

ITALIAN NATIONAL RESEARCH COUNCIL

“NELLO CARRARA” INSTITUTE FOR APPLIED PHYSICS
CNR FLORENCE RESEARCH AREA

 Italy

TECHNICAL, SCIENTIFIC AND RESEARCH REPORTS

Vol. 2 - n. 65-8 (2010)

ISSN 2035-5831

Francesco Gabbanini

On a Java based implementation
of ontology evolution processes

based on Natural Language Processing

CNR-IFAC-TR-09/010

On
pro

Com
e-In

C

n a Java
ocesses

mmessa ICT
clusion Lab

Consigli
Istituto

VIA MADO

a based
based o

T-P10-007
b

io Nazi
o di Fisica

ONNA DEL PIANO

CNR

Fran

 implem
on Natu

ionale
a Applicata

O 10 - 50019 SES

R-IFAC-TR

cesco Gabb

mentati
ural Lan

delle R
a “Nello C
STO FIORENTINO

R-09/010

banini

on of on
nguage

Ricerch
Carrara”

O – ITALIA

ntology
Proces

he

y evolut
ssing

tion

On a Java based implementation of ontology evolution processes based
on Natural Language Processing

F. Gabbanini

Institute for Applied Physics, Italian National Research Council
Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy

f.gabbanini@ifac.cnr.it

1 Introduction

An architecture was described Burzagli et al. (2010) that can serve as a basis for the design
of a Collective Knowledge Management System. The system can be used to exploit the
strengths of collective intelligence and merge the gap that exists among two expressions of web
intelligence, i.e., the Semantic Web and Web 2.0. In the architecture, a key component is
represented by the Ontology Evolution Manager, made up with an Annotation Engine and a
Feed Adapter, which is able to interpret textual contributions that represent human intelligence
(such as posts on social networking tools), using automatic learning techniques, and to insert
knowledge contained therein in a structure described by an ontology.

This opens up interesting scenarios for the collective knowledge management system, which
could be used to provide up to date information that describes a given domain of interest, to
automatically augment it, thus coping with information evolution and to make information
available for browsing and searching by an ontology driven engine.

This report describes a Java based implementation of the Ontology Evolution Manager
within the above outlined architecture.

2 Specification of building blocks

The Ontology Evolution Manager (sketched in Figure 1) is designed to take corpora of
textual documents as input, produce a series of RDF statements and use them to enrich an
ontology. In order to achieve these aims, main issues that have to be faced for its
implementation consist in:

1. extracting machine readable knowledge from text;
2. transform extracted information in a form that is suitable for insertion into an

ontology.

It

indiv
“hote
probl
“onto
evolu

In
softw
popu
grow

3

In or
to be

Ge
text w

is to be note
viduals (as in
els” entity) a
lem under s
ology learni
ution”.

the followin
ware compon
ulation” and
wing the know

Annotatio
technique

rder to extrac
e employed (s
enerally, thes
with a variety

splitting se
splitting te
part-of-spe
up the wor
definition,
sentence, o
term index
user-define
that opera

Figure 1.

ed that knowl
n “hotel X ha
and assertions
study is nam
ing”, being

ng sections a
nents used fo

“ontology l
wledge base

on Engine:
es

ct knowledge
see Buitelaar
se consist in
y of informa
entences;
ext into word
eech tagging
rds in a text

as well as
or paragraph
xing using ga
ed transducti
ate over an

. Ontology E

ledge to be e
as a good cui
s about entiti
med “ontolo

the two t

a description
or information
earning”, se
(see the Feed

 implemen

e from texts,
r and Cimian
 a series of s

ation. These s

ds through to
 (POS), whic
as correspon

s its relation
;

azetteers (par
ion processe

nnotations ba

Evolution Ma

extracted may
isine”, where
ies (as in “ho
ogy populat
erms synthe

n will be giv
n extraction

ee the Annot
d Adapter bl

ntation of N

, Natural Lan
no, 2008).
steps in whic
steps are typi

kenization;
ch consists in
nding to a p

nship with a

rticular sort o
es to further a
ased on reg

anager gener

y in principl
e “hotel X” r
otels have be
tion”, while
esized by t

ven about a J
from texts (b

tation Engin
ock in Figur

Natural Lan

nguage Proc

ch text is ana
ically repres

n a form of g
articular par
adjacent and

of dictionarie
analyse texts
gular expres

ral scheme

le regard both
represents an
edrooms”). In

in the sec
the more g

Java based i
both in the s

ne block in F
re 1).

