
Introduction

Two decades of the multi-drug treatment
approach of the World Health Organization
(WHO) Global Leprosy Elimination Campaign has
reduced the global prevalence of leprosy by 90%
resulting in a current prevalence of 1.4 per 10,000
people (The Global situation of leprosy, 2002).
However, this reduction in prevalence does not
appear to be successful in interrupting transmis-
sion. For the past 10-15 years, stable numbers of

new cases have been recorded yearly, and in the six
countries that account for approximately 90% of
all new cases, the incidence is actually rising
(Durrheim and Speare, 2003; Lockwood, 2002).
Some health agencies explain this increase as better
detection due to improved case-detection services
and special education campaigns. Although this
might be true for the incidence among patients with
advanced disease or disability, it does not explain
why children make up 13% of the new cases
(Lockwood, 2002).

The relationships between Mycobacterium leprae,
its human host and way of transmission are not
clear. A preferential route of entry of the leprosy
bacillus is the nose (Chehl et al., 1985) and multi-
bacillary leprosy (MB) patients, who harbor viable
bacilli in their nasal secretions, are thought to be the
main source of infection (Hastings, 1993). However,
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little correlation exists between the prevalence of
lepromatous leprosy (LL) and total new cases regis-
tered. The association of new cases with the inci-
dence of conjugal leprosy or frequent contact
between individuals is also insignificant (Jopling,
1988). The rate of infection by M. leprae is much
greater than the rate of disease development, indi-
cating the presence of sources of infection other
than leprosy patients (Fine et al., 1997). Alternative
sources of M. leprae infection could be sub-clinical-
ly infected individuals, a vector (vertebrate or insect)
or environmental contamination. 

Although, according to WHO, Ethiopia reached
the leprosy elimination target of 1 case/10,000 pop-
ulation in 1999, the incidence has not changed
appreciably (Tuberculosis and Leprosy control of
Ethiopia 10th Annual Review meeting, 2002). As in
other endemic countries, about 5,000 new cases are
detected yearly. In 2002, clusters of endemicity with
prevalence rates higher than the elimination target
were recorded in four of the 14 administrative
regions in the country (Tuberculosis and Leprosy
control of Ethiopia 10th Annual Review meeting,
2002). Environmental sources have long been sus-
pected to play a role in the spread of leprosy, espe-
cially due to the geographical differences in leprosy
distribution and local clustering. Previous beliefs
that M. leprae cannot survive once outside the
human body are now being challenged. Under
favorable conditions, such in a hot humid climate,
M. leprae is capable of surviving for months
(Desikan and Sreevatsa, 1995). 

The objective of the work presented here is to use
Geographic Information Systems (GIS) methods to
assess the influence of environmental factors on the

prevalence of leprosy in Ethiopia.

Materials and methods

The environmental attributes selected for analysis
were the Normalized Difference Vegetation Index
(NDVI), daytime earth surface temperature (Tmax),
and a climate surface grid (5x5 km cell size) inter-
polated from long-term-normal climate station data
(Table 1). These attributes were analyzed for their
suitability for leprosy prevalence in the Oromia
region in Ethiopia. ArcView GIS 3.3 software (ESRI,
Redlands, CA, USA) and Genetic Algorithm for
Rule-set Prediction (GARP) software (DesktopGarp
1.1.3, University of Kansas Biodiversity Research
Center, Ka, USA) were used to build models and to
create maps showing the distribution of leprosy in
the region. An independent leprosy data set from the
Amhara region was used to validate the leprosy pre-
diction model. 

Baseline data 

Leprosy case data, prepared by the Amhara and
Oromia Regional Bureaus of Health and the
Ethiopian Ministry of Health, included both multi-
bacillary leprosy (MB) and pauci-bacillary leprosy
(PB). As of June 2001, the total number of PB
(N=1367) and MB (318) cases recorded in 285
zonal health institutions in the Amhara region was
used in this study. The total PB (N=136) and MB
(N=2402) cases for the Oromia region collected as
of August 2003, comprised data collected from 124
health institutions.
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Table 1. Data used for the analysis.

