
Introduction

Application of geographical information systems
(GIS) and remote sensing (RS) in veterinary and
human medical sciences, particularly in veterinary
and human parasitology, is rapidly advancing.
During the past 10-20 years the publication of orig-
inal research articles and reviews in veterinary and
human health with an emphasis on GIS and/or RS
has followed an exponential trend (Hendrickx et al.,
2004). In addition, recent GIS/RS symposia organ-
ized at national and international conferences, and
several thematic issues on this topic published in the
peer-reviewed international literature (e.g. special
theme issues in Advances in Parasitology in 2000

and Parassitologia in 2005) demonstrate the wide
array of applications and benefits of these tools
(Cringoli et al., 2005b). Furthermore, the raised
interest about these new technologies is testified by
the publication of thematic books pertaining GIS
and RS, as well as international peer-reviewed jour-
nals, including the current launch of Geospatial
Health. 

The establishment and maintenance of websites
as a platform for sharing data, exchanging opin-
ions, experiences and expertise on GIS and RS with
an emphasis on animal and public health is also
worth mentioning (e.g.http://www.gnosisgis.org;
http:// www.gisvet.org).

In this review, we first summarize general aspects
of GIS and RS, and emphasize the most important
applications of these tools in veterinary parasitol-
ogy, including recent advances in territorial sam-
pling. Disease mapping, spatial statistics, including
Bayesian inference, ecological analyses and epidemi-
ological surveillance are summarized in the next sec-
tion and illustrated with a set of figures. Finally, a
set of conclusions is put forward.
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Brief history of GIS and RS 

Depending upon the application area, a number of
discordant definitions of GIS have appeared in the
literature (Tim, 1995). One of the most widely used
definition of GIS is that proposed by Burrough
(1986), i.e. “a powerful set of tools for collecting,
retrieving at will, transforming, and displaying spa-
tial data from the real world”. Overall, a GIS is a
platform consisting of hardware, software, data and
people and encompasses a fundamental and univer-
sally applicable set of value-added tools for captur-
ing, transforming, managing, analyzing, and pre-
senting information that are geographically refer-
enced (geo-referenced).

Digital GIS data may be presented in map form
using so called data layers representing the informa-
tion collected. Two approaches can be used, namely
(i) a vector data model and (ii) a raster data model.
The former model stores a table containing coordi-
nates of points together with instructions on which
points are alone and which points belong to a com-
mon set. In a vector data model, all lines are repre-
sented by chains of vectors, and all areas by poly-
gons (Fig. 1). Attributes are coded in separate tables
using alphanumeric characters as a label for a spe-
cific class or category of properties. The raster data
model uses a net of adjacent polygons (termed
“cells”) to provide a virtual cover of a given part of
a territory. The cells are often called pixels, and
attribute-values of the objects that the cells repre-
sent are assigned to corresponding pixels (Daniel et
al., 2004). Raster data are typically utilized to repre-
sent continuous phenomena, e.g. land cover maps,
digital elevation models and phenoclimatic maps
(Fig. 2).

The use of GIS in epidemiology can aid in answer-
ing some important questions such as “what is?”
and “where is?”. In addition, because also the time
domain - i.e. “when” - is important in most envi-
ronmental and epidemiological processes, it has also
been suggested that GIS should be replaced by STIS,
which is an abbreviation for space-time information
systems (Kistemann et al., 2002; Hendrickx et al.,

2004). There is currently a movement towards
regarding GIS as a science (geographical informa-
tion science) rather than a simple technology
(Goodchild, 2000; Kistemann et al., 2002).

One of the first major uses for GIS was in 1964
when the Canadian Geographical Information
System (CGIS) was launched in an effort to assess
the productivity of Canadian farmland.

Subsequently, GIS has become widely and effec-
tively used in natural-resource management.
Prominent examples are timber management, mine
permitting, water quality assessment, wildlife and
habitat management, land use planning, zoning, and

Fig. 1. Vector map of Italy and attribute (spreadsheet), used
in this example to extract the Campania region.

Fig. 2. Raster map of southern Italy, pheno-climatic map. 
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transportation design; predictive modelling of earth-
quakes, forest fires, and flooding; utilities manage-
ment, routing analysis; marketing and demographic
analyses, etc. (Cox and Gifford, 1997).

