
Introduction

Health, as defined in the UN Alma Ata declara-
tion refers to “a state of complete physical, mental
and social wellbeing, and not merely the absence of
disease or infirmity (International Conference on

Primary Health Care, Alma-Ata, USSR, 6-12
September 1978). Since the 1980’s several geospa-
tial tools have become readily available for eco-epi-
demiological research and applications, including
geographic information systems (GIS), global posi-
tioning systems (GPS), satellite imagery, geostatistics
and other spatial statistics. Although these tools
have been developed largely for other reasons and
for other applications than health and its improve-
ment, eco-health researchers and some health pro-
fessionals have embraced these technologies and
applied them successfully to study, explain and pre-
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Abstract. Depending on the research question or the public health application, the appropriate resolution of the data
varies temporally, spatially, and, for satellite data, spectrally and radiometrically. Regardless of the scale used to address
a research or public health question, the temptation is always there to extrapolate from fine-resolution data or to inter-
polate from coarse resolution studies. In both cases, the relevance of data and analyses conducted on one spatial level
to other levels cannot be taken for granted. Spatial heterogeneity on the micro-scale may not be detected using coarse
spatial resolution, and conversely, general patterns on the macro-scale may not be detected using fine spatial resolu-
tion. Two studies are described where the transmission dynamics and risk of infection was assessed on the micro-scale
starting with household level studies in one community, and the study area was extended gradually to consider sever-
al communities and sources for vectors or intermediate hosts. In a study of Chagas disease in northwest Argentina, the
reinfestation process of communities by the main domestic vector was analyzed using spatial statistics; sources within
and outside communities as well as the distance of reinfestation were identified. In a study of urinary schistosomiasis
in coastal Kenya, age dependent and directional focal clustering of infections was detected around some aquatic habi-
tats, and a hydrological model was developed to detect least cost dispersal routes that allow snails to reinfest dried-up
habitats. Some general aspects of focal statistics are discussed. Several general questions need to be considered in
geospatial health studies, including the following: (i) what are the best criteria for selecting the spatial (and temporal)
unit of intervention and analysis? (ii) how do the key measures of risk and transmission dynamics vary with scale? (iii)
how do we integrate processes occurring at diverse spatial and temporal scales? All of these questions can only be
addressed through solid biological, epidemiological and socio-economic understanding of the system in time and space.
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dict spatio-temporal patterns of diseases, risk fac-
tors for disease and, more recently, to study other
conditions that impact human welfare, including
social and economic factors and their interactions
with community health. A recent workshop (30-31
Jan. 2006) held by the US National Research
Council was devoted to the contributions of remote
sensing for decisions about human welfare (report
in preparation). 

Depending on the research question or the public
health application, the appropriate resolution of the
data varies temporally, spatially, and, for satellite
data, spectrally and radiometrically (Holmes, 1997;
Kitron, 1998, 2000; Beck et al., 2000, 2002; Hay,
2000; Hay et al., 2000; Hess et al., 2002). On the
spatial scale, research and applications range from
mapping the distribution of Anopheles gambiae
mosquitoes and malaria risk on the national or con-
tinental level in Africa (MARA - http://www.
mara.org.za, Kleinschmidt et al., 2000) to house-
hold level studies of Aedes aegypti and dengue in
San Juan, Puerto Rico and Iquitos, Peru (Morrison
et al., 1998; Getis et al., 2003). Regardless of the
scale used to address a research or public health
question, the temptation is always there to extrapo-
late from fine-resolution data and conclusions or to
interpolate from coarse resolution studies. In both
cases, the relevance of data and analyses conducted
on one spatial level to other levels cannot be taken
for granted. Spatial heterogeneity on the micro-scale
may not be detected at a coarse spatial resolution,
and conversely, general patterns on the macro-scale
may not be detected at a fine spatial resolution
(Turner et al., 1989; Levin, 1992; Wiens, 1989; Qi
and Wu, 1996).

In several of our studies, we have concentrated on
studying the transmission dynamics and risk of
infection on the micro-scale starting with household
level studies in one community and enlarging our
study area gradually to consider several communi-
ties and sources for vectors or intermediate hosts.
Below, we review some of our findings in two such
studies: Chagas disease in northwest Argentina and
urinary schistosomiasis in coastal Kenya. 

