
Introduction 

More than 90% of all cases of visceral leishmani-
asis (VL), a complex multi-systemic disease with a
case-fatality rate that approaches 90% if left
untreated (Ahasan et al., 1996), in Latin America
come from the northeastern part of Brazil. The State
of Bahia has one of the highest incidence rates of VL

in Brazil (Grimaldi et al., 1989). Leishmania cha-
gasi, an intracellular protozoan, is transmitted from
one mammalian host to another by the bite of an
infected female sandfly. Lutzomyia longipalpis (Lutz
and Neiva, 1912) is the most important vector of
VL in the New World. Quantitative comparisons of
nDNA fragment patterns indicate that L. chagasi
(the main etiologic agent of American VL) and L.
infantum are very closely related and may actually
represent the same species. There is increasing evi-
dence that L. chagasi may represent strains of L.
infantum that were introduced into the New World
by earlier human migrants or their dogs from the
Mediterranean region (Momen et al., 1987; Killick-
Kendrick et al., 1980). Human beings are incidental
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by associating environmental and climatic variables with disease prevalence. Both the GARP model and the GDD-
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tribution and abundance patterns for the Lutzomyia longipalpis-Leishmania chagasi system in Bahia. High and
moderate prevalence sites for VL were significantly related to areas of high and moderate risk prediction by: (i) the
area predicted by the GARP model, depending on the number of pixels that overlapped among eleven annual model
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hosts, dogs are the main reservoir hosts among
domestic animals, opossums (Didelphis marsupialis)
and foxes (Cerdocyon thous) have been reported as
the main wildlife reservoirs (Sherlock, 1996;
Grimaldi et al., 1989).

VL was previously known as a rural disease, but
large outbreaks and epidemics have recently been
reported in large cities in both industrialized and
developing countries in the Americas (WHO, 1995).
In Brazil, VL is a re-emerging disease considered to
be one of the most severe domestic public health
problems (Arias et al., 1996). Climate change,
deforestation, agrarian practices, a poorly nour-
ished population and unsanitary housing make
inhabitants of the State of Bahia easy prey for this
disease (Sherlock, 1996). 

Earlier studies have demonstrated that historical
field and laboratory data regarding the ecology of
vector-borne diseases can provide the basis for devel-
opment of spatial-temporal environmental risk mod-
els by use of standardized analysis of Geographical
Information Systems (GIS) and remote sensing (RS)
data from earth-observing satellites (Malone, 2005;
Kitron et al., 2006; Hay et al., 2001).

Temperature and moisture are fundamental
determinants of the distribution and abundance of
most species and are an essential part of any
attempt to assess environmental risk factors of dis-
ease agents and their vectors. Each species has its
own unique thermal-hydrological regime require-
ments that determine its biological or habitat pref-
erences, limits of tolerance and optimum conditions
for development. Growing degree day (GDD) –
water budget (WB) analysis can be used to define
the suitability gradient in the environment for prop-
agation and transmission of the vector-parasite sys-
tem. WB is a moisture accounting system used to
indicate the presence of an adequate amount of sur-
face water or soil moisture based on the water bal-
ance in the top layers of soil (Malone et al., 2001;
Malone et al., 2003).

GIS and RS technologies are being used more fre-
quently in community health studies to identify and
classify risk areas as well as to predict the distribu-

tion of vector borne diseases (Thompson et al.,
2002). In this study, we investigate the potential of
(i) ecological niche modeling to predict the distribu-
tion of VL and its potential use as a risk assessment
tool to guide control programs, and (ii) GDD and
WB analysis to define a suitability gradient in the
environment for propagation and transmission of
the vector-parasite system. 

Materials and Methods

Study area

The area under study included the whole of Bahia,
the largest state of northeastern Brazil located
between 8º 00’ and 18º 30’ South Latitude and 36º
00’ and 46º 00’ West Longitude. Bahia has an area
of 567,295 km2 and is the largest state in Northeast
Brazil. The climate is classified as dry-arid to arid-
tropical with annual average temperatures between
19º and 27ºC. Tropical forest is the dominant vege-
tation within coastal areas and mangroves occur in
the littoral areas, while the Cerrado and Caatinga
areas are inland (Bavia et al., 2001). 