Parameter

NDVI

TMax

ACT Climate

NDVI, TMax for GARP

Feature type

8-bit Image

16-bit Image

Grid

Image

Source

United States Geological Survey (USGS), http://www.gnosis.org

USGS, http://www.gnosis.org

Blackland Research and Extension Center, Texas Agricultural
experiment station

Clipped and modified with GARP Dataset Manager



Determination of geographical coordinates 

The latitude and longitude of each clinic were
obtained in geographic decimal degree format from
the website of the National Imagery and Mapping
Agency (NIMA) (http://gnps.www.nima). Coordinates
not found were obtained from Encarta (Microsoft
Encarta, 2002). Digital maps based on the point coor-
dinates for each clinic were prepared using ArcView
GIS 3.3 (ESRI, Redlands, CA, USA) software.

Database

All parameters tested in this study were taken
from the Minimum Medical Database (MMDb)
(Malone et al., 2001) which is a collection of data
gathered by collaborating health workers and scien-
tists interested in the application of GIS to control
program management and research for schistosomi-
asis and other snail-borne diseases. This database
contains information for the Intergovernmental
Authority of Development/Nile Basin (IGAD/Nile)
region of East Africa. It includes maps and compiled
data on environmental attributes such as NDVI,
Tmax, elevation, climate, land-use, soil types, infra-
structure, political boundaries and population data. 

Prevalence calculation and normalization of data

To avoid confounding factors like clinic size and
the number of people living around each clinic and
to obtain comparable data, we calculated the preva-
lence of leprosy per 10,000 people for both the
Amhara and Oromia regions. For Oromia, we used
the population census provided at administrative
zone levels with the health data. For the Amhara
region the total population per each zone was esti-
mated by creating a 10 km diameter buffer zone sur-
rounding each clinic and extracting data from a
population density grid map.

Extraction of environmental data

All environmental feature data, including

Advanced Very High Resolution Radiometer
(AVHRR) satellite sensor data, were based on a 10-
km diameter buffer zone around each clinic.

NDVI (1992-1995)

AVHRR data on NDVI were obtained from the
United States Geological Survey (USGS) global
1km2 website (Huh and Malone, 2001). NDVI is
an indicator of plant photosynthetic activity related
to environmental moisture; it is an index that
ranges from 0 to 200 depending on the amount of
vegetation at a site. The AVHRR data, which con-
sisted of 10-day composites of daytime imagery,
was processed by the USGS to minimize cloud
cover and atmospheric attenuation of the sensor
signal. All images were calibrated and geo-refer-
enced to a geographic decimal degree latitude and
longitude coordinate system using ERDAS Imagine
8.6 image processing software. The images were
averaged to create monthly composites, which were
averaged together to create maps for dry (October-
March) and wet (April-September) seasons and an
annual composite map, which included both sea-
sons. The NDVI image files were converted into a
grid file and used for extraction of mean NDVI val-
ues for each buffer zone. The extracted data were
exported as Dbase files into Microsoft Excel
datasheets. Scatter diagrams of cases/10,000 versus
mean NDVI were plotted using Microsoft Excel.
Outliers such as buffer zones falling fully or par-
tially in water were excluded. A range of NDVI
that includes all prevalence data points was deter-
mined from the plot and used as the value range
specified to perform queries in ArcView to create
map overlays showing areas suitable for leprosy
prevalence.

Tmax (1992-1995)

Similar to the NDVI data, the image files for
Tmax were prepared for the dry, wet and annual
seasons. The same extraction procedures were
applied to obtain a range of Tmax suitable for the
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prevalence of leprosy in the regions. As for NDVI,
scatter plots were prepared using Microsoft Excel
and the range was used as criterium for queries in
Arc view 3.3 GIS to create map overlays. The
Amhara prevalence data points were overlaid on the
model and points falling inside and outside the
model were recorded for calculation of positive and
negative predictive values.

