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Abstract. Spatial analysis is useful for the identification of areas of elevated risk of adverse health outcomes and gener-
ation of hypotheses. Identification of clusters based on maternal residence during pregnancy provides an important tool
to investigate risk exposures. However, even though mental retardation (MR) is a substantial public health problem,
there are no previous analyses of spatial clustering of childhood MR using individual case data. In this paper, we exam-
ine the use of the Bayesian hierarchical modeling approach in the analysis of MR clustering. We used data from South
Carolina Medicaid and birth certificates, in which address codes for each month of pregnancy are available. MR cases
with unknown cause were identified in the study population. A Bayesian local likelihood cluster modeling technique was
applied to compute the relative risk of MR and its corresponding P-value for each geo-coded location, and the P-value
surface was contoured as a heat image to identify the MR clusters. The characteristics of the study population were ana-
lyzed using chi-square tests and the results confirm that clustering does occur for MR. The shapes of the identified MR
clusters were found to be irregular and the observed MR rate in the identified MR cluster area was found to be double
the rate for the larger South Carolina region. The descriptive analysis of study population characteristics showed that
the children with MR were more likely to be male and had mothers who were older than 34 years at the time of birth
as well as being African American, preterm and of low birth weight compared to children without MR.
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Introduction

Spatial analysis is a very useful tool for the identi-
fication of areas of elevated risk of adverse health
outcomes and generation of hypotheses. A spatial
disease cluster can be defined as an area experienc-
ing “unusually increased disease incidence rates”.
The term “hot spot” has been used to define a clus-
ter if an “unusual” high rate is found (Lawson,
2006). Cluster detection methods used in spatial
epidemiology have used both regional count data as

well as case-control data, with controls selected
from at-risk populations in order to estimate the rel-
ative risk or local rates. Most cluster analysis stud-
ies have used readily available software such as
SaTScan (Kulldorff et al., 1997; Rainey et al., 2006;
Cech et al., 2007; Wheeler, 2007) to identify disease
clusters. However, SaTScan (www.satscan.org) has
the limitation that it imposes a variety of constraints
and produces limited output. First, a circular win-
dow is used and windows of varying size are exam-
ined to determine if the counts within these win-
dows are “significantly in excess” compared to
expected counts. The window with the most statis-
tically significant cluster is identified as a primary
cluster, and secondary clusters can also be reported.
However, the output from the analysis is limited to
primary and secondary clusters without any report
of relative risk gradients which could display much
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more information about differentials of risk. The
circular nature of the sampling window also limits
the type of clusters that can be found; irregular clus-
tering could be missed. 

A recent example of a comparison of existing soft-
ware-based methods was made by Wheeler (2007)
who used individual-level childhood leukemia data
to determine clusters based on two different meth-
ods: Kernel intensity estimation using R program
(using Splancs) and scan statistics in SaTScan
according to Kulldorff (1997). SaTScan is well-
known and the former approach is a weighting func-
tion used in non-parametric function estimation, and
can be used to test for clustering and presence and
location of local clusters. Bandwidth and distance
are required by the Kernel intensity function, and
need to be carefully chosen to get appropriate
smoothing estimates. However, the findings regard-
ing the identification of local clusters based on these
two methods showed inconsistencies, calling for a
more sensitive cluster analysis method. 

Various spatial or space-time cluster analysis tech-
niques have been used for cancer cluster detection.
However, there are no previous analyses of spatial or
spatio-temporal clustering of childhood mental
retardation (MR) using individual case data even
though MR is a substantial public health problem.
For some time, environmental exposure to various
kinds of influences have been suspected as a possible
risk factor for some of the MR cases of unknown eti-
ology but the methods employed to detect an associ-
ation have been limited to conventional epidemio-
logic approaches. 

MR is a developmental disability that becomes
apparent in childhood or adolescence before the age
of 18. It is characterized by significant limitation in
intelligence and daily living skills. In most cases, it
persists throughout adulthood. MR occurs in 1.0-
2.5% of the general population, and it has substan-
tial public health implications. 

