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(7) Università “Kore” di Enna - Enna, Italy
(8) Dipartimento di Scienze MIFT, Università di Messina - Messina, Italy
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Summary. — The NArCoS project aims to develop a novel detection system for
simultaneously identifying neutrons and light-charged particles with high angular
and energy resolution. This system uses advanced EJ-276G plastic scintillators and
SiPM photosensors as the core detection units in a segmented multidetector. In
this study, we analyzed simulated data of two geometric configurations using the
GEANT4 toolkit to assess cross-talk probability in relation to neutron energy and
detection threshold. This research served as a preliminary step for the CROSSTEST
experiment.

1. – Introduction

In heavy ion collisions at Fermi energy, measuring particle-particle relative energy
or linear momentum correlations helps distinguish between prompt (<100 fm/c) and se-
quential reactions (�1000 fm/c) [1-4]. While many studies focus on correlations of light
charged particles (LCPs) and intermediate mass fragments (IMFs) [5, 6], fewer inves-
tigate neutron-neutron, neutron-proton, and neutron-IMFs correlations [6-8]. Recent
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research highlights the accuracy of plastic scintillator EJ-276G, produced by Eljen Tech-
nologies [9], for pulse shape analysis [10] and its use in heavy ion reactions [11], achieving
sub-nanosecond timing resolution with SiPM arrays [12]. The NArCoS project (Neutron
Array for Correlation Studies) aims to develop a detector for high-resolution neutron and
light charged particle detection in the energy range of 10AMeV to 100AMeV [13]. The
elementary cell detection is a cube of 3 × 3 × 3 cm3 of EJ276-G fast plastic scintillator
coupled with a SiPM matrix housed on a PCB board. This hodoscope will function alone
or with high-granularity 4π-detectors like CHIMERA [2,14] or FARCOS [15] at Labora-
tori Nazionali del Sud in Catania. The need for effective neutron and charged particle
detection is driven by new radioactive ion beam facilities (RIBs), such as FRAISE at
INFN-LNS [16], SPES at Laboratori Nazionali di Legnaro (LNL) [17], and FAIR at GSI
Darmstadt [18], where the NeuLAND [19] neutron detector is being assembled.

2. – Cross-talk simulation results

The cross-talk effect, a known issue in neutron detection experiments from few to tens
of MeV [7], arises from neutrons interacting in multiple detection cells and from gamma
rays and neutrons re-scattered from surrounding structures. This background gener-
ates false signals, distorting neutron multiplicity and simulating unreal reaction events.
A preliminary GEANT4 [20] simulation of a four-cell cluster showed cross-talk probability
increasing from about 1% at 5MeV to 9% at 50MeV neutrons [13]. A more recent study
investigated two geometric configurations of the elementary cell: the matrix configura-
tion and the three-cluster configuration (see fig. 1). Reasonable cross-talk probabilities
(2–4%) were observed with detection thresholds of 1 and 1.5MeV, even for higher energy
neutrons (up to 10MeV). Efficiency values were estimated to be over 10% for the matrix
configuration and over 30% for the three-cluster configuration with the same detection
thresholds (0, 0.5, 1.0, 1.5MeV) for higher energy neutrons (10MeV) [21].

The study of the matrix configuration (see left panel in fig. 1) evaluated cross-talk
(CT) contributions along the x and y directions. The overall cross-talk is mainly due
to the double-hit cross-talk DH(1-i) from the central cell ID = 1 to another cell i with
i = 2, . . . , 9. Other combinations like DH(i-j) (i �= j, j = 2, . . . , 9) not involving cell ID =
1, triple-hit cross-talk TH(1-i-j), and others are negligible (fig. 2(a), (b)). Significant
contributions to DH cross-talk come from CT 1-3, CT 1-5, CT 1-7, and CT 1-9, with
smaller contributions from CT 1-2, CT 1-4, CT 1-6, and CT 1-8 due to geometrical
reasons (fig. 2(c), (d)).

The study of the three-cluster configuration (see right panel in fig. 1) evaluates cross-
talk contributions along the z direction. The overall cross-talk consists of two main
contributions: DH (1-i) from cell ID = 1 and DH (i-j) not involving cell ID = 1, with

Fig. 1. – Simulation of the neutron flux (green tracks) on the matrix configuration (left) and
the three-cluster configuration (right). The white numbers represent the IDs assigned to each
elementary cell.
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Fig. 2. – Cross-talk contributions as a function of the neutron energy for the matrix configuration
with cell detection threshold of 1MeV (a) and 1.5MeV (b). Corresponding double-hit cross-talk
contributions from cell ID = 1 to another cell ((c), (d)).

other combinations being negligible (fig. 3(a), (b)). DH (1-i) is primarily due to CT
1-2, CT 1-5, and CT 1-8 (fig. 3(c), (d)), while DH (i-j) is mainly due to cross-talk from
cell ID = 2 to others, specifically CT 2-3, CT 2-6, and CT 2-9 (fig. 3(e), (f)). Other
DH combinations are less than 0.4% and 0.3% for detection thresholds of 1MeV and
1.5MeV, respectively.

Fig. 3. – Cross-talk contributions as a function of the neutron energy for the three-cluster
configuration for cell detection threshold of 1MeV (a) and 1.5MeV (b). Corresponding double-
hit cross-talk contributions from cell ID = 1 ((c), (d)) and not involving cell ID = 1 ((e),
(f)).
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3. – Conclusion

In this study, we simulated and analyzed GEANT4 data to investigate the cross-talk
probability for two different detection configurations of the NArCoS detector. In the ma-
trix configuration, the main cross-talk contribution comes from double-hit interactions
between the central cell ID = 1 and its neighboring cells. In the three-cluster configura-
tion, significant cross-talk contributions include double-hit interactions from cell ID = 1
to cell ID = 2 and from cell ID = 2 to cell ID = 3. These configurations were experi-
mentally tested in the CROSSTEST experiment in November 2023 at LNL using a 9-cell
prototype. The analysis of these data is still in progress.
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