyan). A “hybrid” case is also shown (green, see text for details). Readapted from ref. [15].

border in the (ρb, T )-plane, with the red line representing the case where the local density
dependence of the cut-off is considered. This curve is compared with the cyan line, where
the density dependence of the cut-off is neglected (Φdj

λ = F̃ jl
λ = 0), reducing the spinodal

border condition to

(12) (1 + F0)
(
1 + F dd

0

)
− 2F qd

0 F dq
0 = 0,

where q = n or p, and F0 = Fnn
0 + Fnp

0 , leading to the standard pure nucleonic matter
relation (1 + F0) = 0 (black line) when Nd → 0, i.e., without light clusters. For illustra-
tion, the green line shows a “hybrid” case where the density dependence of the cut-off is
ignored only in the single-particle energies (F̃ jl

λ = 0), while Φdj
λ �= 0 is retained in eq. (9).

Generally speaking, including light clusters as explicit DOF significantly affects the ex-
tent of the spinodal region. Neglecting in-medium effects (Φdj

λ = 0) would expand the
instability region due to the stronger attraction from the deuteron MF potential, affect-
ing F dd

0 . Conversely, in the hybrid case, the unstable region shrinks because in-medium
effects raise the deuteron kinetic energy. Notably, when fully considering in-medium ef-
fects (red line), the spinodal border of the composite system aligns more closely with pure
nucleonic matter (black line). The interplay between deuteron attraction and in-medium
effects also creates small, isolated instability regions at low temperatures in both the
hybrid and full cases (below 0.002 fm−3). In the full calculations, another re-entry into
the spinodal instability region is observed at higher densities, echoing recent findings on
the emergence of a meta-stable region [22].

Inside the spinodal region, the frequency turns out to be purely imaginary. Then ω
quantifies the growth rate of the unstable modes, which, plotted against the wave number
k in fig. 3 for the same cases as in fig. 2, varies with density and temperature. The exhib-
ited behavior causes the growth rate to peak at a specific k, indicating that the system
favors the growth of density fluctuations at that particular wave number. The panels
suggest that when in-medium effects are included in the dynamics, the maximum growth
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Fig. 3. – The growth rate of the instability, Im(ω), is shown as a function of the wave number k
for the same cases as in fig. 2, at various density and temperature values. The points represent
preliminary results obtained by numerically solving the Vlasov equation for pure nucleonic
matter, with two different sizes for the test-particle wave packets.

rate is reduced and shifted to lower k-values, slowing the instability growth and favoring
different fragmentation modes. Conversely, neglecting in-medium effects would lead to
the opposite behavior. It is also noteworthy that light clusters have a minimal impact on
the growth of spinodal instabilities for densities above ρ0/3 and at moderate tempera-
tures. The direction of unstable modes within the space of density fluctuations is finally
given by the ratio (δρS/δρd), where ρS represents the total isoscalar nucleonic density.
In fig. 4, the relative ratio (δρS/δρd) / (ρS/ρd) is plotted as a function of ρb within the
spinodal region, considering the two different approaches to in-medium effects discussed
earlier. Positive values indicate that nucleons and deuterons fluctuate in phase, while
negative values suggest they fluctuate out of phase. One observes that when in-medium
effects are ignored, light clusters move in phase with nucleons, promoting instability
growth and potentially contributing to the formation of larger fragments. In contrast,
when in-medium effects are included, deuterons fluctuate out of phase with nucleons,

Fig. 4. – The relative ratio (δρS/δρd) / (ρS/ρd) (see text) as a function of the total baryon density
ρb for nuclear matter with deuterons, neglecting (cyan) or including (red) in-medium effects in
the dynamics, for three temperature values. Lines are drawn only for the density values lying
inside the spinodal region.
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migrating to lower-density regions as nucleon density fluctuations grow and fragments
form. This in-medium effect definitely acts as a “distillation” mechanism, leading to the
separate emission of deuterons and potentially increasing their yield in mean-field–based
simulations of HICs at intermediate energies, matching recent experimental findings con-
cerning fragmentation dynamics [23].

3. – Summary, outlooks and conclusions

Summarizing, using a linearized Vlasov approach, in this work we have investigated
the occurrence of spinodal instabilities in the dynamics of dilute NM, incorporating light-
cluster DOF. Our results demonstrate that the presence of light clusters, particularly the
in-medium (Mott) effects on their propagation, significantly influences the characteristics
of the unstable modes that drive the disassembly of the system underlying the multi-
fragmentation processes experimentally observed. When in-medium effects are ignored,
light clusters move in phase with nucleons, aiding in fragment formation. However, local
in-medium effects trigger a “distillation” mechanism, causing clusters to migrate towards
lower density regions. This process slows down the growth of instabilities and affects the
dominant fragmentation modes. These findings highlight the importance of accurately
including light-cluster DOF and in-medium effects in the description of dilute nuclear
systems, with critical implications for understanding HICs and astrophysical phenomena
in low-density and moderate-temperature environments.

Several potential developments and future directions are envisaged for this work.
Firstly, our results assume that nucleons bound in deuterons experience the same MF po-
tential as free nucleons. However, recent EOS calculations for astrophysical applications
conducted within the relativistic RMF approach [11, 14], suggest that other scenarios
could be more appropriate due to the screening of interactions in the medium, affecting
the chemical equilibrium constants. Additionally, beyond the linearized Vlasov approach
discussed in this paper, a hydrodynamical perspective offers an alternative method to
explore spinodal instability [24]. The relationship between these two approaches, par-
ticularly with the non-standard choice of a density-dependent cut-off in the momentum
integrals, is currently under investigation and will be addressed in a forthcoming paper.

It would also be valuable to extend the current analysis to include α-clusters and,
in the case of asymmetric nuclear matter (NM), other light cluster species. This could
involve exploring different parameterizations for the effective interaction and the density-
temperature dependence of the momentum cut-off.

More generally, to obtain a realistic description and allow for comparison with exper-
imental data, one must move beyond the current quasi-analytical approach and perform
fully numerical calculations by solving the Vlasov equation, for example, using the test-
particle method. In the left and center top panels of fig. 3, the numerically obtained
growth rates for several wave vectors are compared with those previously derived from
the linearized Vlasov equations for pure nucleonic matter at a chosen density value of
ρb = 0.02 fm−3 and two temperatures (T = 5 and 8MeV). It is observed that the finite
size of the (triangular) profiles assumed for the test particles in coordinate space gen-
erally reduces the instability growth rate. However, the numerical results converge to
the quasi-analytical solutions as nl, which corresponds to the range of the test-particle
packet, approaches zero. Work is ongoing to include light clusters and in-medium ef-
fects within this numerical framework, with the ultimate goal of providing a consistent
description of the different mechanisms responsible for fragment formation in HICs at
intermediate energies.
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