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Abstract. The number of deaths in a particular connection can be expressed in different ways. In spatial epidemiology,
two widely used measures are the standardised mortality ratio (SMR) and the so called mortality rate. This paper com-
pares these two ways of expressing mortality using a descriptive and a model-based approach. Age-standardised ver-
sions of both terms have been investigated by a descriptive analysis of temporal and spatial patterns and by employing
different Bayesian spatial models to study their performance. We observed that the SMR and the age-standardised mor-
tality rate (ASM) are strongly correlated and lead to comparable results. This demonstration is based on mortality data
by age, stratified into five-year ranges, from the cause-of-death-statistics with reference to ischaemic heart disease and
lung cancer in 54 counties of the German state of North Rhine Westphalia between 1980 and 1997.
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Introduction

In the analysis of mortality at the unit of admini-
strative districts, raw counts alone are not helpful:
the data must be standardised and the population at
risk taken into account. If data for different age-
groups are available, these should also be taken into
account. Two different expressions are widely used,
i.e. the standardised mortality ratio (SMR) which is
arrived at by dividing the number of observed cases
by those expected, a figure related to indirect stan-
dardisation, while the mortality rate is the number
of deaths per 100,000 persons, a figure related to
direct standardisation. For both, age-standardised
versions can be calculated leading to the age-stan-
dardised SMR (denoted by SMR*) and the age-stan-
dardised mortality rate (ASM). Assuming a homo-

geneous risk of disease across all persons at risk, the
expected number of cases can be calculated. The
main goal of our paper is to compare SMR*s and
ASMs from a descriptive angle as well as from a
model-based point of view. It should be noted that
we do not compare the SMRs with the comparati-
ve mortality figures (CMFs) which would be the
corresponding figures based on direct standardisa-
tion, since these are not as widely used. 

The cardiovascular mortality in British towns has
been analysed by Pocock et al. (1982) using SMRs
and a similar data set was studied by Gardner
(1973) using mortality rates per 100,000 persons.
Other spatial examples based on SMRs have been
given by Clayton and Kaldor (1987), Mollié and
Richardson (1991), Mollié (1996) and Knorr-Held
and Becker (2000). Spatial analyses based on mor-
tality rates have been presented by Tsutakawa et al.
(1985), Pickle et al. (1999) and Mungiole et al.
(1999). Further, Knorr-Held and Besag (1998) have
put forward a spatial-temporal analysis. These are
sensible approaches for the analysis of mortality
figures in time and space but one has to decide
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whether to use SMRs or ASMs. In disease mapping,
the common approach is to use indirectly standar-
dised SMRs (Clayton and Kaldor, 1987) which
assumes the multiplicative model to be valid
(Breslow and Day, 1975). Nevertheless, a compari-
son of two mortality measures is difficult when the
underlying study populations are not the same. The
assumption of uniformity across different age-
groups may lead to fallacy (Rothman and
Greenland, 1998). While Breslow and Day (1975)
show that it is sufficient if the area and age effects
are independent with respect to the standard popu-
lation, Pickle and White (1995) maintain that the
resulting differences are negligible as long as the
rank order of the area is preserved. Freeman and
Holford (1980) show that comparison of both,
directly and indirectly adjusted rates on a linear or
a ratio scale, is valid under the multiplicative
model. For indirectly standardised rates the stan-
dard population is required to belong to the same
class of multiplicative models. 

The present work is an investigation into the per-
formance of the two common expressions of morta-
lity, i.e. the mortality ratio and the mortality rate.
Using a descriptive analysis of temporal and spatial
patterns, as well as employing different spatial
models in a Bayesian framework, always assuming a
multiplicative model for the data, we find that both
terms are comparable and lead to similar results.
After defining both terms in detail, it can be seen
that they differ numerically from each other by a
multiplicative factor in the analysis of just one age
group. This does not hold for age-standardised data.
In the present paper, we compare the spatial and
temporal performance of SMR*s and ASMs
descriptively, and then we demonstrate the perfor-
mance of spatially-modelled data. 

Defining the mortality terms 

In this section we first present the definitions and
go on to discuss some of the features of the measu-
res used (SMR and ASM). For an introduction on

standardization of rates and ratios Fleiss et al.
(2003) may be consulted. Regarding the need of
standardisation, Waller and Gotway (2004) have
produced an illustrative example.

