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Summary. — Within the transport model evaluation project (TMEP) of simu-
lations for heavy-ion collisions, we present a detailed study of the performance of
different transport models for mean-field propagation in a box and in Sn+Sn col-
lisions at 270AMeV, with particular emphasis on the production of pions and Δ
resonances, which are often employed as probes of the nuclear symmetry energy.
Thus, we prescribe common and rather simple physics models, and follow in detail
the results of several Boltzmann-Uehling-Uhlenbeck (BUU) models and quantum
molecular dynamics (QMD) models. Concerning pion production, we find a conver-
gence of the codes in the final charged pion yield ratio to a 1σ deviation of about
5%. However, the uncertainty is expected to be reduced to about 1.6% if improved
Pauli blocking and calculation of the complex (non-linear) term in the mean-field
potential are implemented in all codes.

1. – Introduction

Heavy-ion collisions offer unique possibilities to investigate, in laboratory conditions,
nuclear matter away from saturation properties. To this aim, the nuclear states of interest
need to be connected to final experimental observables, which is a quite challenging task,
leading to information on the Equation of State (EoS). As a matter of fact, transport
approaches are the main tool to establish this connection and extract this information.
Therefore, the reliability of transport studies of heavy-ion collisions and the robustness
of their predictions is important in heavy-ion research. It has recently become apparent
that different conclusions could be drawn from the same data by relying on transport
simulations, e.g., in the investigations of isospin equilibration in peripheral collisions
(isospin diffusion) or in the interpretation of ratios of charged pions, see [1] for a recent
review. These discrepancies could naturally derive from the different approximation
schemes, adopted in the different transport models, to deal with the quantum many-
body problem or from differences in various technical assumptions. The impacts of the
numerical details on predictions and conclusions are often difficult to discern. However, a
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systematic comparison and evaluation of transport codes under controlled conditions can
eventually provide benchmark calculations, thus improving the ability to reach robust
conclusions from the comparison of transport simulations with experimental data.

Previous studies along this direction were dedicated to the comparison of transport
model predictions for Au+Au collisions [2,3]. The observed differences in the predicted
reaction path and corresponding observables (such as collective flows) resulted mainly
from differences in the initialization of the systems and in the treatment of the collision
integral (Pauli blocking effects). The mean-field dynamics also seemed to play a role.
More recently, significant progress in understanding the behavior of the different trans-
port codes was made with subsequent studies, based on box calculations, i.e., simulations
of nuclear matter enclosed in a box with imposed periodic boundary conditions [4-6]. In
particular, the box calculations have the advantage that the different aspects of heavy-ion
collisions can be isolated and tested separately, e.g., the description of N-N scattering
processes (i.e., two-body correlations) and the mean-field dynamics. Taking advantage
of this background [7], the comparison was then extended to the case of nuclear reactions
of experimental interest, focusing on pion observables, as pion ratios turned out to be
sensitive indicators of the behavior of the symmetry energy. Here we report on a selection
of these recent results [6, 8].

2. – Transport approaches

The dynamics of nuclear collisions at Fermi/intermediate energy is usually described
by semi-classical transport theories, such as the Nordheim approach, in which the Vlasov
equation for the one-body phase space distribution, f(�r, �p; t), is extended with a Pauli-
blocked Boltzmann collision term, which accounts for the average effect of the two-body
residual interaction. The resulting transport equation is often called Boltzmann-Uehling-
Uhlenbeck (BUU) equation. In order to introduce fluctuations and further (many-body)
correlations in the treatment of the reaction dynamics, a number of different avenues
have been undertaken, which can be differentiated into two classes (see refs. [1,9,10] for
recent reviews). One is the class of quantum molecular dynamics (QMD) models [11],
while the other kind is represented by stochastic extensions of mean-field approaches of
the BUU type [12,13].