Almanac Characterization Tool (ACT) climate data

A climate grid file with 5x5 km2 cell size was
used. It contained long-term normal data on pre-
cipitation (PRE), potential evapotranspiration
(PET), the ratio of precipitation and potential
evapo-transpiration (PPE) plus the minimum tem-
perature (IT) and maximum temperature (XT) for
January to December of each year. PPE, an indica-
tor of the availability of environmental moisture or
‘water budget’, was included to validate the previ-
ously reported association of M. leprae with envi-
ronmental moisture (Sterne et al., 1995). The lep-
rosy prevalence point table was joined to the cli-
mate data table to extract climate data values for
the grid cell in which each prevalence data point
fell. The linked tables were exported as a DBase file
and mean temperature ([IT + XT]/2) and mean PPE
were calculated for the dry season (October to
March) and the wet season (April to September) to
give dry temperature, wet temperature, dry PPE
and wet PPE values. Scatter plots of these values
versus the stratified prevalence/10,000 (0-0.1, 0.1-
0.7 and >0.7) were used to define ranges that
included 95% of all points (Table 2). These data
ranges were used as the extrapolation criteria to
create map overlays using ArcView 3.3 GIS.

Ecologic niche-modeling using GARP

GARP is a high precision, computer-based genet-
ic algorithm system used in ecologic niche model-
ing. It has a high predictive ability of a species’
potential distributions based on user selected envi-
ronmental layers. GARP incorporates different
procedures that involve powerful rules including
atomic rules, logistic regression analysis and fre-
quency distribution-based bioclimatic rules. The
GARP model has a minimum of errors of omis-
sions and commissions making it an important
tool in understanding the geographical distribution
of the species of interest (Towsend and Vieglais,
2001; Costa et al., 2002). It equally divides the
loaded prevalence data into training and test data
sets performing multiple iterations based on rule
selection, evaluation, testing and incorporation or
rejection. The training data sets are subjected to
randomly selected statistical evaluation methods
like logistic regression and bioclimatic rules to
develop a procedure to be used to evaluate predic-
tive accuracy based on the test data sets and points
randomly sampled from the whole region as a
whole (Towsend and Vieglais, 2001). 

The annual composite data for Tmax and NDVI
were used as environmental dimensions for ecolog-
ic niche-modeling. Environmental layers for the
analysis were prepared by converting the image
files to the grid and processing of these files using
the GARP module within ArcView GIS 3.3. These
files were transformed to GARP-compatible for-
mat with the GARP Dataset Manager. The Amhara
and Oromia leprosy prevalence data were com-
bined to generate a total of 317 occurrence points.
These distributional points were loaded into Desktop

Table 2. Temperature and potential evapo-transpiration ranges used in ACT climate query.
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Prevalence

0 - 0.1

0.1 - 0.7

> 0.7

Dry season

T (°C)

11.6 - 17.9

9.8 - 24.3

8.9 - 21.8

Wet season

T (°C)

11.6 - 21.0

9.6 - 25.3

9.7 - 24.5

Dry season 

PPE

0.12 - 0.42

0.12 - 0.6

0.13 - 0.76

Wet season

PPE

1.03 - 2.61

0.59 - 2.9

0.6 - 3.05



Fig. 1. GIS annual composite model for leprosy in Ethiopia. Query that met the ranges of NDVI (116.2 - 154.46) and TMax
(9.4 - 28.82) in relation to leprosy prevalence in the Oromia region was overlaid on the political boundary map of Ethiopia.
Area in grey represents the “best fit” model. The positive predictive value calculated by using data from the Amhara region
was 90.476%.

GARP and used to model ecologic niches and
potential geographic distribution of M. leprae. For
each set of data used, GARP generates 20 models.
Three criteria were used for the selection of the
best model: 

(i) elimination of models with high number of
training points omitted and, when possible,
including only those models with 0 omission; 

(ii) the average of total area predicted for species to
be present was calculated and models falling
within 5% range below or above this average
were selected; and 

(iii) models that passed the two criteria were com-
pared based on the p value for Chi-square
analysis of the probability of a random sample
predictions being similar to the one generated
by GARP. 