The standardised mortality ratio (SMR)

The SMR is defined as the ratio of the observed
deaths and those expected. In comparing mortality
measures, for example for an infectious disease in
two different areas, the number of expected deaths
can naturally be inferred as that of a group of unex-
posed people. If the mortality measures of a compa-
rable population in time and space are not available,
the number of expected deaths (Ei,t) in each admini-
strative district (i), i = 1,…,n, in the year (t), t = 1,…,T,
can be calculated as the average disease rate (λ) for
the whole study region multiplied by the populati-
on at risk, i.e.

where Oi,t denotes the number of observed deaths
in region i during the year t. Pi,t is the study popu-
lation. The SMR in the area under study (i) during
a particular year (t), denoted by SMRi,t, is then
equal to Oi,t divided by Ei,t, which can be expressed
mathematically by the following equation:

When information about different age-groups is
available, the SMR* can be calculated, using the fol-
lowing formula:

SMRi,t =           .
Oi,t 

Ei,t 

(1)

Ei,t = λ ∗ Pi,t = ∗ Pi,t ,

n   T
Σ ΣOi,t i=1 t=1 

n   T
Σ Σ Pi,t i=1 t=1

K
Σ Oi,t,k k=1
K
Σ Ei,t,k k=1

K
Σ Oi,t,k k=1
K
Σ λk Pi,t,k k=1

SMR*i,t = =
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where the index k = 1,…,K denotes the age group
and the average disease rate λk for each age group is
calculated as:

Both SMRi,t and SMR*i,t are standardised indi-
rectly, as we estimated the number of expected cases
in a given population by rates and age-specific rates,
respectively, according to, e.g., Waller and Gotway
(2004). Usually, Oi,t (Oi,t,k) is taken to follow a
Poisson distribution conditional on Ei,t (Ei,t,k). In
spatial analysis, these rates (λk) have the advantage
of being equal to 1 if the expected number of deaths
is equal to the observed one. In a spatio-temporal
analysis, the expected values of the SMR*s are time-
dependent and the observations for each year can no
longer be taken to follow a Poisson distribution
with the parameter λk = 1. Instead, a Poisson pro-
cess with time-varying (λk) must be assumed.

The age-standardised mortality rate (ASM) 

As an alternative to SMR one can employ ASMs
modelled by normal distribution. However, for rare
causes-of-death this model only holds after a suita-
ble transformation, e.g., after a log-transformation
of the ASMs. When, on the other hand, information
on different age-groups is available, it is possible to
standardise mortality rates, either directly or indi-
rectly. Pickle and White (1995) have put forward
the conditions, under which directly and indirectly
standardised rates produce numerically identical
results. In this paper, instead of choosing indirect
standardisation as for the SMRs, we concentrated
on direct standardisation for rates which is more
frequently used. For this approach, however, a stan-
dard population is required and a useful choice is to
employ Segi’s world population as discussed by
Becker et al. (1984).

The weighted sum of the standardised mortality

rates in the region (i), i = 1,…,n, in the year (t),
t = 1,…,T, is then defined by

where gk, k = 1,…,K, are weights given by the
proportions of a standard population.

In a purely spatial analysis, the interpretation of
ASMs is more difficult than that of SMR*s since
an expected value for use as reference is usually
not available. In temporal analyses, the use of
ASMs has the advantage that information about
the number of deaths in each temporal unit is still
available whereas, for SMRs, it is not. Since nor-
mally distributed (possibly transformed) rates with
varying expected values for different years can be
assumed, a Gaussian process is a suitable model.

Relation of the mortality ratio and the mortality
rate in one age group

Applying the equations nos. 1 and 2 above to one
age group (K = 1) exclusively, results in a constant
ratio between the overall ASM and SMR for all regi-
ons i and all years t together, i.e.

However, this only holds for the data of one age-
group. The relation for age-standardised numbers is
discussed below. Furthermore, it should be remem-
bered that equation no. 3 is only applicable for the
numbers, not for the distribution-theoretic backgro-
und of the figures.