Parasitological data

The parasitological data used consisted of annu-
al human prevalence data from 1990 to 2000 for
each of the 415 municipalities of the State of Bahia
collected by the Fundação Nacional de Saúde,
Salvador - Bahia. 

Environmental data

These models were developed from environmental
data layers from WorldClim (http://biogeo.berke-
ley.edu/worldclim/methods.htm) and a global digital
elevation model GTOPO 30 program (1 Km pixel
resolution) from the United States Geological
Survey_(ht tp : / / edcdaac .usgs .gov/gtopo30/
gtopo30.asp) (Table 1). The WorldClim layers were
based on interpolation of recorded climate data
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from different weather stations to produce average
monthly climate data as a 1 Km2 resolution grid.

Ecological niche modelling

Ecological niche models were developed using the
Genetic Algorithm for Rules-set Prediction (GARP)
software program (http://www.lifemapper.org/desk-
topgarp). The GARP approach models the ecologic
niche of species based on relating point-occurrence
data to the electronic maps of relevant ecological
dimensions, producing a heterogeneous set of rules
that describe the potential distribution of species
(Peterson et al., 2002b). Previous tests of the predictive
power of this modeling technique have been published
elsewhere (Peterson et al., 2001, 2002a,b; Stockwell
and Peterson 2002; Peterson and Shaw, 2003).

Within GARP, input data are further divided ran-
domly and evenly into training and intrinsic testing
data sets. GARP works in an iterative process of
rule selection, evaluation, testing, and incorporation
or rejection. A method is chosen from a set of pos-
sibilities (e.g. logistic regression, bioclimatic rules),
applied to the training data and a rule is developed

or evolved (Stockwell, 1999). Rules may evolve by a
number of means that mimic DNA evolution: point
mutations, deletions, crossing over, etc. the change
in predictive accuracy from one iteration to the next
is used to evaluate whether a particular rule should
be incorporated into the model, and the algorithm
runs either 1000 iterations or until coverage
(Peterson et al., 2004a). GARP relates ecologic char-
acteristics of occurrence points to those of ecologic
characteristics sampled randomly from the rest of
the study region, developing a series of decision
rules that best summarize factors associated with
presence (Peterson et al., 2000b).

To generate the niche models, WorldClim data
variables and elevation data were processed using
Arc-View 3.3 Spatial Analyst and DIVA-GIS 4.0
(http://www.diva-gis.org/). GARP was run using
these environmental variables with two different
groups of human leishmaniasis prevalence data, i.e.
(i) the places where no cases were reported, and (ii)
the sites where prevalence ranged from 1 percent to
the highest observed percentage. This procedure
was carried out for each of the eleven years (1990-
2000) of available human VL data (Fig. 1). To opti-
mize model performance, 100 replicate models were
developed based on random 50-50 splits of available
occurrence points. The procedure for choosing best
subsets models was based on the observation that (i)
models vary in quality, (ii) variation among models
involves an inverse relationship between errors of
omission (leaving out true distributional areas) and
commission (including areas not actually inhabited),
and (iii) best models (as judged by experts blind to
error statistics) are clustered in a region of minimum
omission of independent points and moderate area
predicted (an axis related directly to commission
error). The position of the cloud of points relative to
the two error axes provides an assessment of the rel-
ative accuracy of each model (Costa et al., 2002)
and (Peterson et al., 2004a). 

To choose the best subsets models in this study the
following procedure was carried out: 
(i) eliminate all models but those that had no

omission (intrinsic) error based on independent

Table 1. List of bioclimatic variables, derived from the monthly
temperature and rainfall values (http://biogeo.berkeley.edu/
worldclim/bioclim.htm) analysed in the study.

