
Developing operational algorithms using linear and
non-linear squares estimation in Python® for the identification
of Culex pipiens and Culex restuans in a mosquito
abatement district (Cook County, Illinois, USA)

Benjamin G. Jacob, Weidong Gu, Erik X. Caamano, Robert J. Novak

Department of Medicine, William C. Gorgas Center for Geographic Medicine, University of Alabama, 845
19th Street South, Birmingham, AL, 35294, USA 

Abstract. In this research, community level spatial models were developed for determining mosquito abundance and envi-
ronmental factors that could aid in the risk prediction of West Nile virus (WNv) outbreaks. Adult Culex pipiens and
Culex restuan mosquitoes and multiple habitat covariates were collected from nine sites within Cook County, Illinois,
USA, to provide spatio-temporal information on the abundance of WNv vectors from 2002 to 2005. Regression analy-
ses of the sampled covariates revealed that the adult Culex population was positively associated with temperature
throughout the sampling frame. The model output also indicated that precipitation was negatively associated to mos-
quito abundance in 2002, 2003 and 2005 (P <0.05), but positively associated in 2004 (P <0.05). A land use land cover
classification, based on QuickBird visible and near infra-red data, acquired at 0.61 m resolution, was used to investigate
possible associations between geographical features and the abundance of sampled Culex oviposition surveillance sites.
A maximum likelihood unsupervised classification in ArcInfo 9.2® revealed that the highest overall mosquito abundance
was found in sites having a low-to-moderate range of built environment (40%) and high forest composition. A set of
propagation equations were then designed to model the calibration uncertainties, which revealed that normalized dif-
ference vegetation index (NDVI), and two NDVI variants, were informative markers for the sampled mosquito data.
Spatial dependence of the covariates of Cx. restuans and Cx. pipiens oviposition sites were indexed using semivari-
ograms, which suggested that all main effects of the explanatory variables were statistically significant in the model.
Additionally, a multispectral classification and digital elevation model-based geographical information system method
were able to evaluate stream flow direction and accumulation for identification of terrain covariates associated with the
sampled habitat data. These results demonstrate that remotely sensed operational indices can be used to identify param-
eters associated with field-sampled Cx. pipiens and Cx. restuans aquatic habitats.
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Introduction

A challenge in devising effective West Nile virus
(WNv) surveillance programmes is the lack of suffi-
cient empirical knowledge on the spatio-temporal

dynamics of bird-feeding mosquitoes and their rela-
tionship to dispersal, egg laying, host seeking and
abundance. Previous research has shown that mos-
quito abundance will vary significantly in different
areas due to hydrologic regime, vector control activ-
ities and the proximity to habitats and blood-meal
hosts (Shaman et al., 2002; Kutz et al., 2003; Meece
et al., 2003). These variations create fluctuation in
abundance and distribution of virus-positive mos-
quitoes, virus-positive dead birds and seropositive
live birds, and pose a challenge for mosquito-based
prevention programmes. These variations also illus-
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trate the need for surveillance strategies targeting
arboviral transmission. Untargeted or random inter-
ventions are inefficient, as they lack adequate empir-
ical habitat data, since spatio-temporal distribution
of organisms is often left-skewed (May, 1981;
Magurran, 1988).

In general, WNv transmission is maintained at
low levels in vector mosquitoes and reservoir hosts
with transient, sporadic outbreaks among humans.
Yet, under specific favourable conditions, WNv
may exhibit high infection incidence in vectors and
hosts (Epstein and Defilippo, 2001; Reisen et al.,
2004; Lampman et al., 2006). Mosquito infection
rates of WNv change dramatically from week to
week during the amplification phase (Gu et al.,
2004; Lampman et al., 2006). As a result, the
focus of WNv surveillance programmes should
shift from detection of mosquito infection to esti-
mation of the magnitude of transmission intensity.
To accomplish this, focused effort must be placed
on regions and time periods of increased abun-
dance of agent, reservoir or vector species, as these
increases will likely indicate increased risk of
arboviral transmission (Andreadis et al., 2004;
Hayes et al., 2005). Improving effectiveness of
WNv surveillance requires the selection of effective
habitat covariates, while avoiding unwarranted,
inefficient indicators of risk exposure, e.g. num-
bers of positive pools and minimal infection rates
(MIR) (Gu et al., 2003).

Recently, the use of remote sensing (RS), geo-
graphical information systems (GIS) and geostatis-
tical algorithms, for the prediction of geographical
distributions of agent, reservoir and vector
species, have been advocated to augment tradi-
tional WNv mapping methods (Nicholson and
Mather, 1996; Dale et al., 1998;  Hay et al., 1998,
2000; Kitron, 1998; Srivastava et al., 2001;
Rogers et al., 2002; Kutz et al., 2003; Petersen et
al., 2003; Brownstein et al., 2004; Ruiz et al.,
2004; Griffith, 2005; Gu and Novak, 2005; Lopes
et al., 2005; Sithiprasasna et al., 2005; Gu et al.,
2006; Jacob et al., 2009). For example, Jacob et
al. (2009) generated a land use land cover (LULC)

classification in an ArcInfo 9.1® database, based
on Landsat-7 Enhanced Thematic Mapper
(ETM)+ data acquired in July 2003 and Landsat-
5 Thematic Mapper (TM) data acquired in July
1991. These data were overlaid with 15 fixed
oviposition surveillance sites of Culex restuans
and Culex pipiens, two ornithophillic mosquito
species thought to play a large role in the WNv
enzootic cycle in Urbana-Champaign, East-
Central Illinois (Lampman et al., 2006). A maxi-
mum likelihood unsupervised classification and
LULC detection was performed, using a cross-tab-
ulation detection method. The resulting LULC
change matrix revealed that between 1991 and
2003, there was a total of 12.1% LULC change.
The egg raft rate of Cx. restuans and Cx. pipiens
was significantly higher in urban then rural LULC
habitats. Quantification of vector-host interac-
tions, incorporated on LULC maps, can reveal
spatio-temporal distribution of WNv mosquito
vectors. However, LULC statistics have not been
developed using less than 1 m spatial resolution
data for determining variation in Culex habitats,
over short distances, based on differences in land
cover.