(2)

(3)

λk = .

n   T
Σ ΣOi,t,k i=1 t=1 
n   T
Σ Σ Pi,t i=1 t=1

ASMi,t = ∗ 100,000 
Oi,t,k 

Pi,t,k

K
Σ gk k=1

= ∗ 100,000 = λ ∗ 100,000ASM
SMR

T   n
Σ ΣOi,t t=1 i=1 

T   n
Σ Σ Pi,t t=1 i=1
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The mortality data set

The data of this study is based on emanates from
the state authority dealing with cause-of-death-stati-
stics in the German state of North Rhine
Westphalia. The number of deaths and their causes
were collected for each of the 54 counties, separate-
ly for each sex, from each year between 1980 and
1997. These data were added up in ranges of age
groups, each covering 5 years, except the data for
the very young who were divided into two groups:
those below 1 year of age, and 1 to 14 year-old
children. Data regarding persons older than 85
years were collected into one group, while data
regarding people whose age was unknown at the
time of death, were ignored. The causes-of-death
were coded according to the 9th revision of the
International Classification of Diseases (ICD9)
(DIMDI, 1993). In addition, the corresponding
population was also stratified by age group, sex,
county and year. Thus, the mortality rates (equation
no. 2) and the mortality ratios (equation no. 1)
could be calculated as described in the previous sec-
tion using Segi’s world population as the standard
population. The underlying population counts were
about 9 million for both men and women.

Ischemic heart disease (ICD 410-414), the most
frequent cause of death in the group of heart condi-
tions for both sex (Sturtz, 2002) and lung cancer
(ICD 162), were considered more closely. These cau-
ses-of-death were chosen for the study since they
represent different risk patterns. Different mortality
numbers in men and women complete the list of dif-
ferent scenarios that can possibly lead to different
results in SMR and ASM.

Descriptive comparison of SMR and ASM

For any selected disease, it is possible to compare
the temporal development of both mortality measu-
res under study, e.g., using so called box-plots. Fig. 1
shows examples of these for both SMR and ASM,
and also for each year with regard to male deaths due

to ischaemic heart disease. To facilitate comparison,
horizontal lines were drawn at λ = 1 for the SMR*s,
i.e. the expected value of the mean of the Poisson
process for data available for just one year, and for
the ASMs at the mean of the rates for all years.

Obviously, the overall numerical trends in the mor-
tality rate and in the mortality ratio are approximate-
ly the same. Both exhibit a falling tendency. Even the
pattern of outliers is very similar for both as, for
example, seen in the year 1994. The mean of the mor-
tality ratio was 1.010 and the variance 0.029 leading
to a variation coefficient of 5.955. Naturally, the mor-
tality rates values were higher with a mean of 154.59
and a variance of 725.83. However, the variation coef-
ficient at 5.738 was approximately the same. The
described tendency is reflected in Table 1. For the
three years chosen as example, both the SMR*s and
the ASMs decreased with reference to the number of
deaths from ischaemic heart disease for men.
Although fewer women died from ischaemic heart
disease, this tendency holds also for the women. The
calculated means of the SMR*s and the ASMs are
given in Table 1. To improve the visual comparison,
we calculated the Spearman rank correlation
(Spearman, 1904), together with the number of coun-
ties which had changed quintiles each year. In this ana-
lysis, we also included other diseases that show diffe-
rent temporal patterns compared to ischaemic heart
disease. These show increasing numbers of deaths
over time, as for lung cancer in women, or a fairly sta-

Fig. 1. Temporal development of ischaemic heart disease in men
in North Rhine Westphalia, Germany, (a) ASMs, (b) SMR*s.
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ble tendency which holds for lung cancer in men.
For all diseases, the calculated rank correlation

coefficient is close to 1, reflecting a high correlation
of both mortality measures. This holds for both
diseases and both sex in all years regardless of the
different temporal tendency.