nguage Pro

essing (NLP

alysed, and in
ented by:

grammatical
rt of speech,
d related wo

es);
s using finite
ssions, for

h assertions
n individual o
n the first ca

cond it is n
general “ont

mplementati
ense of “ont
Figure 1) an

ocessing

P) techniques

nclude annot

l tagging, ma
based on bo

ords in a ph

e state transd
pattern-matc

about
of the
se the

named
ology

ion of
ology

nd for

s have

tating

arking
oth its
hrase,

ducers
ching,

Th
anno
block

3.1

Al
descr
Text2
Engin

GA
langu
differ
lingu

semantic e
steps.

he Annotatio
tate textual c
k, which in tu

Fi

A GATE b

lthough seve
ribed in the
2Onto (2010
neering (GA
ATE provid
uage process
rent tasks by

uistic data an

extraction, an

on Engine bl
contents, in o
urn uses them

gure 2. UML

based imple

eral algorithm
e previous s
0)), the Anno

ATE, see Cun
des a modul
sing function
y loading plu
nd to proces

nd other ope

lock is mean
order to prov
m to enrich a

L class diagr

ementation o

m implement
section (see
otation Engin
nningham et
lar object-or

nality in diver
ugins, which
ss data. GAT

erations over

nt to implem
vide coherent
an ontology w

ram of the On

of NLP

tations exist
LExO (201

ne block is b
al. (2002), M
riented fram
rse applicatio
can in turn c

TE is distrib

r syntactic tr

ment NLP tec
t and structur
with new con

ntology Evo

that perform
10), Ontoma
based on the
Maynard et al
mework imp
ons. It can be
contain a num
uted with an

rees produce

chniques so
red inputs to
ncepts and as

lution Mana

m some of the
at (2010), O
General Arc
l. (2008)).

plemented in
e extended a
mber of reso
n Informatio

d by the pre

as to proces
 the Feed Ad
ssertions.

ger

e processing
OpenNLP (2
chitecture for

n Java to e
nd customise
urces able to

on Extraction

evious

ss and
dapter

steps
2010),
r Text

embed
ed for
o hold
n (IE)

syste
the J
such
detec

JA
expre
opera
opera
they

Fu
and
Mana

Fo
2, wa
API,
text c

Th

on a
regis
may
by m

As
then
resou
whic
recog
proce
JAPE

em called “A
Java Annotat

as sentence
ction, and pro
APE is a fin
essions. Thu
ations over
ations are de
are loaded in

unctionalities
easily usab

agement Sys
or this purpo
as designed t
such as initi

corpora, pars

he GateMan
pipeline app
tered plug-in
contain a se

means of resou
s the text do
sentences (th

urce) are iden
h further pr
gnize geogr
esses are per
E grammars

A Nearly-New
tion Patterns
e detection,
onominal co

nite state tran
us it is use
syntactic tre

escribed by g
nto the GAT
s offered by t
ble within
stem.
se, the Gate
to act as a faç
ializing the G
sing text corp

Figu

nager class
proach. A tex
n resources,
et of text ann
urces that pr

ocument ente
hrough a Sen
ntified; then
rocessing ste
raphic entiti
rformed at t
that allow

w IE System”
s Engine (JA
tokenization
-reference.
nsducer syst

eful for patt
ees such as

grammars wh
E framework
the GATE A
the more

eManager
çade to acce
GATE system
pora.

ure 3. An exa

is responsib
xt document
which, in tu

notation reso
recede it in th
ers the pipeli
ntence Splitt
POS tagging

eps can be b
es, proper

the end of th
identifying

” (ANNIE),
APE) to proc
n, POS-taggi

tem that ope
tern-matchin

those produ
hich get conv
k.

APIs were reo
general fram

Java class, a
ss various fu
m, registerin

ample text pr

ble of manag
t enters the p
urn, enrich i
ources which
he pipeline. A
ine it first ge
er resource)
g is perform
based and w
nouns or d

he pipeline,
patterns tha

which relies
cess text corp
ing, chunkin

erates over
ng, semantic
uced by nat
verted into fi

organized in
mework of

as sketched in
unctionalities
ng GATE plu

rocessing pip

ing the anno
pipeline and
it with a set
h can take ad
An example
ets cleaned u
and words (

med. These co
which may in
dates. Finall
by means of

at are releva

s on finite sta
pora and per
ng and parsi

annotations
 extraction
tural languag
inite state ma

order for the
the Collec

n the UML d
s made availa
ugins and res

peline

otation proce
gets process
of annotatio

dvantage of
pipeline is g

up from prev
through a Se

onstitute fund
nclude apply
ly, user def
f transducers

ant for a cer

ate algorithm
rforms opera
ing, named-

based on re
and many

ge parsers.
achines as so

em to be ava
ctive Know

diagram of F
able by the G
sources, man

ss, which is
sed by the va
ons. Each pl
annotations

given in Figu
vious annota
entence Toke
damental ste
ying gazettee
fined elabor
s that use cu
rtain domain

ms and
ations
entity

egular
other
JAPE

oon as

ailable
wledge

Figure
GATE
naging

based
arious
lug-in
taken
re 3.