Chagas disease in northwest Argentina

In our study of the eco-epidemiology of Chagas
disease in northwest Argentina, we initially studied
the pattern of reinfestation by Triatoma infestans
(the main domestic vector) in an isolated rural com-
munity (Amamá) following a community-wide
residual spraying with insecticides in domestic and
peridomestic structures. Domiciles of this very
impoverished rural area are made of adobe walls,
thatched roofs and dirt floors. The peridomestic
area comprises the yard and several structures
(storerooms, kitchens, chicken coops) typically with
thatched roofs and mud walls, and animal corrals
fenced with wood sticks, posts, or thorny branches.
Moving upscale, we then studied how the reinfesta-
tion by T. infestans in two neighboring communities
(Trinidad and Mercedes) could be affected by other
neighboring communities that were not simultane-
ously sprayed with residual insecticides. A georefer-
enced multispectral Ikonos (Space Imaging, Atlanta,
GA) satellite image of the three villages (notice the
increased deforestation around Amamá and the
main road in comparison to neighboring more
remote communities) sharpened to 1 m spatial reso-
lution (Fig. 1), and GPS readings were used to iden-
tify and map the location of each structure present
in 2000-2002. Sketch maps made in the field during
1993-1999 were used with the satellite image to
geo-reference each surveyed structure that was not
located with the GPS. The sketch maps, though not
as accurate as GPS readings or the IKONOS image,
were the only historical register of structures during
the 1990’s. The 10-year retrospective entomological
data were then associated with the geographic loca-
tions (x and y coordinates in UTM projection) of
each identified structure (Fig. 2). The local spatial
statistic Gi(d) (Getis and Ord, 1996) was used as a
focal statistic in order to identify and measure spa-
tial clustering of T. infestans abundance around
known and suspected epicenters or sources of rein-
festation (Fig. 3). Scale clearly affected the reinfesta-
tion process of rural communities. In Amamá, rein-
festation occurred from one internal source, a pig
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corral, where bugs were not eliminated during the
community-wide spraying effort and from which
infestation spread throughout the community
(Cecere et al., 2004). Subsequent infested sites were
focally clustered around this source up to a distance
of 450 m. When moving upscale, the reinfestation in
two more remote communities could be associated
with internal sources (a granary and a storeroom)
and with external sources (a logging operation and
a neighboring community). These unsprayed exter-
nal sources were heavily infested by T. infestans and
were located up to a distance of 1,500 m around the
sprayed communities (Cecere et al., 2006). Flight
dispersal of T. infestans bugs from the identified
sources appeared to be the most likely mechanism
explaining the reinfestation process of these rural
communities. By joining the results of our research
with long-term detailed field data we were able to
recommend to the Argentinean vector control pro-
gram that in order to prevent the subsequent prop-
agation of T. infestans in communities under sur-

veillance, an effective control at the community level
would entail residual spraying with insecticides of
the colonized sites and all sites within a radius of
450 m, as well as of all communities within 1,500 m
of the target community. This recommendation
replaced the prevailing concept of spraying 200 m
around colonized sites, a strategy that was based on
anecdotal and circumstantial evidence rather than
scientifically based knowledge.
Clustering detection methods are classified as glob-
al, local and focused (Besag and Newell, 1991;
Lawson, 2001). Global and local spatial statistics
are exploratory tools that allow for the finding and
identification of clusters without a pre-determined
hypothesis about cluster location, whereas focal
spatial statistics allow for testing the hypothesis of
whether a disease, its vectors or its hosts cluster
around a suspected location. Focal statistics are one
approach to deal with fine resolution health data,
since clustering of vector-borne diseases can occur at
very short distances, as observed for dengue fever

Fig. 1. Ikonos Image of study area in the Department of Moreno, Province of Santiago del Estero, Argentina. The area around
Amamá is nearly completely deforested.
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cases and Ae. aegypti mosquitoes (Morrison et al.,
1998; Getis et al., 2003), for LaCrosse encephalitis
(Kitron et al., 1997) and for malaria (Chadee and
Kitron, 1999). In our studies we applied the Getis
local spatial statistic Gi(d) as focused statistic and
detected significant clustering around suspected
sources for T. infestans dispersal. These analyses
were performed on the number of insects per site for
each evaluation date. However, focal clustering can
also be tested for individual-level data such as dis-
ease occurrence or infested sites, by means of the
local K-function (Getis, 1984; Getis and Franklin,
1987; Kitron et al., 1992; Morrison et al., 1998).
This approach provides three measures of clustering:
(i) the nearest neighbor distance (i.e. the distance

from the tested location where cases begin to
appear); 