Prediction of the satellite-derived vegetation index
(VI), associated with WNv mosquito aquatic habi-
tats, can be remarkably accurate (Linthicum et al.,
1987; Huete et al., 1992; Hay et al., 2000;
Backenson et al., 2002; Brownstein et al., 2002;
Ward et al., 2004; Kunkel and Novak, 2005; Cooke
et al., 2006; Brown et al., 2008). For example,
Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER)-derived normalized
difference vegetation index (NDVI) data identified
16 sites were adult mosquitoes were captured with-
in a densely populated urban environment in New
Haven, Connecticut. Canonical correlation analysis
showed a significant relationship between the vari-
ables sampled (NDVI, disease/water stress index and
distance to water) and four local WNv competent
vectors (Cx. pipiens, Cx. restuans, Culex salinarius
and Aedes vexans) (0.93, P ≤0.03), explaining 86%
of the variance in the field sampled measures (Brown
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et al., 2008). SPOT-5 images (10 m resolution)
allowed for detailed assessment of spatio-temporal
evolution of ponds, through two VI indices: i.e. the
normalized difference pond index (NDPI) and the
normalized difference turbidity index (NDTI), for
investigating behavior of Culex poicilipes mosqui-
toes in Senegal. Using NDVI for quantitative assess-
ments of WNv infection foci, however, raises issues
related to the spatial scale associated with the remote
measurements. Satellite sensors always measure radi-
ation quantities for areas substantially larger than
those sampled by field instruments (Hay et al.,
2000). For example, the NDVI algorithm for identi-
fication of environmental predictors associated with
WNv, in all previous research, was derived from
satellite imagery, with a spatial resolution greater
than 1 m. A set of uncertainty propagation equa-
tions, designed to model calibration uncertainties
using sub-meter resolution data, may account for
geophysical variation in Culex aquatic habitats, with
a higher degree of accuracy and precision than mod-
erate and coarse resolution data. Furthermore,
progress has been made in the development of VIs by
reducing the inherent canopy background-induced
noise, atmosphere contamination and saturation
problems in the NDVI. These indices include the
soil-adjusted vegetation index (SAVI) and the atmos-
pherically resistant vegetation index (ARVI).
Presently, there is no published work using SAVI and
ARVI for identification of WNv transmission
dynamics and control measures. 

Geostatistics and RS/GIS can also map variation
in WNv vectors and bird populations based on dif-
ferentials in environmental parameters, which can
identify and validate model that  link ecological fac-
tors to  sampled habitat variables (Kulldroff, 1997;
Andreadis et al., 2001; Eidson et al., 2001;
Theophilides et al., 2006). For example, case data
with spatial information from WNv epidemics,
occurring in 2002 (1,377 horses), 2003 (396 hors-
es), and 2004 (134 horses) in Texas, were analyzed
by using spatial scan statistic (Poisson model) and
kriging of empirical Bayes analyses. Smoothed
county attack rates identified geographic locations

of horses with WNv disease and spatial clusters of
affected horses (hyperendemic foci), in each of the
three study years (Wittich et al., 2008). Even though
geostatistical models have been used in WNv
research, kriged residuals have not been used to pre-
dict Cx. restuans and Cx. pipiens in a mosquito
abatement district.

Satellite-derived characteristics of drainage net-
works and drainage basin physiographic parameters
have been used in hydrologic modeling of flood and
swamp water mosquito abundance (Shaman et al.,
2002). Automated generation of drainage networks
has become increasingly popular with the use of GIS
and the availability of digital elevation models
(DEM). A raster-based DEM is a continuous eleva-
tion matrix that is interpolated from contour lines,
spot heights or derived through photogrammetry
(Gao and Lo, 1995; Giles and Franklin, 1996). The
latter produces high resolution DEM through an
automatic measurement, using stereo-image match-
ing, which can yield several catchment hydrological
variables, including percent saturation and total sur-
face runoff for identification of covariates associat-
ed with aquatic habitats of protozoan and arboviral
vector mosquitoes (Patz et al., 1998; Shaman et al.,
2002; Mushinzimana et al., 2006; Calhoun et al.,
2007; Jacob et al., 2009). For example, Patz et al.
(1998) used a water balance GIS model to hindcast
weekly soil moisture levels in the Lake Victoria
basin. These soil moisture levels were then associat-
ed with local human biting rates and entomologic
inoculation rates. Additionally, a DEM flow dis-
tance-to-stream grid can evaluate flow direction and
surface runoff for locating WNv mosquito aquatic
habitat larval abundance and distribution. For
example, Jacob et al. (2009) used multispectral
QuickBird imagery classification and DEM-based
GIS methods to evaluate stream flow direction and
accumulation for identification of arboviral vector
Culex quinquefasciatus larval abundance in urban
regions of Gulu, Uganda. Euclidian distance-to-
nearest hydrological body was calculated as the dis-
tance from a grid cell to a stream grid cell, as
defined by a stream raster grid. The terrain analysis
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using DEM (TauDEM), in ArcGIS 9.1®, was used to
retrieve these parameters. A three-dimensional (3-D)
model of the study area was constructed based on
the DEM, using ArcScene extension of ArcGIS®.
The range of the elevation in the DEM had a mini-
mum value of 996 m, with a maximum value of
1,132 m. Results indicated that there were a signifi-
cant positive correlation for Culex aquatic habitat
larval count and slope (0.24) for the local model,
based on distance to stream. 