Results

The AVHRR model using NDVI and Tmax

The ranges that included 95% of all leprosy
prevalence points were defined from the scatter
plots of Oromia prevalence data versus NDVI or
Tmax data. The NDVI value ranges were 116-154.5
for the annual composite, 116-161 for the dry-sea-
son map and 115-155 for the wet-season map. The
corresponding Tmax ranges were 9.4-28.8°C, 11.7-
32.5°C and 7.7-25.8°C. When these ranges were
used to prepare query-based map overlays, showing
all areas that met both the NDVI and Tmax criteria
ranges in the country, with the annual composite
model it became clear that whole country, except for
areas in the South East (Somali) and North East
(Afar), are indeed suitable for leprosy (Fig. 1).
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In addition, the positive predictive value of the
model developed in the Oromia region was 90.5%
when applied to Amhara region data. All of the
prevalence points that fell outside the predicted
area were in the lowest ranges of prevalence/10,000
(0-0.1).

The climate-based model

The ACT climate grid was used to determine the
influence of thermal-hydrologic regime, i.e.
rain/potential evapo-transpiration (PPE) and mean
temperature, in relation to leprosy distribution.
Table 2 shows the defined ranges of PPE and mini-
mum and maximum temperatures for the dry and
wet seasons used for model development queries.
This model predicted most of the Amhara and the
Oromia region as suitable for leprosy. The excep-

tions were the southern part, most of the Southern
Nations, Nationality and People Region (SNNPR),
Harari and DireDawa (Fig. 2). The model excluded
Northern Tigray, Western Gambela, Somali and
most parts of Afar, especially the Eastern part. The
positive predictive value generated when using the
model parameters based on Oromia data applied to
the Amhara data was 87.8%. Except for one health
clinic (Chagnie) with a prevalence/10,000 of 1.32,
all the prevalence points not predicted by the model
had a prevalence/10,000 in the 0-0.1 range.

The GARP model

The GARP M. leprae distribution model showed
itself as the most powerful of the models tested due
to restrictions and statistical methods employed.
The GARP model prediction area was based on data

Fig. 2. Climate Prediction Model for Leprosy in Ethiopia. Point potential evapo-transpiration (PPE), average maximum and
minimum temperatures for dry and wet seasons were used to study the influence of thermal-hydrologic regime on the preva-
lence of leprosy in Ethiopia. The ACT 5x5 climate grid was used for extraction. The Oromia prevalence table was joined to
the ACT data and exported as a Dbase file.
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Fig. 3. GARP predictive model for the distribution of M. Leprae in Ethiopia. The environmental layers used are the annu-
al TMax and NDVI. The model with minimum percentage of omission and within 5% range of the average presence area
was selected.

points for all of Amhara and Oromia while the two
models based on query of climate grid data and
AVHRR data ranges for Tmax and NDVI were
based on the Oromia data only. The prediction area
pattern of the GARP ecologic niche-model resem-
bled the AVHRR annual composite prediction
model. It included most of the Amhara, Oromia,
SNNP, Tigray and Gambela regions and excluded
the Afar and Somali regions (Fig. 3).

Discussion

Understanding of the natural history of a disease,
its ecologic distribution and the essential host-
pathogen interactions are necessary in order to
establish a successful control program. It is impor-
tant to understand that, inspite of its success, the

WHO leprosy elimination campaign, mainly based
on case finding, treatment and follow-up of house-
hold contacts, has not reduced the incidence of lep-
rosy. Enhanced detection of hidden cases cannot
explain the new occurrence of leprosy among young
children, an indicator of ongoing active transmis-
sion (The Global situation of leprosy, 2002).