2
.
1. BUU-like models . – In BUU-like approaches, the time evolution of the distribution

function, f(�r, �p; t), follows the equation

(1)
( ∂

∂t
+ �∇pε · �∇r − �∇rε · �∇p

)
f(�r, �p; t) = Icoll(�r, �p; t),

where ε[f ] is the single-particle energy, usually derived from a density functional, and
Icoll is the (stochastic) two-body collision integral, specified by an in-medium nucleon-
nucleon cross section dσmed/dΩ. The BUU theory can more generally be formulated
in a relativistic framework, and actually most codes in our comparison use a relativis-
tic formulation. However, in the simpler non-relativistic representation of the nuclear
interaction, the single-particle energy reduces to ε =

√
�p2 +M2 + U(ρ) (for the local

interactions considered here), where U(ρ) represents the self-consistent mean-field po-
tential. The integro-differential non-linear BUU equation is solved numerically. To this
end, the distribution function is represented in terms of finite elements, so-called test
particles (TP), characterized by time-dependent centroid coordinates and momenta �Ri
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and �Pi. The number of TPs per nucleon is set to NTP = 100 in the calculations. Upon
this ansatz, the left-hand side of eq. (1) leads to Hamiltonian equations of motion for the
TP centroid propagation:

(2)
d�Ri

dt
= �∇Pi

ε and
d�Pi

dt
= −�∇Ri

ε.

2
.
2. QMD models . – In QMD models, the many-body state is represented by a simple

product wave function of single-particle states with or without antisymmetrization [10,
11]. The single-particle wave functions φi are usually assumed to have a fixed Gaussian
shape:

(3) φi(�ri; t) =
1

[2π(Δx)2
] 3

4

exp

[
− [�ri − �Ri(t)]

2

4(Δx)2

]
e(i/�)

�Pi(t)·�ri .

The time evolution of the nuclear dynamics is formulated in terms of the variation of
the wave packet centroids, similar to classical molecular dynamics. This strategy yields
equations of motion for the coordinates of the wave packets of similar form as obtained
for the TPs in BUU. Though the nucleon wave functions are independent (mean-field
approximation), the use of localised wave packets induces classical many-body correla-
tions both in the mean-field propagation and two-body in-medium scattering (collision
integral), where the latter is treated stochastically. In the philosophy of QMD one wants
to go beyond the mean-field approach and include correlations and fluctuations from the
beginning. These fluctuations are regulated and smoothed by choosing the parameter
Δx, the width of the wave packet, cf. eq. (3). However, being essentially of classical
nature, they can lead to a loss of the fermionic character of the system more rapidly
than in BUU [4]. The effects of this difference in the amount of fluctuations between the
two approaches will clearly be seen in the comparisons that will follow.

3. – Results and discussions

3
.
1. Test of the mean-field propagation. – A dedicated homework has been devised

to test the mean-field propagation under controlled situations in the different transport
codes [6]. We consider uniform symmetric matter at saturation density ρ0 = 0.16 fm−3

and zero temperature. For the cubic box employed (of size Lα = 20 fm), this corresponds
to A = 1280 nucleons. The system is initialized by impressing a sinusoidal distortion
with wave number kini = 2π/Lα and amplitude aρ = 0.2 ρ0 on the density in the box,
along the z-direction: ρ(z, t = 0) = ρ0 + aρ sin(kiniz). The simulations are followed until
tfin = 500 fm/c, with a recommended time step of either Δt = 0.5 or 1.0 fm/c. Several
BUU-type and QMD-type codes participated in the present comparison [6]. 10 events
were considered for the BUU models, whereas 200 events were run for the QMD codes.
The Coulomb interaction and the nuclear symmetry force were turned off in this case.
For the non-relativistic codes, a standard Skyrme parametrization (without momentum
dependence) for the single-particle potential is used, leading to the following nuclear mat-
ter properties: compressibility K0 = 500MeV, saturation density ρ0 = 0.16 fm−3 and the
binding energy at saturation density E0 = −16MeV. For the relativistic codes, we em-
ployed a non-linear σ−ω Relativistic Mean Field (RMF) parameterization, characterized
by the same properties. The nucleon mass was taken to be M = 938MeV. To character-
ize the density perturbation introduced in the initial conditions and its time evolution, it
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Fig. 1. – (Color online). The strength function ρk(t) for mode kini is displayed as a function of
time. Results are shown for BUU-like calculations (left panel), including ImQMD-L calculations
for comparison, and QMD-like calculations (right panel) (adapted from ref. [6]).

is useful to perform a Fourier analysis of the density oscillations. We define the Fourier

transform of the averaged spatial density as ρk(t) =
∫ Lz

0
dz ρ(z, t) sin(kz), which can be

called the strength function of the mode k. We will consider k = kini = 2π/Lα. One
generally observes damped oscillations as a function of time for the latter quantity.