Targeted surveillance can have significant implica-
tion for WNv management in communities where
allocation of limited resources should be optimized
(Lampman and Novak, 1996; Gu and Novak, 2005;
Gu et al., 2006). By modeling biological and spatial
heterogeneity of Cx. pipiens and Cx. restuans
aquatic habitats, based on mosquito productivity
and ovipositional foraging, cost-effectiveness of
environmental management of WNv may be
achieved in a mosquito abatement district. In this
research, field-sampled data and remotely-sensed
wavelength ranges from the visible and near infra-
red (NIR) region of the QuickBird satellite, were
used to determine ecological predictors associated
with aquatic habitats from Cx. pipiens and
Cx. restuans, a major WNv vector in Desplaines
Valley mosquito abatement district (DPMAD) in
Cook County, Illinois. 

The objectives of this research were (i) to compute
LULC indices; (ii) to establish the sensitivities and
dynamic ranges of NDVI and two NDVI variants,
i.e. SAVI and ARVI; (iii) to apply kriging techniques
to develop spatial linear prediction models of poten-
tial larval habitat sites; and (iv) to construct a DEM
to summarize Cx. restuans and Cx. pipiens aquatic
habitats in DVMAD in Cook County, Illinois.

Materials and Methods

Study site 

The DVMAD is located on the west side of Cook
County, Illinois, USA. The DVMAD is bound to the
north and east by the Chicago Department of Public

Health (CDPH), to the south by the South Cook
county mosquito abatement district (SCCMAD)
and to the west by the Cook/Du Page county line.
The district encompasses an area of 77 square miles
that includes thirty-one villages (Fig. 1). The annual
precipitation for the area averages 928 mm, from
which August receives the highest amount of rain.
The month of July records the highest temperatures
throughout the year. Surveillance sites were allocat-
ed in nine villages: Brookfield, Berkeley, La Grange
Highlands, River Forest, Hillside, Justice, Willow
Springs, Summit and Oak Park. 

Fig. 1. Map of the Desplaines Valley mosquito abatement dis-
trict (DVMAD), Cook county, Illinois, USA.
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Adult mosquito sampling

Adult population levels were monitored through
the use of nine gravid traps placed in each of the
sites from July 2002 to July 2005. These traps were
dispersed throughout the townships under charter
of the abatement district. For our purpose, data
were available from the gravid traps over the same
time scale at the nine sites. All the specimens were
identified to species using regional and national tax-
onomic keys (Darsie and Ward, 1981) at the main
office of the DVMAD. Once data were collected, all
variables (abundance, polymerase chain reaction
(PCR)-positive pools and PCR-tested pools) were
entered onto worksheets with the respective date of
collection used to divide all data into epidemiologi-
cal weeks. Ordinarily, in order to carry out epi-
demiological surveillance activities, disease out-
breaks are grouped around a seven-day period
known as the epidemiological week (Pan American
Health Organization, 2000).

Satellite data classification

A QuickBird image (www.digitalglobe.com)
encompassing the visible and NIR bands was
acquired on July 15, 2005. QuickBird multispectral
products provided four discrete non-overlapping
spectral bands covering a range from 0.45 to 0.72
µm, with an 11-bit collected information depth.
The QuickBird data were classified using the
Iterative Self-Organizing Data Analysis Technique
(ISODATA) unsupervised routine in ERDAS
Imagine 9.1® (Atlanta, GA, USA). QuickBird
Standard Imagery products are radiometrically cor-
rected, sensor corrected, geometrically corrected
and mapped to a cartographic projection
(www.digitalglobe.com).

DVMAD geodatabase

Raw data from 25 rainfall and eight temperature
stations, around and within the study area, was
acquired from the Illinois State Water Survey. These

data were also classified into epidemiological weeks.
A logical design model was created and exported to a
Microsoft repository using Unified Model Language
(UML) in VISIO enterprise (Microsoft®). This logical
ArcGIS design contained feature datasets, feature
classes and tables and associations between tables and
feature classes. CASE tools wizard from ArcCatalog
were used to create and populate the WNv geodata-
base with spatial and alphanumerical data. Spatial
data included three feature classes. Alphanumerical
data, on the other hand, was stored in tables, includ-
ing mosquito abundance data and PCR-positive test
data for a 4-year period from 2002 (Fig. 2) to 2005.
Alphanumerical data were standardized by epidemio-
logical weeks for each analyzed year.

Land use land cover classification (LULC)

All field and remote data was transferred to an
ArcGIS 9.2® database (ESRI, Redlands, CA, USA)
to generate five LULC classifications: built environ-
ment, forest, water, grass and bare soil. These class-
es were defined as follows:
Built environment - Comprised of areas of intensive
use with much of the land covered by man-made
physical infrastructures. This land cover class
included commercial, residential, industrial, trans-
portation and communications/utilities.
Forest - Vegetation (mainly natural) and woodland
(trees >5 m tall; canopy cover 25-75%). This land
cover class included mixed woodlands, grasslands
and old-fields with mixed scattered trees.
Water - Permanent bodies of water such as lakes,
streams, rivers, storm water retention ponds and
hydrophilic vegetation. Wetlands with a high water
table and areas which are often interspersed with
channels or pools of open water, road side ditches,
storm/rain and open channel sewers were also includ-
ed in this class.
Grass - Class dominated by cultivated grasses planted
in developed settings for recreation, erosion control,
or aesthetic purposes. This class included parks,
lawns, golf courses, airport grasses and industrial site
grasses. 



B.G. Jacob et al. - Geospatial Health 3(2), 2009, pp. 157-176162

Bare Soil - Bare soil rock, sand, silt, gravel or other
earthen material with little or no vegetation within
urban areas. Examples of this LULC included
exposed soil in urban areas and construction sites.

