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Summary. — Recent advancements in AI and Machine Learning are having re-
markable results in the field of High Energy Physics. The growing adoption of
Transformer architectures make it easy to build and innovate from industry devel-
opments, while the community is increasingly looking to foundation models as the
next promising approach. The following work is a brief review of current innovations
and an outlook of possible future developments.

1. – The Transformer architecture for Science

In the past, Machine Learning architectures have often been developed by taking into
account specific symmetries or domain-specific properties of the data. Thus, Convo-
lutional Neural Networks were introduced to work on image-like data, while Recursive
Networks were used for sequences and Graph Networks for sparse, unordered collections.
This paradigm has produced remarkable results, but at the cost of having several different
solutions, each specialized to its specific scientific domain or problem.

This changed in 2017 with the introduction of the Transformer architecture [2]. The
key idea behind the Transformer is the use of attention, a simple but highly effective
mechanism through which the network is capable of attending to the different parts of
the input sequence and uncover the most important correlations between its parts.

The attention mechanism, as initially introduced in the context of language learning, is
presented in fig. 1. Attention method simulates how human attention works by assigning
varying levels of importance to different words in a sentence. It assigns importance to
each word by calculating weights for the word’s numerical representation, known as its
embedding, to determine its importance.

Transformers networks, building on the attention mechanism, can thus be applied to
any type of data which can be seen as a sequence of multiple elements. This can include
electronic readouts, particle tracks, jet constituents listings, and in general almost any
type of scientific data, also outside of HEP. Results are generally much better than
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Fig. 1. – The attention mechanism in action on an input sequence. Note that this approach can
be applied to any data which can be seen as a sequence of tokens, i.e., detector data, particle
tracks, etc. From Numiri, CC BY-SA 4.0, via Wikimedia Commons.

previously proposed approaches, assuming the network is given enough training data.
Additionally, any advancement in Transformer networks has a simultaneous impact on
different data domains, since the architecture can be used in different data domains.

1
.
1. Example application. – More specifically, in HEP this type of architecture is being

used in very different domains, from calorimetry to pile-up mitigation. An interesting
use case is the tagging of particle jets, where the CMS experiment has deployed a particle
Transformer [1], which obtains state-of-the-art results by having the single constituents
of the jets interact through the attention mechanism. This architecture is illustrated in
fig. 2.

2. – Foundation Models for HEP

The Transformer architecture is increasingly being adopted in the HEP field. The
emergence of such a powerful, general-purpose network has lead to the idea of creating a
so-called foundation model. The main idea is that we can avoid training similar networks
multiple times on different datasets for different tasks. Instead, we train a single network
on a very large dataset, representative of our domain or experiment, and fine-tune it for
each application scenario. The idea is illustrated in fig. 3.

This paradigm requires a loss function for the unsupervised learning of the foundation
model on the initial dataset. Contrastive learning [3] is a possible solution, where the
network is trained by comparing two different examples from the dataset, learning a
space clustering together similar examples and separating different ones.

Once the pre-training step has been performed, the network can be fine-tuned to per-
form multiple sub-tasks, showcasing better results with less training data when compared
with similar networks trained from scratch on the same sub-task.

2
.
1. Example application. – The authors of [4] pre-trained the network on a dataset

consisting of particle jets from different sources, and then fine-tuned it on the task of
Top tagging, i.e., identifying those jets coming from a Top quark decay. Figure 4 shows
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Fig. 2. – How the particle Transformer allows the constituents of the jets to ”interact” through
the attention mechanism for state-of-the-art results in jet tagging. From [1].

that the accuracy of the pre-trained tagger is consistently better than the tagger trained
from scratch for each different number of labelled training samples.

3. – Shortcoming and pitfalls

When working with Transformers and foundation models, the speed and the advan-
tages of these new approaches make it possible to delegate more and more of our decisions
in analyses and detector studies. While in a certain way this is desirable, insofar as it

Fig. 3. – The main idea behind the design of a foundation model: train on general domain data
and fine-tune on specific application modes. From [4].
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Fig. 4. – The foundation model consistently performs better than networks trained from scratch.
From [4].

reduces human mistakes and the amount of time spent optimizing certain steps, on the
other hand there are a number of scientists advocating for care in how much decision
power we want to give to these networks.

The different steps in our current simulation or analysis chains give us the opportunity
to make informed decisions and enrich the results through our physical understanding.
It would therefore be desirable that these types of algorithms are applied to improve this
existing approach, instead of replacing it completely in an end-to-end approach.

4. – Conclusions

We discussed how the Transformer architecture is innovating the landscape of Machine
Learning application in Physics, by allowing the deployment of general-purpose, efficient
solutions across a wide range of data domains.

Building on them, foundation models promise to reduce the training times of these
algorithms while increasing their data efficiency.

Care must be taken to ensure that these applications remain a tool in the hand of
the physicists, to empower our understanding of Nature instead of increasingly replacing
our decisions in the discovery process.

We are confident that, thanks to these novel architectures as well as all the other
exceptional efforts of the community, the future will see an increase of remarkable results
across the field of High Energy Physics.
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