BIO 1 = Annual Mean Temperature
BIO 2 = Mean Diurnal Range Mean of monthly 

(max temp - min temp)
BIO 3 = Isothermality (P2/P7) (* 100)
BIO 4 = Temperature Seasonality (standard deviation *100)
BIO 5 = Max Temperature of Warmest Month
BIO 6 = Min Temperature of Coldest Month
BIO 7 = Temperature Annual Range (P5 - P6)
BIO 8 = Mean Temperature of Wettest Quarter
BIO 9 = Mean Temperature of Driest Quarter
BIO10 = Mean Temperature of Warmest Quarter
BIO11 = Mean Temperature of Coldest Quarter
BIO12 = Annual Precipitation
BIO13 = Precipitation of Wettest Month
BIO14 = Precipitation of Driest Month
BIO15 = Precipitation Seasonality (Coefficient of Variation)
BIO16 = Precipitation of Wettest Quarter
BIO17 = Precipitation of Driest Quarter
BIO18 = Precipitation of Warmest Quarter
BIO19 = Precipitation of Coldest Quarter
ALT = Topography (mean elevation)
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Fig. 1. Procedure to select the best subsets models in this study: (1) add climatic and environmental variables as well as VL
data; (2) to optimize model performance, select 100 replicate models per year and choose 20 models with the least values in
the omission (extrinsic) error; (3) identify the 10 models closest to the overall median area predicted; (4) average these 10 mod-
els to get a best subset annual model; (5) sum the final best subset annual models of the11 years to get one final model.

tests points. Intrinsic omission is the percentage
of the training points that are omitted from the
prediction area; that is, those that are predicted
to be absent but have presence records; 

(ii) select 20 models with the least values in the
omission (extrinsic) error. Extrinsic omission is
the percentage of the test points that are omit-
ted from the prediction; that is, those that are
predicted absent but have presence records; 

(iii) calculate the median area predicted present
among these minimum omission points; 

(iv) identify the 10 models closest to the overall
median area predicted; 

(v) average these 10 models to get a best subset
annual model (Peterson et al., 2004);

(vi) sum the 11 (year 1990-2000) final best subset
annual models (Fig. 1).

Growing degree day-water budget model 

GDD-WB analysis, a method widely used for crop

production models, can be used to define thermal-
hydrological suitability gradients in the environ-
ment for propagation and transmission of vector-
parasite systems. GDD can be used to indicate min-
imum temperature, optimum temperature, limiting
high temperature thresholds and thermal energy
required for development of generation times of vec-
tor-parasite systems (Malone, 2005). Water budget
is a moisture accounting system used to indicate the
presence of a suitable amount of soil moisture or
surface water for development based on the water
balance in the top layers of soil or ground surface
(Malone et al., 2003). 

Limited data is available on the environmental
preferences and limits of tolerance of the L. chagasi-
Lu. longipalpis system in relation to climate. Thus
these factors were estimated by defining the climate
regime associated with presence or absence of the
parasite-vector within a GIS in combination with
available published data. Resource data used to gen-
erate the GDD-WB model included a 30-year aver-
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age monthly climate surface grid (18x18 Km)
dataset of South America (Mud Springs
Geographers, Temple, TX), a human VL prevalence
database from the State of Bahia (Fundação
Nacional de Saúde, Estado da Bahia) and develop-
ment data obtained in different studies where Lu.
longipalpis colonies were established and main-
tained in the laboratory (Killick-Kendrick et al.,
1977). The objective was to define a suitability gra-
dient in the environment for propagation and trans-
mission of the vector-parasite system.

The 30-year average monthly climate surface grid
of South America included data on maximum tem-
perature, minimum temperature, precipitation and
potential evapotranspiration (PET). These parame-
ters were used to calculate mean monthly tempera-
ture [(max temp - min temp)/2] and water budget
[PPE = (precipitation/PET)]. Growing-degree-days
(GDD) is defined as the number of the degrees over
a base value (base temperature) below which no
development of a species occurs, in this case the
sand fly vector Lu. longipalpis. GDD can be accu-
mulated for months in which conditions were with-
in the suitability threshold range temperature and
water budget threshold values to derive annual
GDD values.

