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Summary. — In recent years, the exploration of Beyond Standard Model phe-
nomenology has become more and more important. One approach to handle this
new hard challenge is to look at the data with minimum assumptions on the model,
using Anomaly Detection (AD) techniques. Here, a novel application of AD is used
to define a general signal region, where events are selected solely because of their in-
compatibility with a learned background-only model. Further, as an example of the
possible approach of AD an application on a benchmark dataset of the unsupervised
learning approach using Graph Neural Networks is presented.

1. – Anomaly Detection

The process under study is the production of a heavy-mass resonance Y decaying
into an Higgs boson H, that decays into two bottom-quarks bb̄, and a new resonance
X. This channel has been chosen because of the strong coupling of the H boson with
heavy particles, making the process as model-agnostic as possible. The only assumption
on the X resonance is that its final state is fully hadronic. As no significant excess was
observed, the results are presented as the upper limit on the production cross section of
the process pp → Y → HX → bb̄qq̄ described in a general Heavy Vector Triplet model
with two-prong signature, i.e. the H and X candidates can be reconstructed with only
two jets.

1
.
1. Event Selection. – The mass of Y resonance is in the range [1.5, 6] TeV, while

the X boson has a mass in the range [65, 3000] GeV [1].
The H and X bosons are produced with significant Lorentz boost due to the large

mass of the Y resonance. It is possible to separate two regimes depending on the mass
ratio between mX and mY . If mX/mY ≤ 0.3 the regime is called merged and the X
boson is boosted and is reconstructed as a single large-R jet - i.e. jets reconstructed
with anti-kT algorithm with a R range parameter of 1.0. If the ratio is mX/mY > 0.3,
then the X boson can be reconstructed as two single small-R jets, and this regime can
be called as resolved [3].
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This decay channel, whose Feynman diagram is represented in fig. 1 is pre-selected
using the following conditions:

• The mass of either the leading or the sub-leading large-R, ordered in pT , is greater
than 50 GeV;

• The leading large-R jet pT must be greater than 500 GeV;

• The invariant mass of the two leading large-R jets must be greater than 1.3 TeV.

Once the preselection is done, the next step has been the tagging of the H candidate
among the large-R jets. The channel H → bb̄ has the highest branching ratio for the
H decays, and a Machine Learning technique [2] is used to tag it. Once one of the jet
is tagged as H candidate and the other one is tagged as X candidate and a selection is
done on it.

1
.
2. H and X candidate tagging . – Boosted Higgs bosons decaying via the dominant

decay channel H → bb̄ are essential in several LHC searches. Usually, ATLAS identifies
these H bosons by applying flavour-tagging algorithms on the constituents of large-R
jets, but it is possible to obtain a more accurate tagging using a feed-forward neural
network and its outputs, that can describe the variable called DHbb

.
In the two-prong events, both the large-R jets ofH andX candidates pass through the

Neural Network and the jet with the highest DHbb
output is selected as the H candidate.

In addition, a calibrated cut-off in the DHbb
distribution (fig. 2(a)) is used to decide if

a jet can be tagged as H or not. Another condition used is on the mass of the jet: the
H candidate mass must be in the range [75, 145] GeV. These two conditions define the
Signal Region as shown in fig. 2(b).

The X candidate is tagged in two different ways: as two-prong signal or as anomaly.
A multivariate discriminant, called D2

Tracks, is built to give as output the likelihood of
the jet to be formed by two collimated small-R jets. Lower D2

Tracks correspond to a
higher likelihood of the X candidate to be a large-R jet. The merged region is thus
defined with D2

Tracks < 1.2 as shown in fig. 3(a).
When the X substructure is formed by two non-collimated small-R jets deriving from

its decaying, then the X candidate lies in the resolved kinematic regime. This region is

Fig. 1. – Feynman diagram for the fully hadronic decay used for this analysis.
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(a) (b)

Fig. 2. – (a) DHbb distribution for data and for 3 different couple of mX and mY MC simulations,
with the cut-off at 2.44. (b) Phase space for the selection of H boson candidate using the mass
of the candidate and the value of DHbb .