ations;
enizer
eps on
ers to
ration
ustom
n and

annotating them. At the end of the text processing pipeline an annotated text document is
obtained and the GATE API includes Java classes that allow going through the annotations.

With reference to the UML diagram in Figure 2, showing the underlying architecture of the
natural language processing infrastructure, the GateManager class is responsible of
managing the annotation engine: for this purpose it needs plug-ins and resources to be
registered for pipeline annotation, each resource implementing an annotation step (see blocks
within the text processing pipeline in Figure 3). This process is implemented using a visitor
pattern (see Gamma et al., (1995)).

The GateManager is first made aware of which plug-ins to use and of which resources
(taken from previously set plug-ins) to use for the set-up of the pipeline. Each resource is
modelled by a register class which implements a RegisterVisitor interface and is capable
of performing self-initialization steps. Register classes may require or not property maps for
initialization purposes: in the latter case they consist in a generalization of the
SimpleResourceRegister class. More complex annotation processes require custom
register classes to be written. As an example, annotations based on custom JAPE grammars are
performed using objects of class OWLIMTransducerRegister. The class can be initialized
by specifying custom JAPE grammars to be used to identify patterns that are relevant for a
certain domain and to annotate texts based on the occurrence of these patterns. Obviously,
multiple instances of OWLIMTransducerRegister may be inserted into the pipeline.

Through the visit method of its interface, each register class is added to a
SerialAnalyserController object, which is defined by a Java class in the GATE API
and is used to manage the text processing pipeline (see code excerpt in Table 1).

Table 1. Code excerpt showing how to implement a text processing pipeline

public class GateManagerTest {
protected GateManager gateManager;
...
public void initializationTest() {
gateManager = GateManager.getInstance();
...
gateManager.registerPlugin("ANNIE");
gateManager.registerPlugin("Tagger_OpenCalais");
...
gateManager.registerResource(new
AnnotationDeleteRegister());
gateManager.registerResource(new
SentenceSplitterRegister());
gateManager.registerResource(new
DefaultTokenizerRegister());
gateManager.registerResource(new
DefaultGazetteerRegister());
gateManager.registerResource(new
OpenCalaisRegister("..."));
...
Corpus elaboratedCorpus =gateManager.elaborateCorpus();

DefaultGazetteerParser gazetteerParser = new
DefaultGazetteerParser();

gateManager.parseAnnotation(gazetteerParser);
gazetteerParser.getAnnotatedResources();
...

}
}

public class GateManager {
private static GateManager instance;
private SerialAnalyserController serialController;
public void registerResource(RegisterVisitor register)
throws GateException {
register.visit(this);

}
...
public void parseAnnotation(AnnotationParserVisitor parser)
throws GateException {
parser.visit(this);

}
}

public class DefaultGazetteerRegister implements
RegisterVisitor {
private String resource = "...";
public void visit(GateManager manager) throws GateException
{
new SimpleResourceRegister(resource).visit(manager);

}
...

}

public class DefaultGazetteerParser implements
AnnotationParserVisitor {
public void visit(GateManager manager) throws GateException
{
//annotation parsing code
...

}
public List<AnnotatedResource> getAnnotatedResources() {
return resources;

}
}

After initialization, the GateManager is ready to perform text processing by running all

the registered resources in cascade. Once text processing is made, the system ends up with a
corpus of annotated documents: these can be parsed using an effective class infrastructure
which was setup, again, using the visitor pattern. A parser interface was created, named
AnnotationParserVisitor, to be implemented by annotation parser classes that have to
be set up for each type of annotation. Annotations are retrieved from the documents by issuing
a call to the parseAnnotation method of the GateManager, which takes a parser object
as input.

This class structure efficiently encapsulates various GATE functionalities and allows to
conveniently separate plugin and resources initialization from their usage in the pipeline, and to
conveniently retrieve annotations from the corpus as object of class AnnotatedResource.

Finally, it is to be noted that the whole annotation process can be also managed from a single
entry point, i.e., the AnnotationEngine class, which can be configured using an
AnnotationEngineConfig object and holds a static reference to the GateManager.