The water budget threshold value was defined by
GIS analysis, as a condition where PPE, the ratio of
rain/potential evapotranspiration (R/PET), was >0.7,
(i.e. the soil moisture content was 70% saturated).
The PPE threshold was determined by extracting
mean climate attribute data values from grid cells in
which annual human prevalence data points were
located for two infection prevalence ranges; moder-
ate prevalence (1-5%) and high prevalence (5-14%)
of VL. GIS map query functions were performed to
confirm the PPE threshold of the presence of suitable
amount of surface water or soil moisture; no positive
sites were found if PPE > 0.7, suggesting a preference
of the vector for drier environments.

The base temperature for development of Lu.
longipalpis has not been experimentally determined.
Thus a best estimate of the base temperature value
was made by GIS query analysis using known endem-

ic site data in combination with data from the fol-
lowing literature reports on temperature require-
ments for reproduction and development of Lu.
longipalpis: 
(i) a temperature of 25ºC is the optimal tempera-

ture for reproduction and development in the
laboratory of Lu. longipalpis (Killick-Kendrick
et al., 1977; Mody and Tesh 1983; Rangel et
al., 1996); 

(ii) the potential generations that can be completed
in one year at 25ºC for Lu. longipalpis is 7.7
generations per year (Killick-Kendrick et al.,
1977); 

(iii) at 25ºC, 40 days are required from engorge-
ment of Lu. longipalpis female to the first
adults emergence of the next generation
(Killick-Kendrick et al., 1977); 

(iv) the average annual mean minimum tempera-
ture recorded in the State of Bahia for sites of
>1% prevalence was 14.7ºC, based on point-
polygon extractions and GIS map queries on
the 30-year-average monthly climate surface
grid. 

The base temperature of Lu. longipalpis was esti-
mated using the reported laboratory development
requirements (40 days for one generation, 7.7 gen-
erations per year at 25ºC, 80% humidity) and the
average annual mean minimum temperature value
(>14.7ºC), in a two-step calculation: 
(i) the number of GDD that must be accumulated

to complete one generation was estimated to be
412. For this estimate the following parameters
were used: the optimum mean temperature in
the laboratory (25ºC) minus the minimum
mean temperature registered at positive sites for
L. chagasi in the State of Bahia (14.7ºC) times
days required from engorgement to first emer-
gence of adults (40 days): [(25ºC-14.7ºC) x 40
days] = 412;

(ii) the number of GDD to complete one genera-
tion (412) and the potential generations that
can be completed in one year (7.7) was used to
solve for the base temperature (X): [(25oC -X) *
365]/412 =7.7; X = 16oC.
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Fig. 2.  Ecological Niche Model. The 11 best annual models were summed and ranked by the criteria of how many times each
model predicted the same pixel within the endemic area, classified as: High, 11 times; Moderate, 6-10; Low, 1-5 and Negative,
where none of the final models predicted the disease.

A base temperature value of 16ºC was accepted as
the best estimate, pending more detailed laboratory
+/or field studies, of the minimum temperature in
which no development of the sand fly vector
Lu. longipalpis proceeds in the State of Bahia.
Derivative climate variables were calculated, using
16ºC as the base temperature, for each cell of the
18x18 Km climate grid, including monthly and
annual values for:
(i) Monthly GDD. This parameter was calculated

as the mean temperature minus 16ºC times
days of the month (e.g. Jan = 31, Feb = 28, June
= 30); the annual GDD is the sum of monthly
GDD values; 

(ii) GDD times water budget (PPE), if PPE < 0.7.
Using the formula (GDD*(PPE < 0.7)), a ther-
mal hydrological gradient value was calculated
that considered both thermal regime (GDD)
and the influence of variable moisture regime
for each month. The moisture threshold value <
0.7 was estimated by a GIS map query of the
PPE value in grid cells that included positive L.
chagasi points. This procedure was performed

for each month and multiplied by the number
of days in the month to calculate the monthly
value for the ‘gradient model’.

Statistical analysis

The 11-year prevalence average data for VL in
Bahia were analyzed with environmental data by
stepwise logistic regression and by multiple regres-
sions for the GDD-WB climate based model to
establish associations between environmental vari-
ables and the prevalence of VL. The analysis was
done using SAS software (Cory, NC). GARP is a sta-
tistical analysis software program.