Figure 1 shows the results obtained for the time evolution of the strength function,
for all codes involved in the comparison. One can observe that BUU-like codes give quite
similar results. The differences observed are compatible with the different formalism
(either fully covariant, non-relativistic or with only relativistic kinematics) adopted in
the different models. The QMD-like codes exhibit an excellent agreement among them,
but a lower oscillation frequency and larger damping effects are observed with respect
to the results of BUU-like codes. This observation highlighted relevant effects of the
approximate treatment of the many-body term of the nuclear interaction in QMD [14],
resulting in the lowering of the oscillation frequency. A more accurate treatment is
found in recent formulations (see in particular the ImQMD-L code) adopting the Lattice
Hamiltonian method to implement the mean-field dynamics [14], that leads to a better
agreement with the BUU-like results, as also shown in the figure.

3
.
2. Comparison of nuclear reaction dynamics and pion production. – The compar-

ison was then extended to the dynamics of a nuclear reaction, including meson (pion)
production. Thus, in this homework calculation, we incorporate inelastic collisions re-
lated to the production of pion-like particles. We consider the reaction 132Sn+124Sn
at the incident energy 270AMeV and an impact parameter b = 4 fm. A common ini-
tialization was adopted for all participant codes. A simple (momentum-independent)
parametrization was used for the mean-field potential, leading to the saturation density
ρ0 = 0.16 fm−3, the binding energy at saturation density E0 = −16MeV, the incompress-
ibility of symmetric nuclear matter K0 = 240MeV, the symmetry energy at saturation
density E0

sym = 30.3MeV, and its slope parameter at saturation density L = 84MeV.
Simulations are carried out until t = 70 fm/c and 100000 events were considered.

Results from full-mode calculations, i.e., including mean-field propagation and n-n
collisions, for both BUU and QMD models are displayed in fig. 2. Comparing BUU and
QMD models, a substantially stronger flow is seen for BUU. This is consistent with the
fact that BUU models lead to a lower density as a result of the stronger repulsion of
the accurately calculated non-linear force, see also the results discussed in the previous
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Fig. 2. – (Color on line). Final nucleon rapidity (e) and transverse flow (f) distributions for all
codes in their standard implementations and with standard parameters (adapted from ref. [8]).

subsection. This difference is further enhanced by the use of an effectively larger particle
size in QMD, which reduces the gradients of the mean-field potential. The differences
within BUU models also follow from the same connection that a smaller TP size leads to
a stronger force and thus to a stronger stopping and flow. Indeed, using the point TP,
RVUU has the largest flow and a large stopping. QMD models in the standard versions
agree well among themselves, especially for the transverse flow. The agreement with
BUU results can be improved by using a more elaborate lattice formulation for QMD.
Since pion production in heavy-ion collisions is sensitive to the evolution of the nucleonic
matter through the reached densities and asymmetries, and consequently to the rate of
isospin-dependent NN collisions, we have to expect also differences in pion observables.

The final π−/π+ yield ratios from different simulation modes for all participant codes
are compared in fig. 3. We first discuss the ratios in the Cascade mode (i.e., suppressing
the mean-field propagation) in the left panel. The small differences in the π−/π+ yield

Fig. 3. – (Color online). π−/π+ yield ratios in different scenarios (see legend and text) for
BUU-like (left) and QMD-like (right) codes (from ref. [8]).