Identification of MR clusters based on maternal
residence during pregnancy is an important tool to
investigate risky exposures. A recent Bayesian local
likelihood cluster modeling techniques, which relies

on the local likelihood and a “lasso” parameter, can
be employed to identify MR clusters. By using this
approach, the posterior relative risk for each geo-
coded maternal address is computed with the corre-
sponding significant P-value surface, which can be
contoured as a heat image to identify the MR clus-
ters. Bayesian hierarchical modeling is a very useful
tool to identify MR clusters. It allows flexible cluster
forms, the incorporation of covariates, and also sensi-
tivity analysis of assumptions. The local likelihood
models use a “lasso” parameter, which defines the size
of an area within which cases are accumulated. Thus,
it produces a continuous risk map where risk gradi-
ents are apparent, and also the shapes of the clusters
identified by this approach are not restricted to circles
as in other methods (such as SaTScan).

In this paper, we examine the use of Bayesian hier-
archical modeling to the analysis of MR clustering
in South Carolina, USA, using maternal address
codes for each month of gestation. The purpose of
the study is to demonstrate whether clustering
occurs for MR, and that irregular  risk areas can be
identified by this technique. 

Background with respect to MR

MR affects 6 million American children under the
age of 14 years (Shea, 2006). According to the
Metropolitan Atlanta Developmental Disabilities
Surveillance Program (MADDSP), the average annu-
al prevalence of MR from 1991-1994 among 3-10
year-old children was 9.7 per 1,000 children. The
Healthy People 2010 Objectives for the Nation
include as Objective 16-14 “Reduce the occurrence
of developmental disabilities”. The target for MR is
124 per 10,000 for 8 year-old, and was established
in 1985 based on the Metropolitan Atlanta
Developmental Disabilities Surveillance System
(MADDS). The average lifetime cost for one person
with mental retardation is estimated at 1,014,000 US
dollars (CDC, 2004).

MR has important public health implications for
at least four reasons: 
(i) its relatively high prevalence of 1-2.5 percent in
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most populations;
(ii) large contribution to years of productive life

lost since its onset is in childhood with life-long
disability as a result; 

(iii) substantial socio-economic implications since
disability is related to unemployment and pub-
lic financing for services and health care; and

(iv) 50 percent of the cases have unknown cause
(McDermott et al., 2007).

The most widely used definition of MR in the
United States is from the American Association on
Mental Retardation (AAMR), renamed as the
American Association on Intellectual and
Developmental Disabilities (AAIDD) in 2006.
According to AAIDD, this affection is a disability that
occurs before age 18 and is characterized by signifi-
cant limitations in intellectual functioning and adap-
tive behaviour as expressed in conceptual, social and
practical adaptive skills. It is diagnosed through the
use of standardized tests of intelligence and adaptive
behaviour. MR is generally thought to be present if an
individual has an IQ test score of approximately 70
or below and a significant deficit in at least one area
of adaptive behaviour (AAMR, 2002). 

South Carolina is one of the very few states that
have linked birth certificate data with administrative
data from Medicaid inpatient and outpatient mater-
nal and infant records. Even fewer states have linked
these data to the care provided during pregnancy. No
state, except South Carolina, has recorded address
codes for each month of pregnancy that can be linked
to the Medicaid and birth certificate data. Finally,
half of the births in this state are insured by Medicaid
which offers the unique opportunity to look at space-
time clustering of MR cases among the high-risk
Medicaid-insured population using individual
case/control data by gestational months of potential
exposure. Due to the ability to link data, the clusters
of MR in specific locations and in time can be
explored to investigate associations between environ-
mental exposure and MR controlling for maternal
conditions during pregnancy, infant characteristics,
and early childhood conditions. In what follows, we
have employed this local likelihood clustering

methodology to identify MR clusters in South
Carolina, using maternal address codes for each
month of gestation.  We distorted the shape of the
actual map to be a rectangle, as shown in
Figures 2 a-j, since the locations of risk are confiden-
tial following an agreement with the Medicaid
agency. The actual code for replicating the method is
available through correspondence with the corre-
sponding author. 