Results

GARP ecological niche model

GARP analysis, based on 19 WorldClim biocli-
matic data parameters and a topography data
parameter for each of the 11 years in which preva-
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lence data was available is presented in Table 1.
Data were further processed using ArcView 3.3
software to create and classify an eleven-year com-
posite risk map (Fig. 2). The 11 best annual models
were summed and ranked by the criteria of how
many times each model predicted the same pixel
within the endemic area, classified as high (11
times), moderate (6-10 times), low (1-5 times) and
negative when none of the final models predicted
the disease (Fig. 2). All of the high prevalence
points fell into the predicted high risk area and all
the middle prevalence points fell into the high or
moderate risk area, while 32% of the negative
prevalence points were predicted within the low
risk areas. The rest of negative points fell in the
area predicted as negative risk. The final model pre-
dicts as negative an ecological region known as the
Bahia coastal forest. 

The GDD-WB model

The predicted potential generation per year that
can occur in various locations in Bahia ranged from

0 to 9 generations per year. The high and medium
prevalence points were all found in regions predict-
ed to have more than 5 generations per year (Fig. 3).
The Caatinga ecological region was characterized as
having more than 5 generations. It was the region
with highest number of predicted potential genera-
tions per year. The Caatinga is characterized as a
hot and semi-arid region suggesting that it would be
suitable for the Lu. longipalpis vector. The Cerrado
ecological region was predicted to have 2-4 poten-
tial generations per year and the Bahia coastal
region 0-5 generations per year. The number of
potential generations decreased at sites of greater
proximity to the east and southeast. The GIS query
analysis showed the maximum annual mean tem-
perature for the development of Lu. longipalpis to
be 28ºC and the minimum annual mean tempera-
ture 16ºC. All variables analyzed by stepwise logis-
tic regression were significant for the occurrence of
the disease (Table 2). 

Multiple regression analysis was done to deter-
mine which environmental factors had the highest
impact on the distribution and abundance of Lu.

Fig. 3. GDD-Water Budget model. The predicted potential generation per year that can occur in various locations in Bahia
ranged from 0 to 9 generations per year. The high and medium prevalence points were all found in regions predicted to have
more than 5 generations per year
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Table 3. Results of multiple regression analysis for the GDD-WB model. PPE, potential evapotranspiration; APG, annual
potential generations.

Table 2. Results of logistic regression analysis for the GDD-WB model. PPE, potential evapotranspiration; APG, annual poten-
tial generations; OR, odd ratios; CI confidence intervals.

Fig. 4. Ecological Regions Bahia State. The final models GDD-WB and Ecological risk model predicts as negative an ecologi-
cal region known as Bahia coastal forest. The high risk area corresponds mostly to the interior region of the state, matching
with the ecological region known as Caatinga.

longipalpis. Environmental factors that showed a sig-
nificant influence in the presence and the distribution
of Lu. longipalpis were water budget (rain/potential
evapotrasnpiration = PPE); annual potential genera-
tions (APG); and ecosystems (Table 3).

Ecological zones

Comparison of the GARP ecological risk model

prediction and the GDD-WB model prediction of
the distribution of VL in the State of Bahia to the
ecological zone map of Bahia, suggests that the
Caatinga ecological zone, a zone characterized by a
hot and semi-arid environment, is the highest risk
area and that the coastal region and the Cerrado
ecological regions are lower risk areas (Fig. 4). The
Northeast Brazil Dry Forest and the Bahia Interior
Forest Zones may be intermediate transitional
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Variables

PPE

APG

OR

0.997

0.812

95% CI

0.996-0.998

0.760-0.868

P

<0.0001

<0.0001

Variables

PPE

APG

Ecoregions

Error

0.37586

0.00084

0.04266

Type II

13.39

32.68

14.92

F value

4.87

11.87

5.42

Pr>F

0.0277

0.0006

0.0202



zones. Both the final GARP model and the GDD-
WB generations per year model predicted major
areas in the ecological region known as Bahia
Coastal Forest as negative. 

Using the GDD-WB model, the Caatinga ecolog-
ical region was characterized as having more than
5 potential generations per year - it was the region
with highest number of predicted potential genera-
tions per year. The Cerrado ecological region was
predicted to have 2-4 potential generations per
year and the Bahia coastal region 0-5 generations
per year. 