When spatial patterns are analysed, the data are
normally plotted using some arbitrary classificati-
on, e.g., quintiles. To explore the effect of different
standardisations, we calculated the number of
counties which were assigned to different quintiles
in each particular year. The number of change of
quintile allocation ranged between 11% (6/54) and
39% (21/54). The deviation was found to be hig-
her for women for both diseases but, for all
groups, the portion of quintile changes was of the
same magnitude. In our analysis, the proportion of
quintile changes came out higher than that repor-
ted by Pickle and White (1995) in comparing direc-
tly and indirectly standardised rates. However, as
these authors used mortality data in the United
States with an underlying overall population of
around 280 million in 1970-1974, compared to
the male population of 9 million in North Rhine
Westphalia, their work naturally produced more
stable quintile allocations. The rank correlation
between direct and indirect standardisation, on the
other hand, was high in both our example and in
theirs. In summary, the temporal development of

both the SMR*s and the ASMs turned out to be
generally the same with only minor differences.
These occur mainly in assigned percentiles, not in
county ranks, and are therefore mainly a problem
of interpretation when comparing spatial structu-
res of different years using surface plots. 

Model-based comparison of SMR and ASM

With the aim of investigating if the spatial pat-
terns of the age-standardised numbers varied or
behaved in a similar way for different diseases, we
plotted the SMR*s for all years given per county
against the ASMs (Fig. 2) for ischaemic heart disea-
se and lung cancer. 

Table 1. Overall SMR*s and ASMs and rank correlation coefficients for chosen diseases and selected years.

Cause-of-death Sex Year SMR* ASM Rank 
correlation

Counties 
changing quintiles

Ischaemic heart 

Lung cancer

Male

Female

Male

Female

1980
1988
1997

1980
1988
1997

1980
1988
1997

1980
1988
1997

1.186
1.019
0.862

1.066
1.021
0.990

1.050
1.050
0.989

0.677
8.245
1.241

183.07
155.49
131.08

72.21
67.23
62.20

59.80
60.33
52.40

6.28
8.25

11.76

0.986
0.983
0.987

0.961
0.948
0.942

0.982
0.989
0.995

0.852
0.947
0.906

12
8

14

21
11
19

8
6
6

19
12
21

Fig. 2. SMR*s versus ASMs for various diseases for all years
given per county and fitted straight lines.
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Having done this, we observed a linear relation
with differing slopes and intercepts. The population
considered in the study did not seem to have any
influence at all; neither on the slope, nor on the
intercept as seen when comparing the curves of
ischaemic heart disease in women and lung cancer in
men. Both have similar slopes, whereas the underly-
ing population was different and vice versa. For the
intercept we observed different values in comparing
the results for one sex (e.g. lung cancer in women
and ischaemic heart disease in women) and therefo-
re the same population. Slopes and intercepts of the
fitted lines, calculated by the least squares method,
are detailed in Table 2.

The influence of the absolute numbers of deaths is
a point worth mentioning. An increasing number of
deaths also augments both the slope of the adjusted
line and the standard error of the residuals (Table 2).
The higher the probability to die due to one of the
diseases chosen for study (or any other disease for
that matter), the higher the ASM. However, this is
only to be expected since it is an estimate of morta-
lity probability. Therefore the slope of the least
squares fit increases. Moreover, the coefficient of
determination R2, given in Table 2, shows that,
based on the mortality ratio, the mortality rate can
be calculated quite precisely.

Knowing that high mortality rates lead to high
mortality ratios, the spatial structure of both should
be similar. We first performed a descriptive analysis
of the observed SMR*s and ASMs for ischaemic
heart disease in men for three different years choo-
sing the first and last year (1980 and 1997) of the
observation period plus one year in the middle
(1988). The range of these data differed widely,

which was especially obvious for the SMR*s. The
data from 1980, produced a range from 0.881 to
1.495 with a mean of 1.186, whereas the range was
0.620 to 1.119 in 1997, with a mean of 0.862.
Secondly, we employed spatial models. Only the
results based on the data for ischaemic heart disea-
se were included since the lung cancer data lead to
similar results. Three different Bayesian models
were utilised. For the ASMs, assumed to either fol-
low a normal distribution directly or to follow a
log-normal distribution, it is common to employ an
auto-Gaussian model based on Markov Random
Fields (Besag, 1974), in our case:

The mean of a Gaussian distribution (µi) is equal
to an overall level (γ0) and an individual spatial
random effects (bi). We chose the dispersion para-
meters for bi, i = 1,…, n, depending on the varian-
ce σ 2 of the Gaussian distribution to ensure iden-
tifiably. Otherwise we would have had to estimate
two variance terms based on only one observation
per area. With this choice, the dispersion parame-
ters σ2

i = σ2/ni increase with decreasing numbers
of the neighbours (ni) of the region (i). Non-infor-
mative prior distributions of bi, γ0 and σ 2 were
chosen as follows:

Table 2. Results of the least squares estimation of various diseases.