Python 2.5.4®, a scripting language, was used to
execute methods and properties for data manage-
ment using spatial analyst tools of ArcGIS 9.2®.
Scripts were created to automate tasks, such as

Fig. 2. Weekly PCR-positive tests for WNv and temperature for Desplaines Valley mosquito abatement district (DVMAD),
Cook County, Illinois, USA (2002).
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interpolation methods using an LULC classification.
Then, these temporary files were used as input for
the geoprocessor, and the files were accessed using
looping techniques in Python. Through this process,
continuous surface grid maps were created contain-
ing interpolated values of all land cover in the study
site. Then, the gravid trap feature class was overlaid
on each of the continuous surface maps to assign
LULC classifications to each mosquito trap.

Once the LULC map of the DVMAD was
obtained, an evaluation of LULC composition was
performed using 100 m and 290 m buffers for the
nine trapping coordinates. LULC detection was
performed using a cross-tabulation detection
method.

Vegetation indices (VI)

The different modules in the Spatial Analyst
extension of ArcView 9.2® and spatial modeler
tools from ERDAS Imagine 9.1® were used to per-
form the VI calculations. NDVI was calculated
using radiance, surface reflectance (p), or apparent
reflectance (measured at the top of the atmosphere)
values in the QuickBird red (0.63 to 0.69 µm) and
NIR (0.76 to 0.90 µm) spectral bands. The ratio of
reflected radiance from the red and NIR bands was
used to normalize illumination and topographic
variation and to form the NDVI (Tucker, 1979;
Huete et al., 1994; Hay et al., 2000; Asner et al.,
2003a, b). The difference of the QuickBird bands
was divided by their sum, which formed the func-
tionally equivalent NDVI. This NDVI, over terres-
trial surfaces of the study site, was constrained
between 0 and 1 (Jackson and Huete, 1991). The
difference in reflectance was divided by the sum of
the two reflectances. Raster modeling in ArcView®

included: performing image differencing on NDVI
layers, classifying the layers into different classes
and calculating a wetness index using the Raster
Calculator. NDVI was computed directly without
any bias or assumptions regarding plant physiog-
nomy, land cover class, soil type or climatic condi-
tions, with a range from -1.0 to 1.0 from

QuickBird reflectances, (p), using the expression:

1) 

To account for changing soil brightness, SAVI was
also calculated, utilizing an adjustment factor L that
effectively shifted the origin of vegetation isolines in
NIR/VIS reflectance space. The SAVI utilizes a con-
stant L to remove the soil background noise (Huete,
1988). For high vegetation cover, the value of L is
0.0, and L is 1.0 for low vegetation cover. For inter-
mediate vegetation cover, L = 0.5 is the value which
is most widely used in generating SAVI (Huete,
1988). The appearance of L in the multiplier causes
of SAVI have a range identical to the NDVI (-1.0 to
1.0) (Huete et al., 1992). The net result is an NDVI
with an origin not at the point of zero, red and NIR
reflectances. In this research, SAVI was calculated
using radiance, surface reflectance, p, in the
QuickBird red and NIR spectral bands. SAVI was
calculated where L was a plant height adjustment
factor that accounted for differential red and NIR
extinction through the year. In this research, L = 0.5
was used for all Cx. pipiens and Cx. restuans aquat-
ic habitats sampled in the study site. The SAVI was
calculated as:

NDVI =
ρNIR - ρred

ρNIR ρred

u2
cal (NDVI) = u2

cal (∂ρNIR ) +
∂NDVI
∂ρNIR(          )2

•u2
cal (∂ρred) + 2

∂NDVI
∂ρred(          )

∂NDVI
∂ρNIR

∂NDVI
∂ρred

ucal (ρNIR ,ρred)

∂NDVI
∂ρNIR

2ρred

(ρNIR + ρred)2=

∂NDVI
∂ρred

-2ρNIR

(ρNIR + ρred)2=

∂NDVI
∂ρNIR

∂NDVI
∂ρred

-4ρNIR ρred

(ρNIR + ρred)2=
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2)

where

It was of interest to determine how the blue band
inclusion into the VI would identify land cover for
making inferences of Cx. pipiens and Cx. restuans
aquatic habitat features. The resistance of the ARVI
to atmospheric effects, in comparison to NDVI, was
accomplished by a self-correction process for the
atmospheric effect on the QuickBird red channel,
using the difference between the blue and red chan-
nels to correct the radiance in the red channel.
Aerosols absorbing gases, such as water vapor, and
undetected clouds, affect upwelling radiances meas-
ured by satellite instruments (Kaufman and Tanre,
1992; Hay et al., 1998). An ARVI was developed,
from the vegetation land cover attributes, using the
QuickBird data. ARVI was calculated using radi-
ance, surface reflectance (p) in the QuickBird blue
channel (0.05 to 0.06 µm), red and NIR spectral
bands. A single value of γ = 1.0 was used to sub-
stantially reduce the sensitivity of atmospheric
effects. The ARVI was defined as: 

where

and

where

The different modules within the ArcView®

Spatial Analyst and spatial modeler tools from
ERDAS Imagine 9.1® were used to perform the VI
calculations. The imagine format files, however,
were not always accessible in all modules of the
ArcView® software and its extensions. Thus, the
decision was made to convert the imagine format
files to Arc/Info® GRID files and recalculate all VI
equations in ArcView Spatial Analyst. This proce-
dure produced an Arc/Info® GRID format file with
a floating-point data range of -1 to 1. Randomly
selected Cx. restuans and Cx. pipiens aquatic habi-
tat locations, from all file formats, were compared
to ensure correct calculation of all VIs in Spatial
Analyst. The VI calculations resulted in a grid file
which stored all calculated floating-point values.
The validation was performed by identifying and
recording X, Y coordinates from the Imagine format
data images, recording the VI values at specific loca-
tions, and then pointing to the corresponding loca-
tions in the Arc/Info GRID format file and compar-

SAVI = (1+L)
ρNIR - ρred

ρNIR + ρred + L

ARVI = 
ρNIR - ρrb

ρNIR + ρrb
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cal (ARVI)= u2
cal (ρNIR)+ 

∂ARVI
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(ρNIR + ρrb)2=

∂ARVI
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-2(1+γ)ρNIR
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∂ARVI
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2γρNIR

(ρNIR + ρrb)2=
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ing values. This process was useful for calculation
and validation of all models, as well as for verifying
floating-point values.