The number of potential generations per year
decreased at sites of greater proximity to the east
and southeast.

Discussion

Two climate-based risk models were developed
for VL in Bahia, one using GARP statistical soft-
ware and one using GDD-WB analysis. Both mod-
els, using different analysis approaches, predicted
similar distribution and abundance patterns for the
Lu. longipalpis-L. chagasi system in Bahia.
Temperature and moisture are fundamental deter-
minants of the distribution and abundance of a
species and are an essential part of any attempt to
assess environmental risk factors of disease agents
and their vectors. Each species has unique thermal-
hydrological regime requirements that determine its
biological or habitat preferences, limits of tolerance
and optimum conditions for development that
determine where it is found (Pavlovsky, 1966).
Where these requirements are unknown it is possi-
ble, within a GIS, to use site records of known pos-
itive and/or negative occurrence to define biological
niche requirements with automated statistical pack-
ages (e.g. GARP).

Alternatively, it is possible to infer niche require-
ments by iterative step-by-step ‘range-finding’ of
individual environmental feature layers extracted
from known sites in a GIS. This would then be fol-
lowed by extrapolation to areas with similar envi-
ronmental features, or combinations of features, by

GIS query analysis of layers of statistically impor-
tant environmental features (Malone, 2005). This
approach was used in current studies to define the
Lu. longipalpis-L chagasi system as to its thermal-
hydrological niche in Bahia using GDD-WB climate
analysis and GIS query analysis based on known VL
prevalence point records. The latter is a unique
capability made possible by geospatial analysis tools
available to biologists using GIS methodologies. 

The GARP model - It is quite clear that this
approach works well since the resulting 11-year-
composite map of high, moderate, low or no risk of
VL corresponded with actual disease prevalence
records. Importantly, all of the high prevalence
points fell into the predicted high risk area, all of the
middle prevalence points fell into the high or mod-
erate risk area, and 32% of the negative prevalence
points were predicted within the low risk areas.
Prevalence points with less than 1% were not con-
sidered in this model, since sites with <1% may rep-
resent potential migratory or sporadic cases. 

The variation in area covered by annual GARP risk
prediction maps over the 11-year study period as
compared to reported cases of VL suggests that annu-
al variation in geospatial risk may occur in individual
years in endemic areas due to annual climate varia-
tion. Further study in Bahia and other VL endemic
areas is warranted to confirm and extend this obser-
vation for use in development of annual risk predic-
tion methods. The risk map shown in Fig. 2 is com-
patible with fundamental principles described for the
distribution and abundance of species where there is
a zone of more or less stable presence, outside of
which there is a transitional zone of patchy presence
or absence in marginally suitable conditions sur-
rounded by an unsuitable zone where the species is
absent (Andrewartha and Birch, 1954).

The GDD-WB model - Development of climate
risk models using GDD-WB analysis depends on
availability of data on the environmental prefer-
ences and limits of tolerance of the L. chagasi-Lu.
longipalpis system in relation to climate. Only
incomplete published data from the field or from
laboratory studies are available for L. chagasi-Lu.
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Table 4. Developmental times, temperature, adults longevity and productivity of Lu. longipalpis colony as observed by differ-
ent authors.

1Killick-Kendrick et al., 1977; 2Rangel et al., 1986; 3Modi and Tesh, 1983; 4Teixeira et al., 2002.

longipalpis (Table 4). Thus these factors had to be
estimated from available published data in combi-
nation with GIS query analysis to define the ther-
mal-hydrological regime associated with presence
or absence of VL. The GDD base temperature,
below which there is no development, was estimat-
ed to be 16ºC through review of literature reports
and records of GIS condition queries at positive
sites. No cases were found where the recorded aver-
age annual monthly water budget values were
below 0.7 or where the average annual mean tem-
perature exceeded 28ºC.

