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(2) INFN, Sezione di Roma Tre - Roma, Italy

received 2 December 2024

Summary. — A minimalistic model for leptons based on the modular group ΓN of
lowest level N = 2 is presented. As opposed to the only existing model of Γ2

∼= S3

formulated in a SUSY framework, the only non-SM field is the modulus τ , and
a generalised CP symmetry is implemented. A normal ordering for the neutrino
masses is predicted. Predictions for the CP violating phases are also given: the
Dirac CP phase is predicted around 1.6π, the Majorana phases lie in narrow regions
near ±π. Given the reduced number of free input parameters as compared to the
existing literature on modular S3, this work renews interest for a unified predictive
model of quark-lepton sectors based on Γ2

∼= S3.

1. – Description

In the recent past, a substantial effort went into the understanding of lepton mixing
and masses through flavour symmetries. A suitable framework has been provided by non-
Abelian discrete symmetries [1]. These symmetries act linearly on the fields, which are
supposed to belong to irreducible representations (irreps) of the group. The spurion fields
that break the flavour symmetry are called flavons, and their specific vacuum expectation
value (VEV) in flavour space helps in shaping the mass matrices. The approach has been
quite successful at reproducing (at leading order), approximate forms of the Pontecorvo-
Maki-Nakagawa-Sakata mixing matrix UPMNS, which can then be made compatible with
experiments through small perturbative corrections. On the other hand, due to these
necessary corrections, typical drawbacks of traditional flavour models are related to the
increased number of free parameters, and to the complicated scalar sector needed to
correctly align the flavons in the flavour space.

In [2] a new promising direction to address the flavour problem was suggested, a
“bottom-up” approach based on modular invariance: the Yukawa couplings of the Stan-
dard Model (SM) become modular forms of level N , and functions of a complex scalar
field τ , (called modulus), which acquires a VEV at some high-energy scale. These are
supposed to transform in irreps under the action of the finite modular group ΓN . In some
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of its minimal realizations, no flavons other than the τ are needed, and the VEV of the
modulus is the only source of flavour symmetry breaking. As opposed to models based
on non-Abelian discrete symmetries, the Modular Symmetry is non-linearly realized. An
interesting feature of ΓN is that, if we limit ourselves to study modular forms of level
N ≤ 5, we benefit from the fact that the finite modular group ΓN≤5 is isomorphic to
the non-Abelian discrete groups S3, A4, S4 and A5 considered in past flavour models. A
comprehensive list of examples in this direction are given in [3]. A direct consequence
of holomorphicity and modular invariance is the remarkably limited number of free pa-
rameters. One can additionally require the theory to be CP-symmetric, as was done in
ref. [4]. In this approach, the only source of CP-violation is the VEV of the modulus τ ,
and the CP-symmetry forces the parameters of the theory to be real.

In our work we wanted to address the problem of building a modular lepton flavour
model based on the Γ2

∼= S3 group. This possibility had not been scrutinized in detail as
for other groups and, for that, it deserved special attention. We went beyond the existing
literature, proposing a modular model based on S3 which employs the least number of
free parameters and uses no flavons other than the modulus, and additionally with less
severe fine tuning of its free parameters [5].

2. – The model

We work in a N = 1 SUSY framework. Under the modular group Γ̄ ≡ SL(2,Z)/{±I},
the chiral superfields transform as

(1)

⎧⎪⎪⎨
⎪⎪⎩
τ → γ(τ) =

aτ + b

cτ + d

ϕ(I) → (cτ + d)−kIρ(I)(γ)ϕ(I)

, γ =

(
a b
c d

)
∈ Γ̄ ,

where the letter I indicates a specific chiral superfield sector. To counterbalance the
transformations of the chiral superfields, the Yukawa modular forms YI1...In(τ) of weight
kY and level N transform under the modular group as:

(2) YI1...In(τ) → (cτ + d)kY ρ(γ)YI1...In(τ) ,

such that the superpotential is invariant if and only if the following conditions are met:

(3)

{
ρ⊗ ρI1 ⊗ ρI2 ...⊗ ρIn ⊃ 1

kY = kI1 + kI2 + ...+ kIn
,

i.e., the modular weights of the Yukawa couplings counterbalance the modular charges
of the chiral superfields.