Materials and methods

The present study is a retrospective cohort study
which included 22,429 maternal-child pairs, and
child Medicaid inpatient and outpatient data during
childhood. Maternal and child Medicaid data and
birth certificates records were linked for women
who were pregnant during the period January 1,
1996 through December 31, 2001. Addresses were
obtained for each month of pregnancy, and geo-
coded to determine the monthly location of the
mothers. Ten gestational months were used instead
of nine since pregnancy can extend beyond 40
weeks of gestation. Although the first and tenth
month had a smaller proportion of mothers, we
included all pregnancies through birth of the infant.
Women included in the first month of pregnancy
usually had another child covered by Medicaid or
were in a family covered by Medicaid. Child health
records covering the period between birth and the
year 2007 were also obtained.

Most of the women entered the Medicaid program
in their second to fourth gestational months.
Mothers entered the dataset throughout pregnancy
while other mothers dropped out. Entry was based
on obtaining Medicaid eligibility and drop-outs
resulted from moving away, pregnancy loss, and
change in eligibility status. Thus, during each month
of pregnancy, we had a different denominator. The
Medicaid reimbursement files for the pregnant
mothers, birth certificate data, hospital and outpa-
tient care for both the mother and the infant, and
child health records were merged. As a result, we had
maternal prenatal files and child health records for
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5-10 years following birth to identify codes for MR
in the Medicaid record.

MR case definitions 

The identification of MR cases in this analysis
included two important steps. The strategy was
designed to identify all cases of MR, and then
exclude those that had a known genetic, infectious,
injury or alcohol-related cause. We focussed on the
cases with unknown cause since this is the group for
whom an environmental exposure could be a risk
factor. First, we identified a list of known causes of
MR and their ICD9 codes using multiple sources
(McDermott et al., 2007). We excluded 969 babies
with a known cause of MR/developmental disability
(DD). The excluded infants had one of the following
known causes of MR/DD: trisomy 13, 16-18, other
chromosomal aberrations, Prader-Willi syndrome,
Rett’s syndrome, phenylketonuria, fragile X syn-
drome, postnatal injury, prenatal rubella, meningitis,
encephalitis, and fetal alcohol syndrome. The second
step involved identifying infants and children with
ICD9 code 317, 318, or 319 in the Medicaid inpa-
tient and outpatient records. Through this process
we identified 792 cases of MR (3.5%) (Fig. 1).

Cluster detection

Recently, a novel approach for the detection of spa-
tial clusters was proposed for both count data in
small areas and case event data at residential address-
es (Hossain and Lawson, 2005; Lawson, 2006). This
Bayesian local likelihood cluster modeling technique
relies on the definition of a likelihood which is a func-
tion of a “lasso” parameter to identify the clusters.
This parameter defines the size of an area within
which cases are accumulated. Both cases of disease
and controls can be accumulated in the “lasso”. In
situation where binomial data are available (such as
births with and without MR), we simply count the
number of MR cases within the “lasso” and the num-
ber of births without MR (control cases). The likeli-
hood used is a local likelihood based on the “lasso”

found for each site. The “lassos” can and do overlap.
Local likelihood methods are designed to provide
estimates of areas of excess risk across the continuous
disease-risk surface of the map. When the algorithm
is implemented, the posterior distribution of “lassos”
is sampled over a large number of iterations and the
posterior average “lasso” for each area is obtained.
As a function of this “lasso”, the relative risk is also
obtained. The local relative risk is important for clus-
ter detection as it can show where an excess of cases
is to be found. We assumed that our clusters are
essentially “hot spots” or areas of the map which
show unusually high risk. The posterior average rela-
tive risk was computed, and the “significance” of the
local risk elevation was assessed by the estimation of
an exceedence probability. This probability is defined
as pi = Pr (RRi >1) where RRi is the local relative risk
at the i th site. This is computed from the posterior
sample of relative risks determined for each site. To
comply with the usual criteria for significance tests,
we examined qi = 1-pi for local areas with qi <0.05 or
0.01. The risk in these areas can be considered as
unusual or significantly elevated. Note that our
model provides a description of the spatial variation
of risk on the map over all areas, and we do not need
to adjust for multiple testing, unlike other methods
such as SaTScan. 