Values for NDVI were successfully aggregated and
overlaid onto georeferenced field-based data for the
study site. The VIs were used to select all Cx. restu-
ans and Cx. pipiens aquatic habitats with heavy,
moderate and low vegetated values. A database was
generated with the mean, minimum, maximum and
standard deviations for VI data aggregated to the
habitat level. VIs have the benefit that pixels are not
forced into inappropriate land cover classes, but
instead provide a proportional measure of vegeta-
tion (Bannari et al., 1995). The VI datasets were
then merged with the entomological datasets.

Leaf area index (LAI)

Sensitivity analysis was conducted on the NDVI
and the NDVI variants by analyzing the atmos-
pheric and soil-perturbed responses, as a continu-
ous function of plant leaf area index (LAI).
Randomly selected grid cell and spectral measure-
ments were assessed to determine plant LAI in
ArcMap. The LAI was used to predict the photo-
synthetical primary production, as it is was related
to the sampled Cx. restuans and Cx. pipiens data
collected in the study site. In past research, remote-
ly sensed data has been combined with meteorolog-
ical data to estimate the NDTI, which can provide
a measure of the moisture availability using the
ratio of actual to potential evapotranspiration
related to vector mosquitoes (Lacaux et al., 2006).
In this research, an inverse exponential relation
between LAI and light interception, which was lin-
early proportional to the primary production rate,
was established using:

P= Pmax (1-e- c•LAI)

where Pmax signifies the maximum primary produc-
tion and c signifies a plant growth coefficient. This
inverse exponential function was used as the primary
production function, including levels of evapotran-

spiration (Pierce and Running, 1988). The LAI was
determined directly by taking a statistically signifi-
cant sample of plants from a crop, measuring the
mean leaf area per plant and dividing it by the mean
available land surface per plant. The indirect method
measures light extinction and relates it to LAI (Hay
et al., 2000). The atmospherically resistant version
minimized atmospheric noise, but enhanced soil
noise. Likewise, the soil-adjusted variant minimized
soil noise, but remained sensitive to the atmosphere.
The SAVI and ARVI had a relative error of 20% and
VEN of +/- 0.28 LAI and +/- 0.26. The NDVI had a
relative error of 25% and VEN of +/- 0.82 LAI.

Spatial analyses 

Spatial linear prediction was performed initially
using kriging. In this research, kriging residuals
were generated using a two step process: the fitting
of a semivariogram model function (of distance),
followed by the solution of a set of matrix equations
(Deutsch and Journel, 1992). Geostatistical tech-
niques were used to interpolate the value Z(x0)
[Cx. restuans and Cx. pipiens habitat of the
DVMAD study site Z(x)] at an unobserved Culex
habitat location x0 from field and remote sampled
covariates zi = Z(xi), I = 1,…, n of the study site, at
nearby habitat locations x1…xn. Kriging computes
the best linear unbiased estimator of Z(x0), based on
a stochastic model of the spatial dependence quanti-
fied either by the variogram γ(x,y), or by expecta-
tion µ(x) = E[Z(x)] and the covariance function
c(x,y) of the random field (Krige, 1966). The kriging
estimator was given by a linear combination:

Ẑ (x0)= ∑
n

i=1  
ωi(x0)Z(xi)

of the Cx. restuans and Cx. pipiens aquatic habitat
covariates  zi = Z(xi) with their weights  chosen such
that the variance:

σ2
k (x0) = Var (Ẑ (x0)-Z(x)) = ∑

n

i=1 
∑
n

j=1 
ωi(x0)ωj(x0)      

c(xi, xj)Z(xi)+Var (Z(x))-2 ∑
n

i=1 
ωi(x0)c(xi, x0)
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was minimized subject to the unbiasedness condi-
tion:

E[Ẑ (x)-Z(x)] = ∑
n

i=1
ωi(x0)µ(x0) = 0

In this research, the dependent variable was the
adult count of Cx. restuans and Cx. pipiens aquatic
habitats was transformed to fulfill the diagnostic
normality test prior to performing kriging. The sam-
pling site was the Culex aquatic habitat in the study
site, but the adult Cx. pipiens and Cx. restuans
counts were used as an indicator of the local densi-
ty based on the gridded area.

The kriging weights of ordinary kriging were used
to fulfill the unbiasedness condition of the ecologi-
cally sampled Cx. pipiens and Cx. restuans data
using:

∑
n

i=1
λi = 1

and was given by the ordinary kriging equation sys-
tem:

The additional parameter was a Lagrange multi-
plier used in the minimization of the kriging error
σ 2

k (x0) to honor the unbiasedness condition. The
interpolation by ordinary kriging was given by:

The ordinary kriging error model was given by:

A semivariogram was used to measure spatial
interaction in both the field and remotely sampled
Cx. pipiens and Cx. restuans aquatic habitat data.
Prediction by kriging for mosquito habitat data
analyses can be based on the assumption that
covariance between habitats is entirely a function of
distance between habitats, as modeled by means of
the semiovariogram (Kleinschmidt et al., 2001).
Semivariograms were generated in ArcGIS Spatial
Analyst to obtain a spatial model for kriging and to
examine spatial patterns in the Cx. pipiens and
Cx. restuans aquatic habitat data.