The symbol ρ(I)(γ) stands for a unitary irreducible representation of Γ2 = Γ/Γ(2),
where Γ(2) is the principal congruence subgroup of level 2(1). The group Γ2 is finite
and isomorphic to S3, the symmetry group of the equilateral triangle. The S3 group is
equipped with three irreducible representations: the doublet 2, the pseudo-singlet 1′ and
the singlet 1, with the following composition rules for two doublets: 2⊗ 2 = 1⊕ 1′ ⊕ 2.

(1) Its elements satisfy a, d ≡ 1 (mod 2) and c, b ≡ 0(mod 2) .
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Table I. – Chiral supermultiplets, transformation properties under Γ2
∼= S3 and their modular

charges.

Ec
1 Ec

2 Ec
3 D� �3 Hd,u

SU(2)L×U(1)Y (1,+1) (1,+1) (1,+1) (2,−1/2) (2,−1/2) (2,∓1/2)

Γ2
∼= S3 1 1′ 1′ 2 1′ 1

kI 4 0 −2 2 2 0

Modular forms of level 2 and (even) weight k span a linear space of finite dimension
k/2 + 1. The two modular forms of lowest weight transform in a doublet and can be
expanded as:

(4)

(
Y1(τ)
Y2(τ)

)
2

=

⎛
⎜⎜⎜⎝

7

100
+

42

25
q +

42

25
q2 +

168

25
q3 + ...

14
√
3

25
q1/2(1 + 4q + 6q2 + ...)

⎞
⎟⎟⎟⎠ ,

where q ≡ e2πiτ , and τ = Re τ + i Imτ , in the fundamental domain where −1/2 ≤ Re τ ≤
1/2, Im τ > 0 and |τ | > 1. Their structure allows us to define a useful quantity:

(5)
Y2(τ)

Y1(τ)
≡ ζ = |ζ| ei g ,

where g = g(Re τ) is a real function depending on Reτ . The absolute value |ζ| satisfies
|ζ| � 1, suppressed exponentially by Imτ > 0.

2
.
1. Charged leptons sector . – We were able to single out the most suitable superfield

assignments, summarised in table I.
The superfields Ec

i correspond to the three flavours of right-handed charged leptons

(respectively {i = 1, 2, 3} ≡ {e, μ, τ}). The left-handed SU(2)L doublets �i =

(
νi
Ei

)
are

grouped into a doublet and a pseudo-singlet of S3: D� ≡
(
�1
�2

)
∼ 2 , �3 ∼ 1′ ,. Their

modular charges are listed in table I. The Higgs doublets are completely sterile with
respect to the modular symmetry: they transform as invariant singlets and ku = kd = 0.
The resulting mass matrix (in the right-left basis) after electroweak symmetry breaking
reads(2):

(6) M� =

⎛
⎝α(Y (3))1 α(Y (3))2 αDY

(3)
3

βY2 −βY1 0
0 0 γ

⎞
⎠

RL

vd ,

where vd is the VEV ofHd and the modular forms of weight 6 are given by (Y
(3)
1 , Y

(3)
2 )T =

(Y1(Y
2
1 + Y 2

2 ), Y2(Y
2
1 + Y 2

2 ))
T
2 and Y

(3)
3 = (Y 3

2 − 3Y 2
1 Y2)1′ . Expanding the eigenvalues in

(2) In the parentheses notation (...)1,2 we denote the two components of the corresponding

doublet Y
(a)
2 .
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terms of the expansion parameter ζ defined in (5), we obtain:

me = vdα

(
|Y 3

1 |+
3

2
|Y 3

1 ||ζ|2 +O(ζ3)

)
(7)

mμ = vdα

(
|Y1|+

1

2
|Y1||ζ|2 +O(ζ3)

)
(8)

mτ = vdα

(
1 +

9A2

2
|Y 6

1 ||ζ|2 +O(ζ3)

)
.(9)

The hierarchy (mτ ,mμ,me) ∼ mτ (1, |Y1|, |Y1|3) naturally arises considering that |Y1| ≈
7/100.