6 M. COLONNA and the TMEP COLLABORATION

ratio in the Cascade mode without Pauli blocking and Coulomb potential (open black
symbols) are consistent with those seen in the corresponding box calculation in ref. [5].
Including the Coulomb potential increases the ratios strongly, since the Coulomb force
pushes out the protons and makes the high-density region more neutron-rich. With the
use of a width parameter of Δx = 1.41 fm, the QMD codes have similar Coulomb effects
as IBUU and RVUU with their default cut-off parameters. With isospin-dependent Pauli
blocking included for nucleons (solid symbols), the π−/π+ yield ratios are significantly
increased, consistent with the fact that the pp → nΔ++ reaction, which leads to π+

production, is more blocked than the nn → pΔ− reaction, which leads to π− production.
We note that generally one expects an anti-correlation between the pion yield and the
charged pion yield ratio, since with larger pion yields, differences between the charge
states become less important. BUU models with a stronger Pauli blocking generally
give a larger π−/π+ yield ratio compared with QMD models, and this is particularly
true for pBUU with a more effective Pauli blocking. Turning on the Coulomb potential
leads to a similar increase of the π−/π+ yield ratio. As a whole, the pion ratios are
rather consistent among all models in the Cascade mode, with the exception of pBUU
which has a rather small Coulomb effect with and without Pauli blocking. Differences
in the π−/π+ yield ratio among models become larger after the inclusion of mean-field
potentials, as seen in panel (b) of fig. 3. A systematically larger π−/π+ yield ratio is
seen for BUU models compared with QMD models, already in the Full-noPauliBlocking
(nopb) mode and more pronounced with Pauli blocking included. This is related to the
lower total pion multiplicity in BUU models compared with QMD models, as a result of
the stronger force and the lower densities reached in BUU models. For QMD models, the
π−/π+ yield ratios are similar among codes that use the traditional method for the mean-
field calculation. We also show a lattice calculation with TuQMD (TuQMD-L), which
gives a larger π−/π+ yield ratio compared to other QMD models, related to the smaller
total pion yield(1). Generally, the π−/π+ yield ratios are increased after incorporating
the Coulomb potential. With the inclusion of the isospin-dependent Pauli blocking, the
π−/π+ yield ratios are further increased, especially in pBUU among BUU models and in
IQMD and TuQMD among QMDmodels. The higher π−/π+ yield ratios for TuQMD and
IQMD are due to the use of the surface correction to the Pauli blocking, which reduces
the pion yields and thus increases the π−/π+ yield ratios, making them comparable to
those from the IBUU and RVUU codes. It is remarkable to see the good agreement
between TuQMD-L calculations with the surface correction on the Pauli blocking and
the results of IBUU and RVUU (full red circles in the figure). The large charged pion
yield ratio for pBUU is related to the fact that in this code pions and Δ resonances are
subject also to the symmetry energy in contrast to all other codes, unlike the setup in
the homework specifications. Thus, the results of this code are not really comparable to
the other codes.

4. – Conclusions

Here we report on a study of mean-field dynamics in a box, without collisions, and
of the full dynamics of a nuclear reaction, including pion production. Major transport
codes from the two basic families, BUU and QMD, are included in this study, which

(1) The TuQMD-L results show a larger error bar of about 6% compared to others, since these
were obtained from a time-consuming calculation with a considerably smaller number of events.
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also partly account for relativistic effects in different approximations. The comparisons
include the strength function characterizing mode evolution in mean-field dynamics and
several observables related to reaction dynamics at intermediate energies. We find that
we can generally understand consistencies and differences between the results of the dif-
ferent codes. The remaining differences among codes and relative to near-exact results
include: 1) approximations to the calculation of the non-linear terms of the force used in
QMD codes that lead to noticeable differences in the frequency of the density oscillations
even at early times. This can, however, be avoided in a lattice evaluation scheme; 2)
the fluctuations inherent in the coarse phase space representation (and consequent Pauli-
Blocking evaluation), which are characteristically different in BUU and QMD codes. It
should be noticed that these findings do not make a statement about the validity of the
two approaches, since the physical modeling is different: QMD codes attempt to put a
reasonable amount of fluctuations already into the ansatz for the many-body state repre-
sentation, while in BUU these would have to be included by an extra fluctuation term in
the Langevin framework. A dedicated comparison of the fluctuation dynamics in the two
families of approaches is foreseen. However, the agreement within 5% observed in our
comparison for pion ratios gives good confidence about the reliability of this observable to
extract constraints on the symmetry energy, as considered in recent analyses [15], which
also combine constraints from nuclear structure and astrophysical scenarios [16, 17].
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