necessary to increase the sensitivity to signals in a wider phase space and is chosen to be
orthogonal to the merged selection (i.e. D2

Tracks > 1.2). Also, there are additional cuts
on two more kinematic variables to discriminate signal and background:

• |Δy| < 2.5 between the two small-R jets;

• pTbal
< 0.8 - where the pT balance is defined as pTbal

=
pTJ1

−pTJ2

pTJ1
+pTJ2

The final region is defined as Anomaly Region and is a discovery region based on a
data-driven anomaly score (AS ). This region is filled with events incompatible with SM
events, treating them as signal candidates —fig. 3(b). The AS is computed using a fully
unsupervised Variational Recurrent Neural Network trained over jets with pT > 1.2 TeV
and modelled as a sequence of constituents four-vectors. This is done to be sensitive to
alternative X decay hypotheses other than two-prong - e.g. three prong, heavy flavour
and dark jet. The AS region is defined with the flat cut AS > 0.5.

1
.
3. Background Estimation. – The background in the Signal Region arises from high

pT multijet events, and simulations for such processes are expensive to generate, so it is
operated by a data-driven approach. Looking at fig. 2(b), the shape of expected mJJ

distribution in the SR is obtained from data in CR0. Weights are derived that can be
applied to HSB0 to reproduce the shape in HSB1. The validation of this procedure was
done by applying the weights to data in LSB0 and comparing the resulting mJJ spectrum
to that observed in LSB1.

The re-weighting function is defined as the ratio of the multi-dimensional probability
distribution functions of the data in HSB1 (pdf1) to data in HSB0 (pdf0):

w(x) =
pdf1(x)

pdf0(x)

A Deep Neural Network learns w(x) in the training region HSB, then is validated in the
validation region LSB and finally extrapolated in the Higgs mass window. The training
is done before the D2

Tracks and AS categorization and the DNN features used are: the
H candidate 4-momenta, the number of tracks associated to H candidate and the 4-
momenta of the leading and sub-leading small-R jets associated with the H candidate.
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Fig. 3. – (a) D2
Tracks distribution for data and for 3 different couple of mX and mY MC sim-

ulations. This is one of the variable used for the classification in the two regimes for the X
candidate in the two-prong region. (b) Distribution of AS in data and for 3 different couple of
mX and mY MC simulations.

1
.
4. Results . – The p-value threshold is set to p < 0.01 in order to determine the

incompatibility with background-only hypothesis. Across the mX range, p-values show
good compatibility (fig. 4), apart from the window 75.5 GeV < mX < 95.5 GeV, where
a small excess of data over the background prediction is observed. This excess, yielding
to a global significance of 1.43σ, corresponds to a mY value of about 3.7 TeV.

Post-fit p-values are computed for each mY bin in each mX bin. Here, no significant
deviations are observed. Also, given the absence of excess in background-only fit, upper
limits at 95% of Confidence Level are determined from signal-plus-background fits on
σ(pp → Y → XH → qq̄bb̄).

2. – Graph Neural Network

Data with relational binding can be represented as nodes and connection between
them and call this object as graph. Looking at this analysis, the strategy used is to
portray reconstructed jets coming from the decay of heavy resonances using undirected
graphs. Each node can be interpreted as a calorimeter topological cluster (topocluster)

Fig. 4. – The distribution of observed p-values across all mY and mX bins in the anomaly
signal region, comparing data to the background estimation generated by a background-only fit,
displayed in the two-dimensional (mY ,mX) grid. The lowest observed p corresponds to the bin
with mY within [3608, 3805] GeV and mX within [75.5, 95.5] GeV.
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Fig. 5. – The expected (left) and observed (right) 95% CL limits on the cross-section σ(pp → Y →
XH → qq̄bb̄) in pb in the two-dimensional space of mY versus mX , obtained from a simultaneous
fit of both merged and resolved two-prong signal regions with all statistical and systematic
uncertainties. The observed limits range from 0.341fb for the signal point (mY = 5000 GeV,
mX = 600 GeV) to 1.22 pb for the signal point (mY = 2500 GeV, mX = 2000 GeV).

and the node features are the kinematical variables such the pT fraction, the η and the φ.
The connections between nodes are based on spatial distance and two nodes are indeed
connected if their relative distance ΔR is less than a reference distance - e.g. ΔR < 0.2,
and each edge stores this information as a edge feature 1

ΔR+ε , where ε is used to avoid
discontinuity.