Annotations made available from the different resources constitute the basis on which
ontology evolution is performed by the Feed Adapter, as they in principle contain new
concepts, relations or individuals relevant to the domain under study.

4 Feed Adapter: the ontology evolution block

A number of Java based frameworks exist to create, alter and persist ontologies. As each one
has different characteristics, they suit best for different application scenarios.

Before designing the Feed Adapter block, the most popular semantic web frameworks were
examined. Characteristics of interest that were considered are reported in Table 2.

Table 2. Characteristics of semantic web frameworks

Name SPARQL
support

OWL 2.0
support

Reasoning features Persistence

Jena 2.6.2 Yes No Unable to reason on data type restrictions (the API
is not compatible with a version of Pellet that is
capable of reasoning on data type restrictions)

file, database

Protegé OWL
API

No No Unable to reason on data type restrictions (the API
is not compatible with a version of Pellet that is
capable of reasoning on data type restrictions)

file

OWL API 3.0.0 No Yes Able to reason on data type restriction, if the
HermiT reasoned is used, as Pellet is still not
compatible with OWL API 3

file

AllegroGraph
3.3

Yes ? Able to reason on data type restriction. Uses a
proprietary reasoner (RDFS++), which is a RDF
reasoner and not an OWL reasoner

database

Sesame 2.3.1 Yes Yes Unable to reason on data type restrictions.
OWLIM is compatible with Sesame, but it is only
an OWL Lite reasoned

file,
database
(MySql,
Postgres), binary
files

Desirable features for the Feed Adapter implementations are represented by:

 Support for OWL 2, which represents the most recent recommendation (dated 27th
October 2009) of W3C that refines and extends OWL, the Ontology Web Language,
see OWL Working Group at W3C (2009);

 ability to reason and make inference over data type restrictions;
 support for a variety of persistence methods;
 support for SPARQL Protocol and RDF Query Language (SPARQL, see SPARQL

Working Group at W3C (2008)) queries.

Unfortunately, as the table shows, among the most popular products in this sector, no “full

featured” framework is available.
However, the most “promising” frameworks to be adopted within the Collective Knowledge

Management System were identified to be OWL API 3 and Sesame 2.3.1 1 (see OWL API
(2010) and Sesame (2010), respectively, both of them Open Source), also considering the fact
that they are supported by an active community of developers.

In order not to be tied to a particular implementation and to a precise framework, the Feed
Adapter was designed as a middleware block acting as an adapter between annotations, coming
from parsers described in section 3, and an ontology. For the moment only the adapter for the

Sesame 2.3.1 framework was implemented, with the OWL API 3 implementation being in
progress.

4.1 Sesame Adapter implementation details

The Sesame Adapter is designed around the SesameModelHandler and includes the
SesameGazetteerParser and SesameOpenCalaisParser classes.

The SesameModelHandler maintains a reference to a Repository interface, which is
part of the Sesame API and can be used to access various Repository implementations, such
as the SailRepository (also part of the Sesame API), which defines a Sesame repository
that contains RDF data that can be queried and updated and operates on a stack of Sail
objects. Sail objects can store RDF statements and evaluate queries over them.

Through the SesameModelHandler it is therefore possible to get access to statements
that are present in the repository and to modify the repository itself.

As for the SesameGazetteerParser and SesameOpenCalaisParser, these are
extensions, respectively, of the DefaultGazetteerParser and OpenCalaisParser,
of which they override the visit method: this allows mapping annotations coming from the
NLP process to assertions in the ontology. Although implemented only for the previously
mentioned parsers, this construct may be generalised to any kind of parser.

A usage sample of the adapter is given in Table 3, which illustrates an excerpt from a JUnit
test case which also represents an example of how to use the framework for an ontology
evolution process. It is to be noted that the natural language processing step is centrally
managed through the AnnotationEngine class, whereas in Table 1 it was handled through
the GateManager.