The capacity of these systems justifies their wider
application including veterinary and human medical
sciences.

Several types of analyses routinely used in GIS can
be very useful for spatial epidemiology. These
include (i) neighbourhood analysis, i.e. all features
which meet certain criteria and are adjacent to a
particular feature are found and listed, (ii) buffer
generation, i.e. generation of buffer zones around or
along certain features, (iii) overlay analysis, i.e.
merging of two or more layers or maps to identify
areas of intersection, (iv) network analysis, i.e.
modelling of networks and calculation of parame-
ters such as the shortest distance between two loca-
tions, (v) surface area and distance calculations and
(vi) three-dimensional surface modelling (Ward and
Carpenter, 2000).

A very useful function of GIS is the kriging, i.e. a
linear interpolation method that predicts the values of
a variable, at non-sampled locations, based on obser-
vations at known locations, using a model of the
covariance of a random function (Berke, 2004).
Kriging is widely used in meteorology in order to
interpolate values of climate data from observing sta-
tions, and have also been used in veterinary epidemi-
ology to model the distribution of various para-
sites/diseases, e.g. Ixodes scapularis that transmits
Lyme disease (Nicholson and Mather, 1996), malaria
(Kleinschmidt et al., 2000), alveolar echinococcosis
(Conraths et al., 2003; Pleydell et al., 2004), tsetse
flies that transmit human African trypanosomiasis
(Sciarretta et al., 2005), Calicophoron daubneyi, the
causative agent of paramphistomosis in ruminants
(Biggeri et al., 2004), Oncomelania hupensins, the
intermediate host snail of Schistosoma japonicum
(Zhang et al., 2005), as well as co-infection with S.
mansoni and hookworm among schoolchildren in
Côte d’Ivoire (Raso et al., 2006).

The term “remote sensing” (RS) was used - for the
first time - in the US during the 1960s to designate

the technique allowing the study of objects without
any direct contact, through image capture. In 1970,
in an article titled “New eyes for epidemiologists:
aerial photography and other remote sensing tech-
niques” Cline recognised that RS could have appli-
cations in detecting and monitoring disease out-
breaks. In the following year, scientists of the
National Aeronautics and Space Administration
(NASA) in the US, used colour infrared aerial pho-
tography to identify the habitats of Aedes sollecitans
(Hay, 2000). 

While aerial photographs were the first source of
RS data, the subsequent development of satellite
measuring instruments significantly improved both
the spatial and temporal coverage of the earth sur-
face, generating a continuous and almost complete
cover. Satellites may be divided into two groups
based on the orbit they follow, namely (i) geosta-
tionary satellites (e.g. GOES, Meteosat, GMS) and
(ii) near-polar-orbiting (or sun-synchronous) satel-
lites (e.g. NOAA, Landsat, MODIS, SPOT,
IKONOS, Quickbird). The former group, which
consists of satellites in orbits parallel with the rota-
tion of the earth, is dedicated to meteorological
applications, while the latter follows an elliptical
orbit between 681 and 915 km, with a different
ground track after each rotation, lasting about 100
minutes. The revisit period varies from 1 to 41 days
but can be lowered. Most of the satellites are sun-
synchronous and offer different spatial resolutions
(Herbreteau et al., 2005). However, very few have
found any application in epidemiology, the most
important being the Landsat and the NOAA series
(Durr and Gatrell, 2004).

Satellites have several sensors recording radiation
in different wavelengths that allow combination of
spectral signals (Cringoli et al., 2005a; de La
Rocque et al., 2005). RS provides a unique source of
data that can be exploited to characterize climate
and land surface variables at different spatial reso-
lutions. It permits the calculation of vegetation
indices, land surface temperatures, atmospheric and
soil moisture, rainfall indices, etc. Among the vege-
tation indices obtained from RS, the most widely
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employed one is the normalized difference vegeta-
tion index (NDVI). It is defined as the difference
between the visible (red) and near-infrared (nir)
bands of satellite information over their sum: NDVI
= (nir – red)/(nir + red). NDVI is a specific measure
of chlorophyll abundance and light absorption, but
its use has been extended to quantify herbaceous
vegetation biomass, vegetation primary productivi-
ty, vegetation coverage and phenology. 