Digital elevation model (DEM)

A 3-D model of the study area was constructed
based on the DEM using ArcScene extension of
ArcGIS. The DEM used in this study was a raster rep-
resentation of a continuous surface, originating from
the Shuttle Radar Topography Mission (SRTM).
Data from SRTM version 2 (i.e. finished version)
were downloaded from http://srtm.usgs.gov/. For our
spatial hydrological analyses, data were loaded
from every 1-arc second, representing 80% of the
Earth’s surface, with 16 m accuracy. Differences in
elevation were defined from radar interferometry,
using the 2000 Endeavor mission data, which  used
two radar images from different, ecologically sam-
pled Cx. restuans and Cx. pipiens aquatic habitat
locations. Differences in habitat elevation were then
calculated for the georeferenced habitats. All sam-
pled Cx. restuans and Cx. pipiens aquatic habitat
covariates were defined by geocoordinates, in a tiled
format or within a digital rectangle. This allowed
specific elevation for each individual Cx. restuans
and Cx. pipiens aquatic habitat to be evaluated.

λ1 Ζ(x1)

λn Ζ(xn)
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After zooming into the area of interest (AOI) (which
ranged from a scale of 1:61,642,554 to 1:118), the
“Downloads” button was highlighted. It was neces-
sary to use the “modify data request”, then click
“SRTM 3 arc sec”, and specify “GeoTiff” in the
drop down menu. After “saving changes and return-
ing to summary” the image was ready for down-
loading. It should be noted that no greater than 250
Mb of data was highlighted at one time, so we were
able to identify subsections of the imagery. The
SRTM data was available across the globe at a 90 m
resolution.

Results

The LULC map of the DVMAD was dominated
by built environment (≈48%) and grass (≈38%).

Water accounted for less than 2% of the LULC,
while bare soil represented less than 1%. Forest
(≈12%) was concentrated towards the central and
northern levy of the Desplaines River. The LULC
compositions differed between the 100 m buffer
and the 290 m buffer. Using the 100 m buffer, only
the LULC compositions of Berkley and Oak Park,
among the nine surveillance sites, were not signif-
icantly different at 0.05 (Fig. 3). Using only the
290 m buffer, only Justice and Berkley varied in
composition between buffers at the 0.05 signifi-
cance level.

Table 1 shows the results of the regression analy-
sis output, where the variable Culex adult abun-
dance was modeled in terms of precipitation, tem-
perature and gravid trap location. In every year, the
regression models were able to classify between

Fig. 3. Land use land cover (LULC) and 100 m buffer composition analysis for Culex abundance in Desplaines Valley mos-
quito abatement district (DVMAD), Cook County, Illinois, USA.
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gravid traps with high and low abundance.
Temperature and precipitation data had a signifi-
cant association with Culex adult abundance.
Throughout the study period, temperature showed a

significant positive relationship with Cx. restuans
and Cx. pipiens abundance (P <0.001). The variable
precipitation presented a significant negative rela-
tionship (P <0.05) for the years 2002, 2003 and

Year Dependent variable Independent variable Parameter estimate P-value Adj R2 Model P

2002 Abundance° Intercept -8.85 <0.001 0.73 <0.001
Temperature 0.14 <0.001
Rain2(log)** -3.46 <0.001
Tmp*rainª -3.69 <0.001
Berkeley 3.85 <0.001
River Forest 3.54 <0.001
Hillside 3.26 <0.001
Justice 2.77 <0.001
La Grange Highlands 2.73 <0.001
Willow Spring 2.64 <0.001
Brookfield 2.58 <0.001
Summit Lowest

2003 Abundance° Intercept -3.99 <0.001 0.65 <0.001
Temperature 0.09 <0.001
Rain2(log) -6.72 <0.001
Tmp*rain 0.09 <0.001
River Forest* 2.90 <0.001
Justice 2.30 <0.001
Hillside 2.26 <0.001
Berkeley 1.96 <0.001
Oak Park 1.86 <0.001
Brookfield 1.75 <0.001
La Grange High 1.70 <0.001
Willow Spring 1.14 <0.001
Summit Lowest

2004 Abundance° Intercept -7.97 <0.001 0.47 <0.001
Temperature 0.17 <0.001
Rain2(Log) 4.74 0.040
Temp*rain -0.06 0.050
Hillside 1.23 0.001
Oak Park 1.13 <0.001
Berkeley 1.03 0.001
Summit 0.90 0.005
River Forest 0.83 0.009
Justice 1.64 >0.15
Brookfield 0.35 >0.15
La Grange Highlands 0.27 >0.15
Willow Springs Lowest >0.15

2005 Abundance° Intercept 0 0.050 0.60 <0.001
Temperature 0.09 <0.001
Rain2(log) -4.84 0.050
River Forest 1.90 <0.001
Willow Spring 1.43 <0.001
Oak Park* 1.01 0.001
Berkeley* 0.92 <0.001
La Grange Highlands 0.40 0.050
Justice 0.44 0.060
Summit -0.19 0.100
Brookfield Lowest >0.15

Table 1. Principal determinants of mosquito adult abundance in Desplaines Valley mosquito abatement district (DVMAD).

Note: *8 Dummy variables as fixed effect were created to represent the location of each light trap in the regression model.
** Represent a two weeks lag of rainfall. It was log (rainfall+1) transformed.
ª Represent the interaction between temperature and precipitation.
° Dependent variable was log(abundance+1) transformed.



B.G. Jacob et al. - Geospatial Health 3(2), 2009, pp. 157-176 169

2005. In 2004, the precipitation parameter suggest-
ed a positive relationship (P <0.05) with adult
counts of Cx. restuans and Cx. pipiens.