Table 3. Code excerpt showing how to implement the ontology evolution process

public class OntoEvolutionTest {
 private AnnotationEngine annotationEngine;
 private final String BASE_URI =
"http://www.ifac.cnr.it/test#";

 private final String REPOSITORY_PATH = "nativeStore/owlim";

 @Before
 public void setUp() throws Exception {
 GateManager.getInstance();

 SesameModelHandler.getInstance().createOWLIMRepository(REPOS
ITORY_PATH);

 AnnotationEngineConfig config = new
AnnotationEngineConfig.Builder()
 .pluginName("ANNIE")
 .pluginName("Tagger_OpenCalais")
 .resourceRegister(new
AnnotationDeleteRegister())
 .resourceRegister(new
SentenceSplitterRegister())
 .resourceRegister(new
DefaultTokenizerRegister())
 .resourceRegister(new POSTaggerRegister())
 .resourceRegister(new
DefaultGazetteerRegister())

 .resourceRegister(new OpenCalaisRegister(...))
 .resourceRegister(new
OWLIMTransducerRegister())
 .annotationParser(new
SesameGazetteerParser(BASE_URI))
 .annotationParser(new
SesameOpenCalaisParser(BASE_URI))
 .textToAnnotate(text)
 .build();
 this.annotationEngine = new AnnotationEngine(config);
 }

 @Test
 public void testDoAnnotation() throws Exception {
 this.annotationEngine.doAnnotation();

 RepositoryConnection connection =
SesameModelHandler.getInstance().getRepository().getConnection()
;
 ValueFactory valueFactory =
SesameModelHandler.getInstance().getRepository().getValueFactory
();
 try {
 URI aURI = valueFactory.createURI(BASE_URI, "...");
 RepositoryResult<Statement> statements =
connection.getStatements(aURI, OWL.INDIVIDUAL, null, true);
 ...
 } finally {
 connection.close();
 }
 }
}

5 Conclusions and future developments

The report illustrates details regarding the Java implementation of an Ontology Evolution
Manager, which is a software that extracts structured information from natural language and
uses it for “growing” ontologies.

As such, it aims at exploiting synergies between Web 2.0 and the Semantic Web, potentially
acting as a bridge from user contributed (unstructured) text to information organized in
ontologies.

Future work implementation work related to the processing logic layer of the knowledge
management system will regard enriching the framework with support for relations discovery
using WordNet (see WordNet (2010)) and the Scarlet (see Scarlet (2010)) framework. As for
ontology management, it will be interesting to evaluate Empire (see Empire (2010)), which is
an implementation of the Java Persistence API (JPA) for RDF and the Semantic Web. Adoption
of JPA for persistence would represent a step ahead towards integration of the collective
knowledge management framework within Java Enterprise Edition applications.

6 References

Berners-Lee, T., Hendler, J., Lassila, O., 2001. The Semantic Web. Scientific American 284 (5), 34-43.

Buitelaar, P., Cimiano, P. (Eds.), 2008. Ontology Learning and Population: Bridging the Gap between Text and

Knowledge. Vol. 167 of Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam.

Burzagli, L., Como, A., Gabbanini, F., 2010. Towards the convergence of Web 2.0 and Semantic Web for e-

Inclusion. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (Eds.), Computers Helping People with
Special Needs. Vol. 6180 of Lecture Notes in Computer Science. Springer, pp. 343-350.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., 2002. GATE: A framework and graphical development

environment for robust NLP tools and applications. In: Proceedings of the 40th Anniversary Meeting of the
Association for Computational Linguistics.

Empire, 2010. Available at http://github.com/clarkparsia/Empire, last visited on 17/09/2010

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design patterns: elements of reusable object-oriented

software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

LExO, 2010. Available at http://code.google.com/p/lexo/, last visited on 20/09/2010

Maynard, D., Li, Y., Peters, W., 2008. NLP techniques for term extraction and ontology population. In: Proceedings

of the 2008 conference on Ontology Learning and Population: Bridging the Gap between Text and Knowledge.
IOS Press, Amsterdam, The Netherlands, pp. 107-127.

Ontomat, 2010. Available at http://annotation.semanticweb.org/ontomat/index.html, last visited on 20/09/2010

OpenNLP, 2010. Available at http://opennlp.sourceforge.net/, last visited on 20/09/2010

OWL API, 2010. Available at http://owlapi.sourceforge.net/, last visited on 17/09/2010

OWL Working Group at W3C, 2009. http://www.w3.org/2007/OWL/wiki/OWL_Working_Group, last visited on

17/09/2010.

Scarlet, 2010. Available at http://scarlet.open.ac.uk/, last visited on 17/09/2010

Sesame, 2010. Available at http://www.openrdf.org/, last visited on 17/09/2010

SPARQL Working Group at W3C, 2008. SPARQL Query Language for RDF Recommendation. Available at

http://www.w3.org/TR/rdf-sparql-query/, last visited on 17/09/2010

Text2Onto, 2010. Available at http://sourceforge.net/projects/texttoonto/, last visited on 20/09/2010

WordNet, 2010. Available at http://wordnet.princeton.edu/, last visited on 17/09/2010