The RS data are increasingly used for investiga-
tions in the field of environmental health sciences
for mapping and prediction, surveillance and moni-
toring, particularly for vector-borne diseases (Beck
et al., 2000). Since the disease vectors have specific
requirements regarding climate, vegetation, soil and
other edaphic factors, and are sensitive to changes in
these factors, RS can be used to determine their
present and future and predict distribution. 

Land cover classification refers to the natural veg-
etative cover, function of the topography, soil or
local climate, and can differentiate between differ-
ent covers up to the species communities. Land use
classification refers to the description of human uses
of the land, or immediate actions modifying the land
cover, such as agriculture (e.g. used for crop pro-
duction, lying fallow, irrigated, etc.), human settle-
ments (e.g. urban, rural, isolated infrastructures,
etc.), protected areas (e.g. national parks, forest
reserves, etc.) (for recent reviews see Daniel et al.,
2004 and Herbreteau et al., 2005). In Europe, the
corine (Coordination of Information on the
Environment) land cover (CLC, European
Commission, 2000) is widely used, which is a map
of the European environmental landscape based on
interpretation of satellite images. CLC provides
comparable digital maps of land cover for each
country for much of Europe. It is useful for envi-
ronmental analysis and comparisons over large
scales (spatial resolution = 1 km). 

When studies are focused on small areas, aerial
photographs can be used because of their capability
to afford very high spatial resolution images (<1 m).
The analysis of historical sequences of aerial photo-
graphs is an important method for determining the

medium-term dynamics of land cover on a land-
scape scale (Acosta et al., 2005). 

Most developed and developing countries have
governmental programmes for aerial surveys but
campaigns are not reproduced on a regular time
basis, and ground coverage is often limited to areas
of discreet interest. However, aerial photography
must be considered as a supplementary source of
information (Herbreteau et al., 2005). Classifications
of landscape from digital aerial photographs have
been scarcely used in veterinary parasitology, with
the majority of applications focusing on mosquito
surveillance (see for example, Kline and Wood,
1988, Brown and Sethi, 2002). Fig. 3 reports an
example of classification of landscape by interpreta-
tion of aerial photographs.

Disease mapping

One of the most useful functions of GIS in epi-
demiology continues to be its utility in basic map-
ping. Usually, when data are collected either rou-
tinely or through purposely-designed surveys, they
are presented in tabular forms, which can be
exploited for analytical usage. However, the reading
and interpretation of such data is often a laborious
and time-consuming task and does not permit easy
decision-making (Paolino et al., 2005). On the other
hand, representation of these data in the form of a
map facilitates interpretation, synthesis and recogni-
tion of frequency and clusters of phenomena. 

Fig. 3. Example of classification of landscape from digital
aerial photographs. 
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The oldest examples date back more than 200
years and consist of a world map of diseases put for-
ward by Finke in 1792 (Barrett, 2000), and a map
of yellow fever occurrences in the harbour of New
York issued in 1798 (Stevenson, 1965). One of the
most prominent examples is the mapping of cholera
victims in relation to the location of water supplies
in London’s Soho district carried out by John Snow
(1854). The street addresses of cholera victims were
recorded and close proximity to putative pollution
sources (i.e. water supply pumps) was identified as
the key risk factor. 

With respect to parasites, in two papers published
in 1903, Smith and Stiles independently presented
maps of Texas, which displayed the prevalence of
hookworm infection and demonstrated that infection
was typically restricted to the eastern part of the state
where the soils contain the most sand (Brooker and
Michael, 2000).