Cause-of-death Sex Intercept Slope R2 Standard error 
of residuals

Ischaemic heart 

Ischaemic heart 

Lung cancer 

Lung cancer 

Male

Female

Male

Female

-4.829

-6.071

0.574

-0.162

157.78

71.79

57.24

9.57

0.987

0.931

0.977

0.923

3.033

2.704

1.531

0.934

log (ASMi ) ~ Gau (µi σ
2)   where µi = γ0 + bi .

bi ~ Gau (b̄i σ1
2);

γ0 ~ U (-∞, ∞); and

σ 2~ InvGamma(r*,d*).



S. Sturtz and K. Ickstadt - Geospatial Health 2, 2007, pp. 255-266 261

Given its neighbouring sites, as described in Besag
et al. (1991), the construction of the mean of the
Gaussian distribution for the spatial effects b̄i was
based on an intrinsic Gaussian conditional autore-
gressive model. In addition, the bi values are con-
strained in summing up to zero (Besag and
Kooperberg, 1995). However, this requires an
improper and unbounded uniform distribution on
the real line for γ0. The parameters of the Inverse
Gamma distribution for the variance parameter σ 2

were chosen as r* = 0.001 and d* = 0.1 implying a
mean of 0.01 and a variance of 0.1. A range of other
prior values was tried and led to similar results.

For the SMRs, we assumed the observed cases
(Oi) to follow a Poisson distribution with a mean
parameter (µi). The µi values are dependent on the
expected number of deaths (Ei ), an overall level (γ0)
and individual spatial random effects (bi) for each
county, i, i = 1,…,n, as expressed by the formula
below:

Again, we chose non-informative prior distributi-
ons for the parameters

with σ2
i = σ2/ni , r* = 0.001 and d* = 0.1, simi-

larly to the auto-Gaussian model. 
Following Clayton and Kaldor (1987), and also

discussed by Besag et al. (1991), the bi values were
based on an intrinsic Gaussian conditional autore-
gressive model. We refer to this model as the
Poisson-log-Normal model with spatial random
effects. The SMRs of interest for this study were cal-
culated by the following formula:

A Markov chain Monte Carlo (MCMC) scheme
for calculation of the posterior distribution was set
up using the software WinBUGS (Spiegelhalter et
al., 2004). For both models, a “burn-in” period of
5,000 iterations was chosen, followed by a sample
of 10,000.

There exist several alternative approaches for
modelling Poisson or Gaussian spatial distributed
data. Best et al. (2000), for example, modelled the
observed counts, which the SMRs are based on,
using a Poisson-Gamma model, while Wakefield et
al. (2000) used a Poisson-Gamma and a Poisson-
log-Normal model. Different approaches, given by
Fernandez and Green (2002) and Green and
Richardson (2002), have introduced a mixture
model for Poisson-distributed data in which the
weights vary according to the observations. Another
well known approach is the one introduced by
Knorr-Held and Raßer (2000). Many of these mor-
tality ratio models using Poisson distributions are
clustering-based. For Gaussian distributed data,
Cressie (1993) used a spatial autoregressive regressi-
on model.

As an alternative of the Poisson-log-Normal
model with spatial random effects we employed one
of the cluster-based methods, the so called Bayesian
Detection of Clusters and Discontinuities in diseases
maps (BDCD) model, described by Knorr-Held and
Raßer (2000). Although the main goal is clustering,
such models are often used as a smoothing tool in
disease mapping (Best et al., 2005). As the BDCD
model assumes Poisson-distributed data, such as the
Poisson-log-Normal model, it only can be used for
the counts leading to SMRs. Given the number of
observed cases (Oi) in the region (i), and the number
of expected cases (Ei), we assumed a constant relati-
ve risk (hc ) in one or more regions leading to

Regions are treated by grouping them to a cluster
(Cc ) with associated risk (hc ) which is a partition of
the set of all regions. Cluster configuration is chan-
ged permanently, for example, by using a birth

log (µi) = log (Ei) + γ0 + bi .

bi ~ Gau (b̄i σ1
2);