In 2002, the overall accuracy of the model was
73.1%, while the model predicted 65.2% in 2003,
47.1% in 2004 and 60.0% in 2005. The meteoro-
logical covariates temperature, rainfall and precipi-
tation, explained 80.1% of the variation in the
model. River Forest had the highest overall
Cx. restuans and Cx. pipiens adult abundance
count, followed by Berkeley and Hillside, respec-
tively. Notably, these sites had a low-to-moderate
range of built environment (>40%) with high forest
composition. Summit had the highest levels of built
environment LULC (64.0%) and the highest Culex
adult abundance in 2004.

Soil and atmospheric influences in the NDVI, as
well as in the NDVI variants, were examined. The
NDVI was sensitive to the presence of vegetation.
The change in the soil background did alter the red
and NIR plant reflectance and calculated SAVI (Fig.
4). The ARVI minimized atmospheric noise in the
study site and did not enhance soil noise. The NDVI
had the highest levels of noise and error; whereas,
the NDVI variant equations partially removed soil
and/or atmospheric noise to varying degrees. Soil
and atmospheric effects are interactive and vary
with vegetation cover, as well as produce a very
complex effect on VIs (Baret and Guyot, 1991).
ARVI has a similar dynamic range to the NDVI, but
is on the average four times less sensitive to atmos-
pheric effects than the NDVI (Kaufman and Tanre,

Fig. 4. Soil adjusted vegetation index (ARVI) of the Cx. pipiens and Cx. restuans aquatic habitats in Desplaines Valley mos-
quito abatement district (DVMAD).
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1992). In these analyses, VI equations were associ-
ated with Cx. restuans and Cx. pipiens aquatic habi-
tat abundance and distribution.

A Stream Raster Grid was generated in ArcGIS.
Euclidian distance to nearest hydrological body was
calculated as the distance from a grid cell to a
stream grid cell, defined by a Stream Raster Grid
(Fig. 5). The results showed that flow distance to
stream can affect availability of Cx. restuans and
Cx. pipiens aquatic habitats and calculated the dis-
tance from a grid cell moving downstream to a
stream grid cell, which was defined by the Stream
Raster Grid. The range of the elevation in the DEM
had a minimum value of 0 m, with a maximum
value of 425 m.

A first order trend  ordinary kriging process was
used to analyze the sampled covariates of Cx. pipi-
ens and Cx. restuans in the DVMAD study site. An
anistrophic spherical model was fitted to the semi-
variogram, for the ordinary kriged model using a
range of 0.166, a nugget of 0, a lag size of 0.014
with 12 lags, and a partial sill of 17.95 for the study
site (Fig. 6).

Discussion

As WNv and its associated vectors continue to
threaten local regions, identifying tools to under-
stand and predict risk factors can result in more effi-
cient prevention methods. The results of this
research suggest that community level spatial mod-
eling can aid in the understanding of the biological
construct of WNv. In addition, spatial modeling can
facilitate early detection and resource targeting.

Data obtained in this study suggest a significant
positive association between temperature and Culex
adult abundance and a negative association between
precipitation and Culex abundance. These findings
support previous findings in which arboviral mosqui-
to abundances were associated with temperature. For
example, studies have found that St. Louis encephali-
tis (SLE) cases are associated with warmer tempera-
tures and low water table levels (Shaman et al.,
2002). Higher temperatures enhance microbial

growth on which mosquito larvae feed
(Ramachandra, 1984) and overwintering mosquito
populations may be the cause of WNv outbreaks dur-
ing drier seasons (Landesman et al., 2007).
Cx. pipiens is believed to be more commonly infected
with WNv and more capable of transmission during
warmer temperatures (Dohm et al., 2002). The nega-
tive association between precipitation and Culex
abundance in three of the years, and the positive rela-
tionship in one year may be due to flooding of con-
tainer habitats and subsequent ground pooling. 

The raster files generated from ArcView® of
NDVI, SAVI and ARVI were able to identify land
cover for making inferences of Cx. restuans and
Cx. pipiens habitat abundance and distribution. The
results documented a significant association
between the VIs generated and Cx. restuans and
Cx. pipiens adult abundance. Ruiz et al. (2004) used
several factors related to the physical environment,
such as elevation range, physiographic region, and
percentage of vegetation cover, to determine WNv
risk during the 2002 outbreak in the Chicago area.
Diuk-Wasser et al. (2006) developed regression
models to predict high and low adult mosquito
abundance sites for determining arboviral activity in
Fairfield county, Connecticut. The best predictive
models included non-forested areas for Cx. pipiens,
surface water and distance to estuaries for Cx. sali-
narius, surface water and grasslands/agriculture and
seasonal difference in the NDVI. In agreement with
these findings, our results documented a significant
association between VIs, and Cx. restuan and
Cx. pipiens distribution and abundance. 

Mapping meterological parameters and LULC
data, in Python® using spatial analytical tools from
ArcGIS® database, identified land cover supporting
large numbers of WNv vector mosquitoes. For
example, although a highly “built environment”
classified area alone was not associated with high
numbers of Culex mosquitoes, heavy precipitation
in “built environment” was found to have the
largest adult mosquito abundances. Summit was
found to be a poor site for Culex adult abundance
and WNv positives overall, but, in 2004 with heavy
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Fig. 5. Spatial hydrological model of the Cx. pipiens and Cx. restuans aquatic habitats in Desplaines Valley mosquito abate-
ment district (DVMAD).