Disease maps can be drawn to a demographic
base or to a geographic base. In the first case, they
are related to the population and the epidemiologi-
cal information they show are presented in relation
to population size. Geographically based maps are
constructed according to the shape of a country or a
region or any administrative unit. They may be
qualitative e.g. point maps, distribution maps, point
distribution maps (PDMs, Fig. 4), indicating loca-
tion without specifying the amount of disease; or
quantitative e.g. distribution maps with propor-
tioned peaks (Fig. 5), proportional circle maps,
choroplethic maps (Fig. 6), choroplethic maps with
proportioned peaks, PDMs with proportioned
peaks, PDMs with proportioned circles (Fig. 7a),
isoplethic maps, displaying the number of cases of
disease, the population at risk, infection prevalence
or intensity or incidence (Thrusfield, 1995; Cringoli
et al., 2005c). With the appropriate data at hand,
producing a map using GIS can be undertaken liter-
ally in a matter of minutes; but therein lies one of
the problems with GIS - one needs the spatially-
explicit data - and collecting these may take months
or even years (Durr, 2004). GIS is, however, not
only a digital map representation but is indeed an

Fig. 4. Point distribution map. Dicrocoelium dendriticum in
sheep from an area of the southern Italian Apennines (from
Cringoli et al., 2002).

Fig. 5. Distribution map with proportioned peaks.
Dipetalonema reconditum in dogs from the Mt. Vesuvius
area of southern Italy (from Cringoli et al., 2001).

Fig. 6. Choroplethic map. Canine fecal contamination in
Naples (Campania region, southern Italy), February-May,
2005.
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information and analysing tool which permits the
processing of space-related data. Certainly, maps
themselves keep on playing a prominent role and
are, of course, the most frequently used output of
GIS (Kistemann et al., 2002). For spatial epidemi-
ology, GIS has become an important tool for
designing a study, territorial sampling, and the
drawing of maps.

The fundamental steps which can be used to pro-
duce quality descriptive disease maps within GIS are
the following: 
(i) selection of the study area; 
(ii) selection of the study population and calcula-

tion of the sample size, using as parameters the
study population, the expected prevalence, the

confidence level, and the standard error; 
(iii) selection of the sample in the study area (e.g.

random sampling, systematic sampling, pro-
portional allocation, use of grids, etc.); 

(iv) laboratory and/or field survey; 
(v) geo-referencing of the study units (e.g. farms,

counties, municipalities, regions, or any other
administrative unit); and finally 

(vi) drawing maps by GIS (Cringoli et al., 2005c). 
The sampling procedures in the study area play

obviously a key role in disease mapping. As indicated
at point 3 above, several sampling methods can be
used. For parasites connected to the landscape (e.g.
soil-transmitted helminths or trematodes that require
a snail as intermediate host), the grid approach

Fig. 7. Dicrocoelium dendriticum in sheep from the Campania region of southern Italy. Point Distribution Map with propor-
tioned circles. 
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(measured on the sample size) seems to be useful in
order to produce usable point density maps (Cringoli
et al., 2002) without need for further interpolation or
extrapolation (Hendrickx et al., 2004).

GIS can also be used to do transect sampling when
non-moving objects are to be counted, which
involves the choosing of a line or series of lines
along which the counts are to be made. This
approach has been used by us in order to study
canine faecal contamination in the city of Naples
(southern Italy). Fig. 8 is an example of a transect
drawn on a digital aerial photograph using GIS
(Biggeri et al., 2006b). 

The information derived from descriptive maps
provides an operational tool for planning, monitor-
ing and managing control programmes, and for
deriving inferences about the relationship between
the environment and diseases. In fact, without good
descriptive maps of disease agent/vector species’ dis-
tribution, based on ground observation, we do not
have the essential starting point to generate predic-
tive maps based on statistical pattern-matching
(Randolph, 2000).

Spatial statistics

The term “spatial statistics” refers to the collec-
tion of statistical methods in which spatial location
plays an important role in the study design or data
analysis (Diggle, 2004). While developments in spa-
tial statistics within the human health sciences have
advanced considerably, there has been less evidence
of a corresponding interest in such methodology
within veterinary medicine. This may partly be due
to the greater funding and focus in the scientific
community on human health (Lawson and Zhou,
2005). In addition, the linkage between statistical
methods and GIS has been poorly developed and
even today only few spatial statistical extensions are
available (e.g. Geostatistical Analyst and Spatial
Analyst) within commercially available GIS plat-
forms. An alternative may be to export spatial data
from GIS to spatial statistical software (for a com-

plete list of software, see Ward and Carpenter, 2000;
Durr et al., 2004).