γ0 ~ U (-∞, ∞); and

σ 2~ InvGamma(r*,d*)

SM̂Ri =        .
µi
Ei

Oi ~ Pois(E1hc)  .
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move utilising the reversible jump MCMC method
by Green (1995). Alternative moves are, for exam-
ple, a death move or one shifting the cluster centre
to another region. Cluster affiliation and according
risks are monitored during the MCMC run and used
to calculate Monte Carlo estimates for each sub-
region. For each cluster, the posterior distribution of
relative risk is calculated. The number of clusters, c,
c = 1,…,n, as well as the relative risk (hc) are para-
meters which have to be specified by a prior distri-
bution. We chose to work with:

After a “burn-in” period of 200,000 iterations,
we collected a sample of 40,000,000 and used a

thinning of 4,000 due to the increasing autocorrela-
tion between samples in the reversible jump MCMC
scheme. The resulting size of the sample was
10,000, as for the other models. The approach, dea-
ling with prior distributions, diagnostics and the
choice of the thinning parameter, has been described
in detail by Sturtz (2002). 

The data and the results of the employed models
for ischaemic heart disease in men are visualized in
Fig. 3. (for 1980), Fig. 4. (for 1988) and Fig. 5. (for
1997) using quintiles. Table 3 shows the correlati-
ons between estimated SMR*s and ASMs.

In 1980 the original spatial structures of SMR*s
and ASMs were approximately the same (Figs. 3a
and 3b). We recognised only a few differences, parti-
cularly in the south-west of the state. Note that quin-
tiles are drawn so that small discrepancies in the data
set may result in a slightly different partition in the
quintiles. Table 3 gives a detailed analysis of the
number of quintile changes. The models produce
slightly different results. The auto-Gaussian model

c ~ U (1, n);

log(hc ) ~ Gau (µ, σ 2);

µ ~ U (-∞, ∞); and

σ 2~ InvGamma (1, 0.01).

Fig. 3. Original spatial structure of SMR*s (a) and ASMs (b), smoothed SMR*s based on the Poisson-log-Normal model with
spatial random effects (c), smoothed ASMs based on the auto-Gaussian model (d) and the application of the BDCD method
on SMR*s (e) for ischaemic heart disease in men for North Rhine Westphalia, Germany, for the year 1980.
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Fig. 4. Original spatial structure of SMR*s (a) and ASMs (b), smoothed SMR*s based on the Poisson-log-Normal model with
spatial random effects (c), smoothed ASMs based on the auto-Gaussian model (d) and the application of the BDCD method
on SMR*s (e) for ischaemic heart disease in men for North Rhine Westphalia, Germany, for the year 1988.

Fig. 5. Original spatial structure of SMR*s (a) and ASMs (b), smoothed SMR*s based on the Poisson-log-Normal model with
spatial random effects (c), smoothed ASMs based on the auto-Gaussian model (d) and the application of the BDCD method
on SMR*s (e) for ischaemic heart disease in men for North Rhine Westphalia, Germany, for the year 1997.
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gave the smoothest structure as depicted in Fig. 3d.
With the other two models, the results were widely
spread for the counties modelled with the 20% hig-
hest estimated death ratio, especially when employ-
ing the Poisson-log-Normal model with spatial ran-
dom effects. Most differences were seen in the nort-
hern and the eastern part of the state but the estima-
ted patterns were also similar to the original ones. 

For the years 1988 and 1997, the spatial pattern of
the age-standardised mortality ratio and the mortality
rate were very similar (Figs. 4 and 5). In these two
years, the differences between the three different
models were negligible. Even if the number of diffe-
rently allocated quintiles was high, the resulting pat-
tern was similar since the association with low-risk
and high-risk regions was similar by both approaches.
For example, the highest death rates, both observed
and estimated, were found to be in the middle of the
state. We observed minor differences in quintile map-
ping, in particular in the less densely populated
eastern parts of the area, both in 1988 and 1997.

There were higher differences in the modelled
numbers. Again, we calculated the rank correlation
coefficient to compare the models for the Poisson-

distributed and for the Gaussian-distributed data. In
this analysis, we included ischaemic heart disease in
women as we observed a relation between the
underlying population figures and the plotted quin-
tiles when we analysed the raw data. The results are
given in Table 3.