The advantages of this method are that: (i) it
produces a continuous risk map where gradients of
risk are apparent as well as clusters, (ii) it does not
limit the clusters to circular shapes, and (iii) it
automatically allows the incorporation of covari-
ates within a full likelihood formulation. The final
output from the local likelihood sampler is in the
form of a P-value surface. This surface can then be
contoured or displayed as a heat image or perspec-
tive plot, and areas of highly excessive risk of any
shape will be represented by areas below the 0.05
or 0.01 contour levels. 

Statistical analyses

The characteristics of the Medicaid study popula-
tion, with and without MR, were analyzed using
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chi-square tests to determine if there were statisti-
cally significant differences in the proportions with-
in the considered categories (Table 1). 

The analysis of the residential data was based on
case and control data to avoid unstable regional
rates caused by small numbers of observed cases
and small population counts (Devine et al., 1996).
The process of cluster analysis started with the
removal of pregnancies outside the study area using
a point-in-polygon (PIP) function in FORTRAN,
which checked the geo-code of each pregnancy
within South Carolina, and removed the pregnancy
if the geo-coded addresses were located outside the
study area. Cluster analysis was performed using
data files for each gestational month (all-year data
combined by gestational month) for MR cases. The
relative risk of MR and P-values were estimated for
each geo-coded location according to the Bayesian
local likelihood cluster modeling techniques
(Lawson, 2006). A heat image map “pixellated”
with colours corresponding to the P-values was cre-
ated using R program, and contour lines were plot-
ted at different P-values based on smoothing tech-
niques (MBA R package). 

In order to identify the MR clusters in each gesta-
tional month, data for the years 1996-2001 were
grouped together. We created 10 monthly MR con-
tour graphs. For a better understanding of the MR
rate in each month, point maps of cases and con-
trols were plotted separately side-by-side for each
month using R program. 

Next, we divided the study area into a grid mesh
based on sample size, and each region contained
around 5,000 observations. In each grid cell, the
posterior expected relative risk of MR and the cor-
responding P-value were estimated using MCMC
local likelihood cluster models. The P-values were
determined based on each divided region and were
adjusted to the global P-value by multiplying the
ratio of overall MR rates over the divided-region
MR rate. Then, contour lines were plotted based on
global p-values in each geo-coded location, and
MR clusters were identified from the contour
graph. If clusters were found close to the boundary
of adjacent regions, new regions containing the
boundary of the adjacent divided regions were
checked to see if edge effects existed. To check edge
effects, P-values were calculated by averaging  the

Fig. 1. Flow chart of study population.
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P-value from the divided region and the P-value
from the checked region. Then, the P-value was
adjusted by the ratio of the overall MR rate over
the divided-region MR rate. 

For the first gestational month, the area was
divided into five small regions, and 3-edge regions
were checked for edge effect. For the second ges-
tational month, the area was divided into nine
small regions. As the number of gestational
months increased, the sample size increased dra-
matically due to the ongoing entry into Medicaid
throughout pregnancy. The area was divided into
much smaller regions to have appropriate sample
size and more boundary edges were checked for
potential edge effects. For example, in the seventh
month, the area had to be divided into 15 regions
to have appropriate sample size. At the point
where there were too many divided regions and
edge-effect checks to keep the results stable and
reliable, we switched our analysis to be based on
count data.

Finally, count data analysis (the number of obser-
vations in each small cell) was conducted to identi-
fy clusters. Data conversion was performed using
ArcGIS. The first step identified appropriate geo-
graphic coordinate systems/units for the data, and
the boundary file formed a converted polygon for
the area. A total of 2,032 grid cells were created
within the boundary, with each grid cell measuring
3,500 m x 3,00 m. The centroid of each grid cell
was extracted, and numbers of MR cases and con-
trols in each grid cell were counted. The cumulative
relative risk of MR, and corresponding P-values
were calculated for the centroid location of each
grid cell based on an MCMC local likelihood sam-
pling technique, performed in FORTRAN program.
Then, a “pixellated” heat image map with colours
corresponding to the P-values was created using R
program. The locations of grid lines corresponded
to the centroid location of each grid cell. Contour
lines were plotted at different P-value cut-off based
on smoothing techniques. MR clusters were identi-
fied based on contour graphs for all 10 gestational
months.