A framework of spatial statistic of epidemiologi-
cal data includes data visualization, exploratory
analysis and modelling (Pfeiffer, 2004). With respect
to data visualization, maps based on raw data are
generally unstable since the observed differences in
disease occurrence between areas are difficult to
interpret, as they emanate from the sum of true,
structural differences and of the noise derived from
the sampling process. This problem is well known in
human epidemiology, and several statistical analyses
have been proposed to filter the signal from the
noise (Elliot et al., 2000). Some of these techniques
have been also used in veterinary medicine, e.g.
regarding fasciolosis (Durr et al., 2005), paramphis-
tomosis (Biggeri et al., 2005), echinococcosis

Fig. 8. Transect on a digital aerial photo (from Biggeri et al.,
2006b).
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(Berke, 2001; Budke et al., 2005), bovine spongi-
form encephalopathy (Abrial et al., 2005), mastitis
(Green et al., 2004), and foot and mouth disease
(Lawson and Zhou, 2005). Recently we also used
these techniques for Dicrocoelium dendriticum
(Biggeri et al., 2006a).

Exploratory analysis refers to describe patterns in
the distribution of a disease of interest and possibly
discriminate between systematic and random fluctu-
ations. Several tests have been proposed and are
based on different assumptions about data generat-
ing mechanism and level of analysis (on aggregate
measure or point locations). To provide a few exam-
ples from a long list on spatial data, the presence of
structured variability on aggregate data can be
detected using autocorrelation indices (Moran’s I or
Smans’ D); on point data in the form of a case-con-
trol sampling design, the Cuzick-and-Edwards’ test
(Cuzick and Edwards, 1990) can be used to detect
general clustering, and the spatial scan statistic can
be applied to both kinds of data to detect clusters of
disease. With regard to temporal data, assuming
population homogeneity, the Ederer-Myers test
(Ederer et al., 1964) can be employed, as well as
Mantel’s proposal (Mantel et al., 1976) for general
clustering. The temporal scan statistic can be uti-
lized for identifying time clusters and the Knox test
can be used also to test for time-space clusters of
disease cases. 

Time-series analysis has a long tradition in the lit-
erature. Statistical modelling can be used to study
patterns within the series or association between
dependent and independent variables over time
(Ward and Carpenter, 2000). Veterinary applica-
tions of space and time cluster detection methods
have been reviewed by Ward and Carpenter (2000)
and Pfeiffer (2004).

Modelling of spatial data aims to explain or pre-
dict the occurrence of disease. Various static or
dynamic relationships defined by the underlying
models are used to derive new output maps from a
set of input maps. Predictive maps can be obtained
following heuristic algorithms (like a neural net-
work), standard frequentist approaches (extensions

of regression modelling, linear discriminant analysis
in case of multivariate data, or a generalized linear
mixed model in case of an unmeasured source of
variability), or Bayesian approaches to derive predic-
tive distributions taking into account related uncer-
tainty. For the latter, Markov chain Monte Carlo
(MCMC) techniques have become a popular way to
approximate Bayesian posterior distributions. A
review of Bayesian statistics for parasitologists is
available from the literature (Basáñez et al., 2004)
and a paper, published in this issue of Geospatial
Health presents an innovative Bayesian application
using both stationary and non-stationary models for
malaria risk mapping (Gosoniu et al., 2006).

Ecological analysis

Ecological analysis is targeted on the description
of relations existing between the geographic distri-
bution of diseases and environmental risk factors
and their analysis by means of statistical procedures
(Kistemann et al., 2002). A wide number of papers
have been published on the analysis of the relation-
ship between disease indicators (e.g. positivity, inci-
dence and prevalence) and the explanatory environ-
mental and climatic variables (Herbreteau et al.,
2005). In order to make ecological analysis, the fol-
lowing fundamental steps can be utilized: 
(i) GIS construction for the study area utilizing

data layers on environmental and climatic fea-
tures; 

(ii) geo-referencing the geographic units of interest,
e.g. farms, centroids of the main pastures, etc.; 

(iii) creation of buffer zones of a given diameter
centered on these geo-referenced points; 