The falling trend is still observable in estimated
figures for both SMR*s and ASMs. Compared to
the information in Table 1, the number of different-
ly allocated counties with reference to male deaths
increases. Nevertheless, despite being produced by
different models, the correlation coefficient must
still be deemed to be high. Furthermore, we obtai-
ned similar results when comparing the various pos-
sibilities of modelling SMR*s and ASMs. We con-
clude that differences in the presented values are not
only due to the use of different models but also due
to the arbitrary classification. Therefore, we recom-
mend the inclusion of the true underlying figures
instead of arbitrary classification structures obtai-
ned by percentiles for plotting risk surfaces.
Nevertheless, due to the high correlation, any of the
classifications may be employed.

Since our results were based on common causes-

Table 3. Overall SMR*s and ASMs and rank correlation coefficients for ischaemic heart disease. In the top (bottom) half
SM̂R*s are calculated using the Poisson-log-Normal model with spatial random effects (the BDCD model), ASM̂s are calcu-
lated by the auto-Gaussian model.

Sex Year SM̂R*s ASM̂s Rank
correlation

Counties
changing quintiles

Poisson-log-Normal model (SM̂R*s) and auto-Gauss (ASM̂s)

Male 1980
1988
1997

1.188
1.020
0.864

183.10
155.52
131.10

0.865
0.905
0.880

21
25
26

Female 1980
1988
1997

1.062
1.021
0.991

72.23
155.53
62.22

0.833
0.745
0.886

26
30
21

BDCD (SM̂R*s) and auto-Gauss (ASM̂s)

Male 1980
1988
1997

1.184
1.019
0.862

183.10
155.52
131.10

0.864
0.878
0.887

22
30
26

Female 1980
1988
1997

1.062
1.021
0.992

72.23
155.53
62.22

0.798
0.710
0.872

28
30
21
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of-deaths, it was felt that it could be of interest to
compare with outcomes in relation to rare causes-
of-death. Similar results were obtained when loo-
king at the relation of both measures for rare cau-
ses-of-death from the same data base, e.g. AIDS
(ICD 042-044).

Discussion

The SMRs* and the ASMs have been compared
using mortality numbers for diseases with different
risk pattern such as for ischaemic heart disease and
lung cancer leading to a similar outcome in spatial
as well as in temporal analyses. The rank correlati-
on between both measures was high in all examples
provided. Nevertheless, using quintiles changed the
interpretation of plotted risk surfaces, as up to
50% of all regions were assigned to different quin-
tiles. Since the rank correlation was high, differen-
ces in the models applied could not be the only rea-
son for different quintile allocation. Hence, we
recommend using a continuous colour scale for
plotting the SM̂R*s and ASM̂s. The interpretation
of such continuously shaded choropleth maps does
not depend on any arbitrary classification used for
interval shaded maps. Therefore, continuous sha-
ding is, in our opinion, preferable for all except spa-
tial patterns with extreme outliers. Slocum et al.
(2005) provides a good discussion on interval-sha-
ded versus continuously shaded choropleth map-
ping as well as examples of both types from the geo-
graphic point of view. 

In our example, the age-structure remained
almost constant for all years investigated. Changing
structures may change the resulting SMR*s as
shown by Goldman and Brender (2000), but not
necessarily the resulting ASMs due to direct stan-
dardisation. This type of standardisation ensures
that adjusted observed rates reflect the age distribu-
tion of the chosen standard population, not the real
population. However, to investigate the develop-
ment of both measures when the age structure chan-
ges between different years of analysis, extensive

simulation studies would be required. The inclusion
of additive models in such a simulation study would
allow to analyse robustness of SMR* versus ASMs,
as discussed in Freeman and Holford (1980). 

Alternative mortality measures might be used
besides SMR*s and ASMs. For example, standardi-
sed rate ratios calculated by dividing the age-adju-
sted mortality rate for a study population by the
age-adjusted mortality rate for a reference populati-
on. A simulation study based on the population of
the United States comparing this type of standardi-
sation to SMR*s has been carried out by Goldman
and Brender (2000). They conclude that both mea-
sures lead to comparable results and interpretations,
although the SMR*s are more affected by changes
in the underlying age-structures.
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