Results

Some of the known characteristics associated with
MR among the study population are shown in Table
1. The table shows that children with MR were
more likely to be male and had mothers who were
older than 34 years at the time of birth. They were
also predominantly African Americans, very
preterm (<28 weeks gestation) and of lower birth
weight compared to the group without MR. 

For the 10 gestational months, we obtained sepa-
rat exceedence maps for the MR risk. They are dis-
played in Figure 2 (a - j). Based on the P-values, an
MR cluster can be identified around the Midwestern
part of the contour surface maps, which is the area
of x (0.125, 0.5) and y (0.45, 0.65) based on the
coordinates system of the contour surface maps.
This cluster is consistently present at a similar posi-
tion in all 10 gestational months’ maps, with only
some movement from month to month. This unsta-
ble location may be partially explained by the dif-
ferent influence of gestational month on the child’s
MR development. The shape of the identified MR
cluster is irregular, instead of circular. Also, the P-
value gradient of the excess risk of this MR cluster
can be determined based on the contour surface
map, which could provide more information about
the differentials of MR risk, and is very useful for
finding a MR cluster area where a range of out-
comes is available. 

The cluster area identified in the mid-western part
of the contour surface maps is confirmed by the
observed MR rate, as shown in Table 2 and Figure 3.
The observed Medicaid MR rate in the identified
cluster area is 5% ~ 8.8%, while the general
Medicaid MR rate in South Carolina is around
3% ~ 4%. For all 10 gestational months, the
observed MR rate in the cluster area is higher than
the general observed rate in South Carolina. In most
gestational months, the observed MR rate in the clus-
ter area is twice the rate in South Carolina, especially
for gestational month 10. Those excess MR rates fur-
ther confirmed the presence of the clusters identified
by the local likelihood approach.
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In addition to the cluster identified in the mid-
western part of the contour surface maps, several
other MR clusters can also be identified in South
Carolina, such as the one around x (1.5, 1.7) and y
(0.3, 0.5) in the contour maps of most gestational
months. The shape and the size of the identified MR
clusters vary across South Carolina, and the P-value
gradient of the excess risk of MR can be determined.

To validate the MR diagnoses, we linked the
Medicaid child files with the file from the
Department of Disabilities and Special Needs
(DDSN) and the Department of Education (DOE) to
identify gold standard cases of MR. We identified all
children enrolled in DDSN for early intervention
services and children receiving special education in
school for MR (equivalent to EMH = educable men-
tally handicapped or TMH = trainable mentally
handicapped). Since South Carolina does not have a
private school for children with MR we have good
follow-up for these children. There are private

schools for children without MR and 14.1% of chil-
dren in the state attend private schools, according to
the 2000 census. The proportion of children who
attend public schools is higher for those who are
African-American compared to Caucasian, and also
for those whose families have comparatively lower
incomes. Thus, for our Medicaid study group a high
proportion will be enrolled in public schools. For
the portion of the state analyzed in this study,
approximately 20% of the Medicaid MR cases were
identified as gold standard cases of MR.

Discussion

The identification of MR clusters based on mater-
nal residence during pregnancy represents an impor-
tant step forward in elucidating causes of this condi-
tion. Despite the advances in genetic and radiologic
diagnostics, the proportion of MR cases with
unknown cause has been approximately 40-50%

Characteristics of mothers and children No. MR (%) No. MR (%) P-value

Alcohol1

Baby sex

Mother age
(years)

Mother race

Weeks gestation

Birth weight
(g)

Parity

No
Yes
Boy
Girl
<18
18-34
>34
White
African American
Other
<28
28-36
>36
<1500
1500-2500
>2500
0
1
2
3+

21312 (98.8)
262 (1.2)

10962 (50.7)
10674 (49.3)

2130 (9.8)
18542 (85.7)

965 (4.5)
8286 (38.4)

13042 (60.4)
265 (1.2)
120(0.6)

2522 (12.1)
18122 (87.3)

240 (1.1)
1831 (8.5)

19560 (90.4)
9438 (43.6)
6448 (29.8)
3451 (15.9)
2300 (10.6)

773 (98.1)
15 (1.9)

516 (65.1)
276 (34.8)

65 (8.2)
654 (82.6)

73 (9.2)
198 (25.0)
585 (73.9)

9 (1.1)
67 (8.9)

157 (20.8)
530 (70.3)
118 (14.9)
125 (15.8)
547 (69.2)
316 (39.9)
242(30.6)

131 (16.5)
103 (13.0)

0.086

<0.001

<0.001

<0.001

<0.001

<0.001

0.080

Table 1. Characteristics of the study population across the study area in South Carolina, 1996-2001.