(iv) extrapolation of values for each environmental
feature within each buffer zone; 

(v) databases with environmental and parasitolog-
ical data; 

(vi) statistical analyses (univariate, multivariate,
etc.) and individualize of environmental risk
factors and/or development of forecast models
(Cringoli et al., 2005c; Rinaldi et al., 2005).
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A part from the administrative boundaries, the
data layers on environmental and climatic features
most commonly used for ecological analysis in vet-
erinary epidemiology are: NDVI, land cover and
land use, elevation, slope, aspect, lithofacies map,
presence of lakes, rivers and other water bodies,
temperatures, rainfall and humidity (for an exam-
ple, see Fig. 9). 

The extrapolation of environmental variables can
also be directly extracted from the study units
instead of the buffer zones. But usually, once these
data layers are obtained, the ecological analysis is
made by the association between the disease data
and the environmental characteristics extracted
within buffer zones constructed around the geo-
graphic unit of interest (Cringoli et al., 2004;

Fig. 9. Data layers used for ecological analysis: a) elevation; b) aspect; c) slope; d) land cover (from Rinaldi et al., 2005). 
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Rinaldi et al., 2005). Generally speaking, the small-
er the area in which disease and environmental data
are collected, the greater the possibility to make
accurate inferences, because averages over large
areas can introduce strong ecological bias in corre-
lation studies with disease occurrence data. For
example, for a parasitological disease bound to the
pasture, the extrapolation of climatic and environ-
mental data for buffer zones may lead to the inclu-
sion of unsuitable values of a certain variable in the
ecological analysis. For this reason, in our recent
study on sheep helminths, we chose to delimit the
pasture areas of the animals on aerial photographs,
including only the values of climatic and environ-
mental variables falling into such pasturing areas in
the ecological analysis (Fig. 10). 

GIS and RS can be also used to predict disease sea-
sonality based on the climatic and/or environmental
characteristics of a certain area and the information
about the climatic and/or environmental require-
ment(s) of a certain species. Climate-based forecast
systems, employing the concept of growing degree
days (GDD), have been developed for different dis-
eases of veterinary importance, such as fasciolosis,

schistosomosis and malaria (Malone, 2005), as well
as dirofilariosis (Genchi et al., 2005) (Fig. 11).
These predictions can be extremely useful in deci-
sion-support for disease intervention.

Moreover, a recent publication suggests that esti-
mation of GDD over an entire year can be utilized

Fig. 10. Comparison between a buffer zone and a delimita-
tion of the pasture from which the environmental data can
be obtained.

Fig. 11. Predictive model based on growing degree days. Yearly average predicted number of Dirofilaria immitis generations
in Europe (from Genchi et al., 2005).
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for present and future predictions of schistosomiasis
transmission in China in the context of regional cli-
mate change (Yang et al., 2006)

Epidemiological surveillance in veterinary medicine 

Disease monitoring and control in veterinary med-
icine consist in a series of activities that are often the
object of specific national or international norma-
tive. Within this framework, epidemiological sur-
veillance implies the quantification of disease occur-
rence and, eventually, field studies followed by spe-
cific laboratory investigations and case characteriza-
tion. A surveillance system is characterized by an
integrated set of planned epidemiological activities
whose aim is to identify and prevent new cases of dis-
ease. Such a system is justified provided the natural
history of the disease and its determinants are known
and effective preventive strategies are available.

A basic requirement is the capability to transfer
information of a new case of disease in the popula-
tion under surveillance. Traditionally, data flows are
activated by specific laws and are dealth with by
specialized agencies set up to conduct epidemiologi-
cal surveys after alert. The timeliness in reporting,
sensitivity and specificity of the system are critical.
Where the rapidity of reporting is of primary impor-
tance, the surveillance system has peculiar charac-
teristics and the main goal is to identify as soon as
possible new cases of disease or variation on the
“natural” rate of occurrence. 