The GDD-WB model indicates that the highest
prevalence of the disease corresponds to areas with
the highest predicted number of potential generations
per year (Fig. 3). The GDD-WB predictive model was
based on data acquired from GIS analysis and litera-
ture review of parameters of the reproduction in the
laboratory of the VL vector Lu. longipalpis. Further
studies on the temperature requirements of Lu. longi-

palpis in natural environments and in the laboratory
will be important to better define the distribution of
the vector and potential risk of VL transmission
based on the concept of GDD-WB potential genera-
tions per year.

Ecological zones - Comparison of the GARP eco-
logical risk model prediction and the GDD-WB
model prediction of the distribution of VL in the state
of Bahia to the ecological zone map of Bahia, suggests
that the Caatinga ecological zone, a zone character-
ized by a hot and semi-arid environment, is the high-
est risk area and that the coastal region and the
Cerrado ecological regions are lower risk areas (Fig.
4). The Northeast Brazil Dry Forest and the Bahia
Interior Forest Zones may be intermediate transition-
al zones. Literature supports our findings that Lu.
longipalpis is found most often in brush land and not
in open savannah, grasslands or heavily forested
areas with broadleaf forest or on the Atlantic border
with tropical littoral forests (Sherlock, 1996).
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Stages, longevity and productivity

From blood meal to the first adult emerge

Hatching

Larvae

First instar

Second instar

Third instar

Fourth instar

Pupae

Adults longevity

Productivity

Cultures temperature of promastigotes and

amastigotes

Developmental times (in days)

- 353-401, at room temperature 25 oC1, relative humidity 80%2;
- 48-541 and 25-422, breed in less constant conditions

- 4-91 and 6-92

- 14-192, for the four instars

- 3-5 (first week)1

- 2-4 (second week)1

- 1-5 (second week)1

- 3-9 (third week)1

- 101, most of the adults, and 8 -92; few males emerges as early as 71

- In general, adults are robust in rough conditions for 2 weeks-one month;

- In blood fed females longevity is determined by ovisposition; few survive 24 h

after oviposition.

- Most live for more than one month1

- 23 generations in 36 months1

- Promastigotes at 22 oC, amastigotes at 34 oC, reversion from mastigotes to pro-

mastigotes at 28 oC4



Both the final GARP model and the GDD-WB gen-
erations per year model predicted high or moderate
risk in major areas in the ecological region known as
the Caatinga. The western part of the Bahian Cerrado
had low number of generations. The Bahia coastal
forest that is part of the Bahian Mata Atlantica shows
a lower number of generations per year indicating
low development of the vector and consequently low
risk for VL. Sherlock (1996), describes the distribu-
tion of the disease in the state of Bahia is limited to
the central Plateau, where the vegetation in predomi-
nantly xerophilous. Although the Caatinga has been
predicted as the most suitable ecological region for
the diseases to occur, Sherlock (1996) concludes that
the major modification of sylvatic ecosystems caused
by deforestation, making different animals (wild and
domestic) encroach on places near human dwellings,
changes the distribution of the disease as well as the
distribution of the vector. Moreover, Equatorial-semi-
arid areas of poor soils would predispose children to
malnutrition, increasing the risk of becoming infected
with VL (Thompson et al., 2002).

In the studies reported here, ecological niche mod-
els were developed within a GIS using GARP analysis
and the GDD-WB generations-per-year concept to
predict the distribution and potential risk of VL in the
state of Bahia, Brazil based on thermal-hydrological
climate regime. Lu. longipalpis-L. chagasi system in
Bahia, and disease prevalence records were shown to
be related to major ecological zone maps. At macro-
habitat scales, both the GARP model and the GDD-
WB generations-per-year model thus showed that cli-
mate and thermal-hydrological regime are key deter-
minants of VL disease risk potential in Bahia. The dif-
ferent prevalence classifications (high, middle and
low) coincided with the predicted areas of the GDD-
WB model and the GARP ecological niche model.
Additional studies to validate and apply GARP and
GDD-WB prediction models of VL risk in Bahia and
elsewhere in Brazil as control program management
tools are warranted. Further development of biology-
based disease risk models for VL will be conditional
on availability more detailed data from laboratory
and field studies on the biological requirements and

distribution at both macrohabitat and microhabitat
scales of the Lu. longipalpis-L. chagasi vector-para-
site system. 
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