2
.
2. Neutrino sector . – With the assignments of table I, the neutrino sector is built

through the dimension five Weinberg operator(3), and the mass matrix is:

(10)

mν =
2gv2u
Λ

⎡
⎢⎣
⎛
⎜⎝
−(Y 2

2 − Y 2
1 ) 2Y1Y2

g′

2g2Y1Y2

2Y1Y2 (Y 2
2 − Y 2

1 ) − g′

2g (Y
2
2 − Y 2

1 )
g′

2g2Y1Y2 − g′

2g (Y
2
2 − Y 2

1 ) 0

⎞
⎟⎠+

+

⎛
⎜⎝

g′′

g (Y 2
1 + Y 2

2 ) 0 0

0 g′′

g (Y 2
1 + Y 2

2 ) 0

0 0
gp
g (Y 2

1 + Y 2
2 )

⎞
⎟⎠
⎤
⎥⎦

where g′/g, g′′/g and gp/g are dimensionless real free parameters. Here Λ is the scale
of new physics associated with the non-renormaizable Weinberg operator, accounting for
the smallness of neutrino masses.

3. – Results

We denote with qj(pi) the observables obtained from the model with the pi set of
parameters taken as input, and with qb-fj the corresponding best-fit values of neutrino
observables. To properly explore the viable parameter regions which in modular models
are typically characterised by peculiar shapes, a “figure of merit” l(pi) ≡

√
χ2(pi) can

be introduced by making use of the Gaussian approximation:

(11) χ2(pi) =

6∑
j=1

(
qj(pi)− qb-fj

σj

)2

,

where we compare the predictions of the model to the following set of six dimensionless
observables: {sin2 θ12, sin2 θ13, sin2 θ23,me/mμ,mμ/mτ , r} where r ≡ Δm2

sol/|Δm2
atm|,

which are extracted from the recent global analysis of ref. [7]. It should be emphasised
that the Dirac CP phase δCP was not included in the fit, hence its value is a prediction
of the model.

(3) A renormalizable realization with Γ2
∼= S3 can be found in [6].
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Fig. 1. – Correlations between pair of observables and parameters. The plotted points satisfy√
Δχ2 < 5. Here, |mββ | is the Majorana effective mass for the neutrinoless double-beta decay

experiments, and meff
β is the effective neutrino mass in beta decay experiments.

The fit is in excellent agreement with the data, with χ2
min = 0.074. As a result of

the numerical analysis, a set of interesting correlations among model parameters and
observables has been reported in fig. 1. The model also predicts a normal ordering of
neutrino masses. On the other hand, the inverted ordering case is strongly disfavored.
The other predictions are:

• a CP-violating phase δCP ∼ ±1.6π, which in general lies in a pretty narrow interval
δCP/π ∼ ±[1.57, 1.63] as can be seen from the plot in fig. 1.

• values of the sum of neutrino masses
∑

i mi around 0.090 eV, which is compatible
with the present upper bound of 0.115 eV (95%C.L.), see [8];

• the Majorana effective mass |mββ | for the neutrinoless double-beta decay to lie
around ∼ 20meV, not too far from the recent KamLAND-Zen upper bound
|mββ | < (36− 156)meV [9];

• both Majorana phases α1, α2 in narrow regions around ±1.13π,±0.95π, respec-
tively.
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Our predictions for δCP can be tested in forthcoming oscillation experiments, whereas
the Majorana effective mass |mββ | for the neutrinoless double-beta decay can be probed
by future ton-scale experiments.

4. – Conclusions

For the first time, Γ2
∼= S3 lepton constructions have been realised without the aid of

beyond Standard Model fields besides the modulus, and with the fewest number of free
parameters. The charged-leptons mass hierarchy is accounted for by symmetry arguments
with the careful assignments of irreps and modular charges of the superfields. In the
model, the charged-leptons mass pattern is ∼ mτ (1, |Y1|, |Y1|3) with the small parameter
|Y1| ≈ 7/100. Neutrino masses are then generated through Weinberg operators following
the assignments made for the charged-leptons sector. We performed a numerical scan and
found an excellent fit to neutrino mixing data, with the prediction of a normal ordered
spectrum, narrow ranges for the Dirac CP violation phase δCP and for the Majorana
phases α1 , α2. All the predictions for the sum of neutrino masses, neutrinoless double-
beta decay and tritium decay effective masses are compatible with present experimental
bounds. Some of these predictions can be tested by forthcoming neutrino experiments, in
particular the ordering, the CP-violating phase and the effective mass for the neutrinoless
double-beta decay.

Our results reopened the interest for a unification of quark-lepton flavour theories
under the Γ2

∼= S3 group. A successful example of a Γ2
∼= S3 quark model can be found

in [10], where a solution to the strong CP problem was also provided.

∗ ∗ ∗
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