(ii) the maximum clustering distance (the distance
where clustering is maximized); and 

(iii) the significant clustering distance (i.e. the dis-
tance at which clustering is statistically signifi-
cant) (Getis and Franklin, 1987). 
Statistical significance can be ascertained either
by Monte Carlo simulations or by accepting the
value of the expression ±1.42 √ Area/(number of

points within the tested distance - 1) as an approxi-
mation of the 5% significance level (Getis and
Franklin, 1987). 

By using data from Vazquez-Prokopec et al.
(2005), we analyzed the appearance of new infested
sites around a source of reinfestation by Triatoma
guasayana, a sylvatic vector of Chagas disease, in
the community of Amamá during the 5 years fol-
lowing community-wide spraying with insecticides.
In order to disentangle the clustering of infested sites
around the suspected source from the background
clustering of all sites (domestic and peridomestic),
local K-function was applied separately for infested
sites and for all sites. Clustering of T. guasayana
infestation around the suspected source occurred
when the local K-function value of infested sites was
statistically significant at the 5% level, and was
higher than the local K-function value (Li(d)) for all
sites. The nearest neighbor distance was very short

Fig. 2. Chagas disease study area in the Department of
Moreno, Province of Santiago del Estero, Argentina.

Fig. 3. Focal clustering around internal, and external sources
in the communities of Amamá, Trinidad and Mercedes,
Department of Moreno, Province of Santiago del Estero,
Argentina. 
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(4 m), indicating that new infestations occurred very
close to the source (Fig. 4). The maximum clustering
distance ranged from 20 m to 300 m, and significant
clustering distance varied over time, ranging from
20 m in November 1995 to 200 m or more starting
in May 1996, indicating an overall expansion of
infestation over time.

Other methods for detecting clusters of disease
cases around suspected sources of disease (i.e. chil-
dren leukemia around a nuclear power station) such
as the Diggle’s method (Diggle, 1990; Diggle and
Rowlinson, 1994; Gatrell et al., 1996; Morris and
Wakefield, 2000) compare the spatial pattern of
case locations with the spatial pattern of control
subjects. However, for assessing the distribution of
vectors or intermediate hosts of disease selecting
“control” locations is not always feasible. The
application of the Gi(d) and Li(d) as focal statistics
is a more suitable approach for addressing the ques-
tion of whether the vectors or disease cluster around
a suspected source. In general, the analysis of spatial
data has to be carried out at an appropriate resolu-
tion, i.e., the spatial resolution at which the phe-
nomena being studied occurs. Whereas disease data
on a coarse spatial scale (counts of disease in admin-
istrative areas) are appropriate for mapping disease

distribution and for performing regional or national
level analyses, the analysis of disease data on a fine
spatial resolution (location of individual cases)
allows for the assessment of specific spatial associa-
tions, such as the relative contribution of specific
risk factors, or the relation between a cluster of
cases and a putative source of disease (Besag and
Newell, 1991; Gatrell et al., 1996; Lawson, 2001). 

While disease data are more commonly available
as aggregated summaries within arbitrary areas (i.e.
census tracts) rather than as exact case locations,
interpolation from a coarse to a fine scale cannot
consider local clustering of vectors or disease
(Robinson, 2000; Cromley and McLafferty, 2002).
In our research on Chagas disease we were able to
consider a range of scales to analyze different rein-
festation scenarios, but the spatial resolution of our
data remained the same (at the household and struc-
ture levels), enabling us to determine the processes
and mechanisms underlying the reinfestation
process in different rural communities. Indeed, fine
scale resolution data, when available, can provide
detailed information on the processes responsible
for disease clustering, allowing disease control agen-
cies to target the sources of disease and to improve
human health more efficiently. However, data and
decision often take place on a much coarser resolu-
tion, and more general mechanisms may not be
inferred from such fine resolution data. We are cur-
rently testing some of our findings on Ministry of
Health data for a much larger administrative unit
(the Department of Moreno in the Province of
Santiago del Estero) (Vazquez-Prokopec et al.,
unpublished data).