Several countries that have reached the elimina-
tion target still have localities with clusters of lep-
rosy cases. These high endemicity regions must be
eliminated in order to achieve sustained low trans-
mission and reduced incidence rates. Ethiopia is one
example where leprosy elimination has been
achieved according to WHO criteria, but districts
with leprosy prevalence above the 1/10,000 cut-off
limit still exist. The transmission rate in children
below 15 years of age is about 6% (Tuberculosis
and Leprosy control of Ethiopia 10th Annual
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Review meeting, 2002). Out of the total number of
leprosy cases recorded in Ethiopia in 2002, 46%
occurred in Oromia, the largest administrative
region in the country, followed by the Amhara
region with 31.5% of the total new cases (Durrheim
and Speare, 2003). 

M. leprae has been shown to be capable of with-
standing severe adverse environmental conditions.
Hot and humid weather, wet soils and water have
all been proposed as factors that favor survival of
the bacilli for a few months (Tuberculosis and
Leprosy control of Ethiopia 10th Annual Review
meeting, 2002; Desikan, 1977). M. leprae DNA has
been detected in water in Indonesia at locations
where a high proportion of individuals utilizing this
water were affected by leprosy (Matsuoka et al.,
1999). A well-controlled study in Karonga district
in Malawi has shown water and soil moisture to be
associated with high prevalence of leprosy (Sterne et
al., 1995). Indirect transmission of leprosy is further
supported by the natural occurrence of leprosy in
animals like the armadillo (Job et al., 1986) and
reports on the potential of insects to transmit lep-
rosy (Geater, 1975; Banerjee et al., 1990).

Our study indicates that leprosy may be associated
with specific environmental features. The models we
developed are in concordance with leprosy distribu-
tion in Ethiopia and support the conclusion that: (i)
certain thermal-hydrological regimes favor survival
of leprosy in the environment, and that (ii) NDVI
and Tmax environmental satellite data may be incor-
porated into a predictive model of leprosy that could
be used to guide control programs. Thermal-hydro-
logical regime risk factors for leprosy were measured
by conventional climate station data or by satellite-
sensor data on NDVI and Tmax as surrogates of
moisture and temperature, respectively.

The climate-based model with stratified preva-
lences (0-0.1, 0.1-0.7 and >0.7 cases/10,000 popu-
lation) predicted that the highest risk in the country
occurred in Amhara and Oromia, the two regions
with highest leprosy incidence (Tuberculosis and
Leprosy control of Ethiopia 10th Annual Review
meeting, 2002). The GARP analysis of NDVI and

Tmax annual composite values as input variables
confirmed what we observed in the annual AVHRR
Tmax/NDVI model. It predicted most of Amhara
and Oromia regions as the two major leprosy areas
in Ethiopia. The ecologic niche of a species is the
suitable ecologic space within which a species is
potentially able to maintain population without
immigration. All three models excluded the dry and
hot Afar and Somali area, the two regions with the
least number of leprosy cases in Ethiopia in 2002
(Tuberculosis and Leprosy control of Ethiopia 10th

Annual Review meeting, 2002).
Various parameters have been identified as risk

factors in acquiring leprosy disease. These include
demographic factors such as age and sex, and
immunological factors such as the absence of BCG
vaccination (Ponnighaus et al., 1993). A significant
negative correlation between the incidence of leprosy
and higher economic indices has been reported (Di et
al., 1992). Rural endemic settings with poor housing
and sanitation conditions have been described as
important factors in the transmission of leprosy
(Mani, 1996). For any of these factors to have a role
in the development of leprosy, the sustained presence
of M. leprae in the environment is necessary. We pro-
pose that leprosy occurs most frequently when a suit-
able micro-environment such as moist soil coexists
with other known or unknown predisposing factors. 

This study provides evidence that environmental
factors are of importance in the prevalence of leprosy.
Such factors must be taken into consideration when
planning a control program. Further studies that
incorporate field-collected validation data (ground
truth) may shed more light into the precise thermal-
hydrological regime factors or other risk factors asso-
ciated with the environmental risk of leprosy. 
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