In any event, a surveillance system has peculiar
characteristics independent from the techniques
used to collect cases of disease. This aspect becomes
evident when considering the geographical dimen-
sion of the phenomenon and the surveillance aims to
monitor discontinuities in the rate of disease in
space. The process that generates cases of disease is
heterogeneous, i.e. the frequency of disease is not
uniform over the map but proportional to the num-
ber of people at risk. This implies a considerable
challenge in interpreting clusters of cases of disease
and in attributing them to an epidemic, or a modifi-

cation in the occurrence of disease. For example, the
clustering could be simply the consequence of the
non-homogeneous population density (Elliott et al.,
1992; Aylin et al., 1999)

Geographical surveillance screens for the pres-
ence of non-natural clusters of disease in space.
The system require setting up a GIS which stores
the characteristics of the territory. It is important
to collect spatial data relevant to the phenome-
non to be monitored. Recent innovative data
gathering relates to satellite images and aerial
photographs, and the availability of geo-refer-
enced population at risk or a sample of it (Kreiger
et al., 2005). This last feature requires an efficient
system to geo-reference the unit-at-risk and to
update the GIS over time. Geo-referenced data by
the traditional use of global positioning system
(GPS) is expensive and less precise than alterna-
tive techniques based on aerial photographs
(Cringoli et al., unpublished data). 

Once the spatial distribution of the population at
risk is available, there is a need to collect informa-
tion on the “natural” rate of occurrence of the phe-
nomenon under study. The following describes two
possible extreme situations. First, the relevant infor-
mation could be obtained from the available litera-
ture under the assumption that the “natural” rate of
disease be constant over the territory under surveil-
lance. This approach, of course, requires access to a
literature database and the capability to perform a
critical appraisal of the available evidence. Indeed,
quality and reliability of scientific information
depend on the study design, techniques of data col-
lection and analysis, as well as characteristics of the
studied populations. Such information cannot
always be immediately extended to the particular
context of the local surveillance system. Second,
educated guesses and estimates might be available
with regard to the “normal” disease risk under
“normal” conditions. In terms of GIS surveillance
this would produce a statistical estimate (and its
standard error) of the frequency of the disease and
become the reference rate to evaluate any subse-
quent emergence of disease cases. 
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In both situations, and in any practical situation,
the system has to produce a statistical estimate of
the expected number of cases under “normal” con-
ditions. The surveillance system can be viewed as
an expert system in which the reference informa-
tion to make any decision is represented by the map
of the expected cases. Such a map can serve as the
benchmark for impact assessment or decision
processes in case of changes in the phenomenon
under study. However, appropriate statistical mod-
elling is needed. The system will assist in evaluating
spontaneous claims or data arising from routine
scan – by law. In this case the decision concerns the
interpretation of cluster of observed cases faced
against the expected number of cases at a given
location of the territory.

To conclude, a geographical surveillance epidemi-
ological system is composed by:
(i) knowledge of the natural history of the disease; 
(ii) availability of effective preventive actions; 
(iii) presence of an information system to readily

detect new cases of disease; 
(iv) set up of a GIS and the acquisition of satel lite

images and ecological indexes;
(v) availability of aerial photography;
(vi) geo-referencing of population at risk;
(vii) statistical modelling and mapping of  expected

number of cases;
(viii) the skills needed to retrieve and critically

appraise the scientific literature.

Conclusions

The trends over the past two decades and their
effects in the fields of hardware, software and net-
work technology, in particular in the internet
domain, have created the prerequisites for a broad
acceptance of GIS and RS within the health sci-
ences, including veterinary science. 

Recent studies showed that GIS – in addition to
their broad utility reviewed here – holds promise in
capturing data on medicine usage (Ryan et al.,
2005), as well as in organizing spatial information

involving the distinction of anatomic relationships
(Ganai et al., 2006). However, epidemiology
remains the main application field of GIS in veteri-
nary and public health and, since epidemiology is
inextricably bound to “place”, it seems reasonable
to expect that GIS will further advance as science
(Jacquez, 2000). Perhaps one of the most powerful
benefits of GIS is its ability to integrate different
databases into a single environment. In effect, a GIS
may be though of as a database of databases (Cox
and Gifford, 1997). 

The use of GIS, however, does by no means over-
come the two major concerns of any empirical
research: data availability and data quality
(Kistemann et al., 2002). This issue should always
be kept in mind by all GIS/RS users.
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