Schistosomiasis in coastal Kenya

In our study of the distribution and impact of
Schistosoma haematobium in Msambweni,
coastal Kenya, we were interested first in the ques-
tion of where, when and why human infections
are clustered.

Infection with S. haematobium is highly prevalent

Fig. 4. Focal K-function (Li(d)) performed on the occurrence
of Triatoma guasayana infested sites around a suspected
source of reinfestation of the rural community of Amamá fol-
lowing a community-wide spraying with residual insecticides.
Letters indicate: (a) the nearest neighbor distance; (b) the
maximum clustering distance; and (c) the significant cluster-
ing distance.
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(90% of school-aged children are infected in some
villages) in Mswambweni Division (Kwale District,
Coast Province, Kenya), although <1% of the inter-
mediate host snails (Bulinus nasutus) in the area are
ever found shedding S. haematobium cercariae. To
understand why prevalence of infection is so high,
despite low rates of shedding by intermediate host,
we studied the infection pattern of humans and the
hydrology of the area. We initially studied the spa-
tial structure of infection patterns by considering
infection levels of school-aged children in a single
village (Milalani), covering an area of ~2.5 km2 and
located near one pond (Nimbodze Pond, which had
the highest numbers of intermediate host snails
found shedding in 2001, Fig. 5) (Clennon et al.,
2004). We then considered a larger extent and
examined how infection patterns varied throughout
Msambweni in a ten village area (~25 km2; Clennon

et al., in press). We also mapped a variety of water
sources that the residents use (ponds, spring fed
rivers and a stream, in addition to manmade open
wells and boreholes). Household and water use site
locations were then entered into a GIS, and linked
to demographic, parasitological, malacological, and
environmental data.

Using global (weighted K-function), local (Gi*(d))
and focal spatial analyses (Gi(d)), Clennon et al.
(2004) examined the spatial structure of S. haema-
tobium infection patterns and identified significant
clustering of elevated infection levels among chil-
dren (ages: <5, 6-9, 10-13, 14-17, and 18-21 years-
old) in Milalani Village. Because no global cluster-
ing was identified using a weighted K-function
analysis (Getis, 1984), local Gi(d) and Gi*(d) spa-
tial statistics were applied. While Ord and Getis
(1995) introduced the use of the local Gi*(d) as a

Fig. 5. Positive and negative clustering of human infection with Schistosoma haematobium in Msambweni, Kenya. Negative
clustering occurs among children 6-9 years-old in the NW near the river where no cercaria-shedding snails are found (light
grey with dashed border); positive clustering occurs to the east of Nimbodze pond and to the west of Maridzani pond in the
non-bordered gray areas near these ponds (clustering decreasing with reduced intensity of color). Size of circles is proportion-
al to infection density.
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focal statistic among locations of a similar type (all
counties), Clennon et al. (2004) demonstrated that
by using Gi(d) and incorporating a “source” loca-
tion within the household location matrix, cluster-
ing of household infection density could be associ-
ated with a known human water contact site where
high numbers of shedding intermediate host snails
can be found. Significant local clustering of elevated
infection levels was detected only on the eastside of
Nimbodze Pond, and was most prominent for 6-13
year-olds. Clustering of infection in children <5
years-old was highly significant very close to the
pond, whereas clustering for 10-13 year-olds did not
occur until 550 m away from the pond. The rela-
tionship between age, household distance to
Nimbodze Pond, and clustering of high infection
suggests that children <6 year-old who live close to
Nimbodze Pond have increased exposure to cercari-
ae infested waters, whereas children living farther
away are not exposed until later in life.

Moving upscale to consider the entire Msambweni
area with eight water sources, we assessed the spa-
tial patterns of household S. haematobium infec-
tion density among school-aged children, and com-
pared recent data with a historical cohort (Muchiri
et al., 1996) as well as the distribution patterns of
cercariae-shedding snails (Kariuki et al., 2004).
Global, local and focal spatial analyses were again
applied, but now a directional application of the
Gi(d) focal statistic was also used (Fig. 5). The
application of focal spatial statistics allowed us to
assess transmission levels around a river with no
intermediate host snails and ponds with various
levels of cercarial contamination. Directional focal
statistics (e.g. Score Test, Diggle’s) compare decay
models of infection prevalence from a single source
and do not allow one to assess how spatial depend-
ency changes across different distances. Also, they
do not allow the assessment of interactions from
multiple foci.