Fig. 6. Ordinary kriged residuals of adult abundance of Cx. pipiens and Cx. restuans for the Desplaines Valley mosquito abate-
ment district (DVMAD).
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rainfall, high adult counts of Cx. pipiens and
Cx. restuans were found. Spatial configuration of
land cover, combined with heavy rainfall, can gen-
erate numerous, temporary Culex aquatic habitats.
Meteorological variables are considered important
drivers of mosquito population abundance and spa-
tial distribution (Kunkel and Novak, 2005).
Rainfall provides surface water in which gravid
females can lay eggs (Charlwood et al., 1995),
which increases relative humidity, modifies temper-
ature, and affects location and abundance of  mos-
quito aquatic habitats (Pampana, 1969). The com-
bined effect of rainfall and urban land cover may
have aggravated the problem of WNv by supporting
prodigious number of Culex mosquitoes with high
vectorial capacity.

Site-specific land cover features may be associated
with Cx. pipiens and Cx. restuans habitat abundance
and distribution. For example, the Brookfield site
increased in mosquito and viral detection during
2004. This site had the second largest composition of
forest (27%) and grass (51%). The presence of
infected, abundant WNv vector mosquitoes near
trees suggests aggregation around bird habitats. It is
possible that flow paths of extracted rivers are influ-
enced by forests with a dense tree canopy, which, in
turn, may influence Culex aquatic habitat abun-
dance and mosquito feeding sites. Frequent blood
feeding can occur by Culex mosquitoes on abundant
passerine birds, such as the Common Grackle, and
the Northern Mockingbird which occupy canopy
habitats (Beveroth et al., 2005). Data collected using
the 100 m buffer for Berkley confirmed that a high-
ly productive site was associated with forest land-
scape (43% of composition). Gu et al. (2006) identi-
fied  areas with higher WNv  potential transmission
intensities adjacent to the Des Plaines River, where
there existed a landmark corridor harbouring dis-
proportionately large areas of natural woodlands.

The DEM found that Cx. restuans and Cx. pipi-
ens adult abundance were positively associated with
the covariate distance from the stream. Aquatic
habitats further away from the stream are likely to
be rich in organic matter than those closer to the

stream, as they are least likely to be diluted by sur-
face run-off from the stream (Jacob et al., 2009).
Gravid traps prevalent in valley bottoms had more
Cx. restuans and Cx. pipiens than those on hills.
Previous research supports the biological plausibili-
ty of this phenomenon by showing that Culex
species does not thrive at high elevations due to
cooler temperatures and lower potential for stand-
ing water habitats in valleys (Ahumada et al., 2004;
Joy and Sullivan, 2005).

The semivariogram described the spatial depend-
ence, between the field and remotely sampled meas-
urements of Cx. pipiens and Cx. restuan aquatic
habitats, as a function of the distance between the
aquatic habitats. The model allowed for the estima-
tion of the adult Culex count data of a sampled
aquatic habitat at any point in the study site. The
interpolation accuracy of the  kriged-based algo-
rithm revealed that all model coefficients and
remote sampling characteristics including: surface
type, sampling pattern, noise level, and strength of
small-scale spatial correlation between the Cx. restu-
ans and Cx pipiens oviposition surveillance sites,
were estimated in the residuals. In this research, the
estimation of the residuals was an iterative process:
first, the models were estimated using the ordinary
least squares estimation; then, the covariance func-
tion of the residuals were used to obtain the general
least square coefficients. Interpolation accuracy was
measured by the natural logarithm of the mean
squared interpolation error, which revealed that all
main effects of the covariates and several covariate
interactions were statistically significant. The results
suggest that data smoothing and stochastic tech-
niques can estimate the risk of WNv occurrence
using ecological sampled Cx. restuans and Cx. restu-
ans aquatic habitat covariates, which can  allow for
quantification of error in all models generated using
the site specific sampled data. 

Geostatistical algorithms and remotely-sampled
data in GIS can enhance the efficiency of early
detection of Cx. pipiens and Cx. restuans. Early
detection is critical, because the timing of WNv
actvity is important for understanding the intrica-
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cies of viral amplification, as well as extending the
window for intervention. In temperate areas, the ini-
tiation of arboviral transmission cycles is often asso-
ciated with low vector densities and low levels of
transmission (Gu et al., 2008). However, collection
of sufficient mosquito samples, for obtaining sensi-
ble detetction power, can be difficult when mosqui-
to abundance is low. Detection of mosquito infec-
tion, when there is low transmission, requires col-
lections of large samples of mosquitoes. Seven hun-
dred mosquitoes are needed for a modest detetction
probability of 0.5, when the natural infection rate is
0.1% (Gu and Novak, 2005). As a result, non-
detection is common in areas of low WNv transmis-
sion. However, identification of remotely sensed tar-
geted sites, using geostatiscal algorithms, can reduce
uncertainties in sampling strategies and can improve
epidemiological intelligence of arboviruses, even
when transmission foci are sporadic and mosquito
infection is low. Accumulated knowledge of the
environmental heterogeneity  of  Cx. restuans and
Cx. pipiens, using  simple field-based models, can
assist in identifying ‘hotspots’ for remotely targeted
surveillance. Assuming that the epidemiological
intelligence about the hotspots is correct, a targeted
surveillance can yield higher sensitivity and efficien-
cy than random surveillance for a fixed surveillance
investment.  

In conclusion, forest and built environment
LULCs at the DVMAD study site, for our selected
time period, was associated with adult abundance of
Cx. restuans and Cx. pipiens at nine fixed surveil-
lance sites. NDVI, SAVI and ARVI data derived
from the QuickBird visible and NIR was able to
determine ecological conditions in the study site.
Spatial interpolation techniques, using ordinary
kriging, was able to characterize habitats based on
the adult Culex counts for generating a predictive
map. DEM statistics were able to identify terrain
covariates associated with Cx. restuans and Cx. pip-
iens aquatic habitats. Future field and remote data
collections in the DVMAD study site should include
more data on wild birds as reservoir hosts, including
roosting habitats, foraging ranges and migratory

routes, and on horses and humans as accidental
hosts.
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