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Summary. — Detector simulation uses the largest amount of computational re-
sources of the ATLAS experiment at the LHC. About 80% of allocated resources are
used for the simulation of calorimeters. Action to ease this burden is required, also
in view of High Luminosity-LHC. This work presents two solutions in continuous
development within the Collaboration. The first one foresees usage and develop-
ment of fast simulation tools, which result in a faster simulation of the calorimeter
response and with a smaller resource footprint with respect to traditional tools; this
solution includes using techniques based on Machine Learning. The second stategy
envisages the deployment of fast simulation training to resources external to CERN,
including cutting-edge supercomputers like Leonardo at CINECA in Bologna.

1. – Introduction

Detector simulations uses the largest amount of computational resources of the AT-
LAS experiment [1] at the LHC [2], as shown in fig. 1. About 80% of this amount is
required by simulation of calorimeters [3] and this load is expected to increase in ab-
solute value with the forthcoming activation of the High Luminosity LHC (HL-LHC).
Therefore, there is great need for solutions to ease this burden.

The first way is through the development of fast simulation systems, able to simulate
calorimeter response faster with respect to the full simulation software Geant4 [4-6], guar-
anteeing at the same time good accuracy. These systems are mainly based on Machine
Learning (ML) techniques, harnessing their potential for this task.

These ML systems require large resources for their training, making this the heaviest
load among fast simulation tasks, therefore an additional improvement can be achieved by
distributing their training on other resources than the ones commonly used at CERN (the
CERN batch system LXBATCH and the Worldwide LHC Computing Grid [7]), in order
to obtain further room for training and, if cutting-edge resources like supercomputers
are used, a remarkable performance boost.

(∗) IFAE 2024 - “Poster” session
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Fig. 1. – CPU-hours usage by ATLAS activities [2].

This work presents the ongoing work on the proposed solutions. For the first approach,
the ATLAS fast simulation system AtlFast3 is presented, while for the second one the
BoloGANtainer system is introduced.

2. – AtlFast3

AtlFast3 is the ATLAS fast simulation system, which is already in production for
LHC Run 3 [3]. It combines two fast simulation tools:

• FastCaloSim, based on parametrisations of the longitudinal and the lateral devel-
opment of showers in the calorimeter;

• FastCaloGAN, based on Generative Adversarial Networks (GANs) [8].

The reference for evaluation of performance is the full simulation system Geant4. De-
pending on particle type, energy and pseudorapidity interval, AtlFast3 employs the spe-
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Fig. 2. – Fast simulation tools invoked by AtlFast3 depending on particle type, energy and
pseudorapidity interval [9]. The chosen tool is the one returning the most similar simulation to
the one of Geant4. Geant4 keeps being used in specific cases.



ADVANCED COMPUTATIONAL TECHNIQUES ETC. 3

cific simulation that gives the best results in comparison to Geant4 original distributions,
as shown in fig. 2 [9]. Geant4 keeps being used for specific cases, as shown in the same
figure.

A great improvement in performance is observed, as AtlFast3 runs simulation between
3 and 15 times faster than Geant4, with the greatest improvements being observed for
processes with the highest energy particles [10].

2
.
1. FastCaloGAN . – The tool uses the Wasserstein GANs with a gradient penalty

(WGAN-GP) term in the loss function of the discriminator, providing good performance
and training stability [11]. It is based on the simultaneous training of two neural networks:

• a generator, that aims at generating samples as similar as possible to Geant4
datasets;

• a discriminator, that aims at distinguishing Geant4 data from the ones produced
by the generator.

The two neural networks try improving during each iteration. Once an equilibrium is
reached between the two, the FastCaloGAN generator simulates calorimeter response
much faster than Geant4, preserving good accuracy at the same time, as shown in fig. 3.
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Fig. 3. – Comparison between full simulation (Geant4 ) and fast simulation (GAN ) for the sum
of the energy in all voxels for single protons generated at the calorimeter surface, with absolute
value of pseudorapidity η between 0.20 and 0.25 [12]. Remarkable agreement is observed.
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Table I. – BoloGANtainer performance on tested clusters. For pions one single GAN was
trained for all incident energy values, while for photons two GANs were, one for energies below
or equal to 4 GeV, one for energies above. NDF is the number of degrees of freedom.

Resource Type and Owner Hardware and
Software

Pion
Results

Photons
Results

LXBATCH CERN batch
system, reference
cluster

CentOS 7 (for
used nodes),
CVMFS, HT-
Condor, NVIDIA
V100 GPUs

Runtime:
12 h
χ2/NDF
∼ 2

Runtime:
30-31 h
χ2/NDF
∼ 5

Leonardo
[13]

The 6th most
powerful cluster
in the TOP500
ranking [14]
at CINECA in
Bologna, Italy

RHEL 8.7,
no CVMFS,
SLURM,
NVIDIA A100
GPUs, isolated
nodes

Runtime:
6-7 h
χ2/NDF
∼ 2

Runtime:
10-11 h
χ2/NDF
∼ 5

3. – BoloGANtainer

Usage of FastCaloGAN requires its GANs to be trained, but such training requires
a large amount of resources. A possible solution involves distributing this task on other
resources than the ones commonly used at CERN (the CERN batch system LXBATCH
and the Worldwide LHC Computing Grid).

BoloGANtainer makes it possible for FastCaloGAN training to run on other resources
as just described, providing resource saving and also an additional performance improve-
ment if this distribution makes use of cutting-edge devices like supercomputers. Bolo-
GANtainer is based on a container developed with Apptainer and on the official ATLAS
CentOS 7 image, which replicates the operating system and software of the CERN batch
system; it requires CUDA and CuDNN libraries for GPU usage. The rest of required
software is installed directly into the container, in order for that to be independent from
the system on which it is deployed.

BoloGANtainer has been deployed on the clusters shown in table I. Training on
Leonardo (fig. 4) runs in about half the time needed on LXBATCH; remarkable acceler-
ation is observed thanks to NVIDIA A100 GPUs, showing how the usage of supercom-
puters brings great advantage.

This work shall be further developed with distribution on other resources than the
ones on which BoloGANtainer has already been tested (including cloud resources), archi-
tectures (ARM) and for more particle types. Code optimisation shall also be investigated,
both as a general improvement and to employ multi-core and multi-GPU nodes in a more
efficient way.

4. – Conclusion

Detector simulation takes the largest load of the computational resources of the AT-
LAS experiment at the LHC, with a major fraction taken by calorimeter simulation. As
this burden is relevant and set to increase in view of HL-LHC, two solutions have been
presented: ML-based fast simulation systems, with AtlFast3 being the one used in the
ATLAS Collaboration, and distribution of the training of fast simulation ML systems
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Fig. 4. – The Leonardo supercomputer at CINECA in Bologna, Italy. [15]

on other resources than CERN commonly used ones, for which BoloGANtainer has been
introduced. Their good results in performance and accuracy significantly reduce the load
on computing resources and allow for faster analyses.
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