Combined results from global and local spatial
analyses indicate that the process driving the spatial
pattern of infection in the area is intrinsically non-sta-
tionary. When directionality was considered around

known S. haematobium transmission foci, differences
in clustering by direction were detected. The majori-
ty of clustering was found to be flanked by two trans-
mission foci (Nimbodze Pond and Maridzani Dam,
Fig. 5). A change in the local and focal clustering pat-
terns between 1984 and 2000 was found, suggesting
a shift in the principal transmission source in
Msambweni, and possible changes in intermediate
host snail populations or water contacts.

Our findings suggest that infection levels of
human urinary schistosomiasis are clustered as a
function of the spatial distribution of infested water
sources, as well as non-infested ones, such as the
river (Fig. 5). By comparing recent and historical
data, a change in the primary source of S. haemato-
bium transmission was recognized, which could be
related to the El Niño flooding during 1997-98
and/or the conversion of sugar cane fields to rice
fields during the 1990s.

Once we explained where, when and (partially) why
infections are clustered based on snail distribution and
on human demography and behavior, and in light of
the ongoing drought in our study area, we needed to
address a new set of questions: 
(i) what happens when there is no transmission? 
(ii) where do these aquatic snails hide? 
(iii) how do they come back? 

To help answer some of these questions, area-wide
aquatic snail shell collection surveys were conducted
and a terrain-based hydrological model were integrat-
ed with LandSat moisture data to developed a least
cost of dispersal model for intermediate host snails
from source to sink habitats. Then, a tassel-cap trans-
formed Ikonos imagery and a LandSat moisture stress
image were used to predict possible locations of aesti-
vating snails. Based on these studies, we concluded
that specific aquatic sites were responsible for most of
the transmission, that aquatic sites are inter-connect-
ed, at least during heavy rains (or through irrigation),
and that snail dispersal routes can be determined using
remote sensing and field data. Spatially explicit infec-
tion patterns and dispersal models allow for improved
snail surveillance and can contribute to targeted local
control of urinary schistosomiasis.
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Conclusion and future research

Regardless of the scale considered in a spatial
analysis of disease and risk factors, it is important to
remember that, as is the case with most statistical
analyses, these can only describe a pattern and
changes in a pattern; only if the biology of the sys-
tem is well-understood, some underlying processes
can be inferred (Hay et al., 2000; Kitron, 2000;
Malone, 2005; Raso et al., 2006). In the examples
described above, the spatial statistical analysis was
used to describe changes in dispersion pattern, from
which we could infer on the process of dispersal.
Indeed, both of these studies are based on long-term
(10-20 years) extensive field and experimental work
and on strong collaboration with the National
Ministries of Health (Division of Vector-borne
Diseases in Kenya and the National Vector Control
Program in Argentina). While in the examples
described above, we have emphasized the advan-
tages of considering fine resolution data, other stud-
ies have successfully applied spatial tools to region-
al, national or even continental level data (Snow et
al., 1999, 2005; Carbajo et al., 2001; Dumonteil
and Gourbiere, 2004; Guerra et al., 2006). General
questions that need to be considered in geospatial
health studies include the following: 
(i) what are the best criteria for selecting the spa-

tial (and temporal) unit of intervention and
analysis? 

(ii) how do the key measures of risk and transmis-
sion dynamics vary with scale? 

(iii) how do we integrate processes occurring at
diverse spatial and temporal scales? 

(iv) are we uncovering new relevant information or
covering up the lack of data with massive envi-
ronmental correlates? 

(v) how do we decide which environmental or cli-
mate changes to follow (the most important as
far as actual and potential health impacts)? 

(vi) how do we move beyond considering disease
(or its absence) to considering overall human
welfare and the factors contributing to it? 

All of these questions can only be addressed

through solid biological, epidemiological and socio-
economic understanding of the system in time and
space. When using remotely sensed data one always
has to find a compromise between spatial and tem-
poral resolution. As far as whether to go upscale
(extrapolate) or downscale (interpolate), we quote
Levins (1968), who stated, “the detailed analysis of
a model for purposes other than that which it was
constructed may be as meaningless as studying a
map under a microscope.”  
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