A Graph Neural Network, or GNN, takes graphs with a variable number of nodes
as input and can classify them with a given rule based on the structural and feature-
based relationships between the nodes and edges between nodes. Each node receives
information from its neighboring nodes through a mechanism known as message passing.
This is a mechanism that allows nodes to aggregate and update their information based
on the information received from adjacent nodes. Message passing has an iterative nature
that allows GNNs to capture and propagate information across the entire graph, making
it useful for tasks such as node classification, link prediction, and graph classification,
which is the one we are looking at.

For benchmark results, the LHC Olympics 2020 [4] project is used. It aims to promote
the development of ML models to identify jet events coming from a new resonance decay-
ing fully hadronically among QCD background and presented a significant opportunity
to test advanced methods in anomaly detection. The simulated data from this dataset
were represented using graph structures: topoclusters conssidered as graph nodes and
connections established between nodes with a distance criteria on the topoclusters - if
ΔR < 0.2 an edge is established.

The simulated events used for this study consist in 1 million background QCD multi-
jet production and 100 thousand of hypothetical new resonance W decaying into two
vector boson X and Y with mass, respectively of 3.5 TeV, 500 GeV and 100 GeV.

The methodologies used are unsupervised learning using DeepSVDD (Deep Support
Vector Data Description [6]) and performance evaluation using the area under the ROC
curve for the Anomaly Score distribution. Even if unsupervised learning exhibits lower
performance compared to supervised learning, it also offers an increased generalisation
power, that is mandatory to promote model independence for the search of new physics.

During its training phase, the network work only with background data and optimises
its parameters to lie within a hypersphere, as expressed in the DeepSVDD loss. When a
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Fig. 6. – Summary of the LHC Olympics 2020 and the results of the anomaly detection using
GNNs.

signal event is presented at the network, this fall outside the hypersphere and is labelled
as anomaly through the Anomaly Score (AS). The AS is computed at each epoch of the
training process and its distribution is used as an indicator of the degree of anomaly of
that particular event.

The GNN used for this analysis is a Graph Isomorphism Nerwork [7], with five layers
of message passing. The approach was applied for both jet-level and event-level analysis,
where the event-level results were obtained as an average of two jet.

The event-level anomaly score demonstrated strong discriminative power with an
AUC = 84.3%. Similarly, the jet-level anomaly score also showed significant effectiveness
with an AUC = 77.9%. For that case study, application of graph variables demonstrated
a strong discriminative power.

This unsupervised approach, as we can see from the ROC curve performances, lead
to a good discriminant power that can be applied in anomaly detection technique. The
next step is to use this paradigm on the Run-3 data collected by ATLAS.

REFERENCES

[1] ATLAS Collaboration, Phys. Rev. D, 108 (2023) 052009.
[2] ATLAS Collaboration, Eur. Phys. J. C, 79 (2019) 970.
[3] D’Avanzo A., Nuovo Cimento C, 47 (2024) 113.
[4] Kasieczka G. et al., Welcome to the home of the LHC Olympics 2020!,

https://lhco2020.github.io/homepage/ (2020).
[5] Russo G., Nuovo Cimento C, 47 (2024) 136.
[6] Ruff L. et al., Deep One-Class Classification, Proceedings of the 35th International

Conference on Machine Learning, Vol. 80 (PMLR) 2018, pp. 4393–4402.
[7] Xu K. et al., How Powerful are Graph Neural Networks?, arXiv:1810.00826v3 (2019).