1Alcohol use reported on birth certificate.
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a) Month 1

b) Month 2

c) Month 3

d) Month 4

e) Month 5

f) Month 6

g) Month 7

h) Month 8

Fig. 2 (a-j). Heat image and contour map of P-values for excess risk of MR based on local likelihood exceedence probability,
months 1-10 (contours drawn at P-values 0.01, 0.05, and 0.1); 0.5 units in x-axis indicate 30 miles, 0.2 units in y-axis indi-
cate 14 miles.
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over the last decades. The identification of causes of
MR has been complicated by the recognition that
some anatomical changes are only the proximal
cause of MR. Thus, some of the actual insults that
are formed at the time of conception, or during
pregnancy, remain illusive. It is conceivable that
exposure to environmental chemicals plays a role,
and the identification of clusters will help
researchers to explore hazardous sites in the vicinity
of these clusters. 

This study was only possible because we had
access to data for each month of maternal residence
for women insured by the Medicaid program. Half
of all births in South Carolina are insured by
Medicaid, and these children represent the group at
highest risk of MR due to factors associated with
poverty. 

i) Month 9 j) Month 10

Fig. 2 (a-j). Continued.

General MR rate in South Carolina MR rate in cluster area

Months MR cases Total Rate per 100 MR cases Total Rate per 100

Month 1
Month 2
Month 3
Month 4
Month 5
Month 6
Month 7
Month 8
Month 9
Month 10

1287
2213
2813
3169
3331
3386
3225
2887
2091
523

30126
54029
70991
80749
86235
89436
90194
84396
65491
16442

4.3
4.1
4.0
3.9
3.9
3.8
3.6
3.4
3.2
3.8

11
19
27
31
30
30
29
26
15
7

185
273
337
366
388
395
408
370
281
79

5.9
7.0
8.0
8.5
7.7
7.6
7.1
7.0
5.3
8.9

Table 2. MR rates in the cluster area and across the study area in South Carolina by gestational month, 1996-2001.

Fig. 3. MR rates in the cluster area and across the entire study
area in South Carolina by gestational month, 1996-2001.
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Some issues related to the validity of MR diagno-
sis that plague other studies are minimized in this
investigation. The use of address codes to identify
clusters is not based on residence when the diagno-
sis of MR was made but on maternal residence dur-
ing pregnancy.  Thus, the bias of some physician’s
use of the ICD9 codes for the diagnosis of MR
would have impacted studies that rely on child
addresses, but is much less an issue when maternal
pregnancy addresses are used. 

A limitation of the study reported here is that, as
yet, we have not examined the association between
clusters in MR outcome and associated explanatory
variables. Table 1 shows that the common risk fac-
tors identified in the literature are also associated
with MR in our cohort. The cluster analysis cannot
rule out the possibility that the relationship between
maternal residence is operating through one of these
risk factors.

There is movement of mothers during pregnancy.
In our study cohort, 22% moved once, 2% moved
twice and 0.1% moved more than twice during
pregnancy. In addition, there is movement out of
Medicaid throughout childhood as the income eligi-
bility changes for families. During pregnancy,
Medicaid is the most inclusive with families eligible
up to 1.85 times the federal poverty level. Since also
children with a disability qualify for Medicaid, we
expect there will be higher retention of children with
MR compared to children without a disability. 

In conclusion, this investigation allowed us to
associate maternal location during each month of
gestation with MR. The identification of irregular-
shaped clusters for this lifelong disability with child-
hood onset is an important advance. The observed
MR rate in the cluster area is double the rate for the
study area in South Carolina. The next step will
involve development of hypotheses how environ-
mental exposures, e.g. particular chemicals, are
related to MR. 
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