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1 Introduction 

An architecture was described Burzagli et al. (2010) that can serve as a basis for the design 
of a Collective Knowledge Management System. The system can be used to exploit the 
strengths of collective intelligence and merge the gap that exists among two expressions of web 
intelligence, i.e., the Semantic Web and Web 2.0. In the architecture, a key component is 
represented by the Ontology Evolution Manager, made up with an Annotation Engine and a 
Feed Adapter, which is able to interpret textual contributions that represent human intelligence 
(such as posts on social networking tools), using automatic learning techniques, and to insert 
knowledge contained therein in a structure described by an ontology. 

This opens up interesting scenarios for the collective knowledge management system, which 
could be used to provide up to date information that describes a given domain of interest, to 
automatically augment it, thus coping with information evolution and to make information 
available for browsing and searching by an ontology driven engine. 

This report describes a Java based implementation of the Ontology Evolution Manager 
within the above outlined architecture. 

2 Specification of building blocks 

The Ontology Evolution Manager (sketched in Figure 1) is designed to take corpora of 
textual documents as input, produce a series of RDF statements and use them to enrich an 
ontology. In order to achieve these aims, main issues that have to be faced for its 
implementation consist in: 

1. extracting machine readable knowledge from text; 
2. transform extracted information in a form that is suitable for insertion into an 

ontology. 
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annotating them. At the end of the text processing pipeline an annotated text document is 
obtained and the GATE API includes Java classes that allow going through the annotations. 

With reference to the UML diagram in Figure 2, showing the underlying architecture of the 
natural language processing infrastructure, the GateManager class is responsible of 
managing the annotation engine: for this purpose it needs plug-ins and resources to be 
registered for pipeline annotation, each resource implementing an annotation step (see blocks 
within the text processing pipeline in Figure 3). This process is implemented using a visitor 
pattern (see Gamma et al., (1995)). 

The GateManager is first made aware of which plug-ins to use and of which resources 
(taken from previously set plug-ins) to use for the set-up of the pipeline. Each resource is 
modelled by a register class which implements a RegisterVisitor interface and is capable 
of performing self-initialization steps. Register classes may require or not property maps for 
initialization purposes: in the latter case they consist in a generalization of the 
SimpleResourceRegister class. More complex annotation processes require custom 
register classes to be written. As an example, annotations based on custom JAPE grammars are 
performed using objects of class OWLIMTransducerRegister. The class can be initialized 
by specifying custom JAPE grammars to be used to identify patterns that are relevant for a 
certain domain and to annotate texts based on the occurrence of these patterns. Obviously, 
multiple instances of OWLIMTransducerRegister may be inserted into the pipeline. 

Through the visit method of its interface, each register class is added to a 
SerialAnalyserController object, which is defined by a Java class in the GATE API 
and is used to manage the text processing pipeline (see code excerpt in Table 1). 

 

Table 1. Code excerpt showing how to implement a text processing pipeline 

public class GateManagerTest { 
protected GateManager gateManager; 
... 
public void initializationTest() { 
gateManager = GateManager.getInstance(); 
... 
gateManager.registerPlugin("ANNIE"); 
gateManager.registerPlugin("Tagger_OpenCalais"); 
... 
gateManager.registerResource(new 
AnnotationDeleteRegister()); 
gateManager.registerResource(new 
SentenceSplitterRegister()); 
gateManager.registerResource(new 
DefaultTokenizerRegister()); 
gateManager.registerResource(new 
DefaultGazetteerRegister()); 
gateManager.registerResource(new 
OpenCalaisRegister("...")); 
... 
Corpus elaboratedCorpus =gateManager.elaborateCorpus(); 
 
DefaultGazetteerParser gazetteerParser = new 
DefaultGazetteerParser(); 

gateManager.parseAnnotation(gazetteerParser); 
gazetteerParser.getAnnotatedResources(); 
... 



} 
} 
 
public class GateManager { 
private static GateManager instance; 
private SerialAnalyserController serialController; 
public void registerResource(RegisterVisitor register) 
throws GateException { 
register.visit(this); 

} 
... 
public void parseAnnotation(AnnotationParserVisitor parser) 
throws GateException { 
parser.visit(this); 

} 
} 
 
public class DefaultGazetteerRegister implements 
RegisterVisitor { 
private String resource = "..."; 
public void visit(GateManager manager) throws GateException 
{ 
new SimpleResourceRegister(resource).visit(manager); 

} 
... 

} 
 
public class DefaultGazetteerParser implements 
AnnotationParserVisitor { 
public void visit(GateManager manager) throws GateException 
{ 
//annotation parsing code 
... 

} 
public List<AnnotatedResource> getAnnotatedResources() { 
return resources; 

} 
} 

 
After initialization, the GateManager is ready to perform text processing by running all 

the registered resources in cascade. Once text processing is made, the system ends up with a 
corpus of annotated documents: these can be parsed using an effective class infrastructure 
which was setup, again, using the visitor pattern. A parser interface was created, named 
AnnotationParserVisitor, to be implemented by annotation parser classes that have to 
be set up for each type of annotation. Annotations are retrieved from the documents by issuing 
a call to the parseAnnotation method of the GateManager, which takes a parser object 
as input. 

This class structure efficiently encapsulates various GATE functionalities and allows to 
conveniently separate plugin and resources initialization from their usage in the pipeline, and to 
conveniently retrieve annotations from the corpus as object of class AnnotatedResource. 

Finally, it is to be noted that the whole annotation process can be also managed from a single 
entry point, i.e., the AnnotationEngine class, which can be configured using an 
AnnotationEngineConfig object and holds a static reference to the GateManager. 



Annotations made available from the different resources constitute the basis on which 
ontology evolution is performed by the Feed Adapter, as they in principle contain new 
concepts, relations or individuals relevant to the domain under study. 

4 Feed Adapter: the ontology evolution block 

A number of Java based frameworks exist to create, alter and persist ontologies. As each one 
has different characteristics, they suit best for different application scenarios. 

Before designing the Feed Adapter block, the most popular semantic web frameworks were 
examined. Characteristics of interest that were considered are reported in Table 2. 

 

Table 2. Characteristics of semantic web frameworks 

Name SPARQL 
support  

OWL 2.0 
support 

Reasoning features Persistence 

Jena 2.6.2 Yes No Unable to reason on data type restrictions (the API 
is not compatible with a version of Pellet that is 
capable of reasoning on data type restrictions) 

file, database 

Protegé OWL 
API 

No No Unable to reason on data type restrictions (the API 
is not compatible with a version of Pellet that is 
capable of reasoning on data type restrictions) 

file 

OWL API 3.0.0 No Yes Able to reason on data type restriction, if the 
HermiT reasoned is used, as Pellet is still not 
compatible with OWL API 3 

file 

AllegroGraph 
3.3 

Yes ? Able to reason on data type restriction. Uses a 
proprietary reasoner (RDFS++), which is a RDF 
reasoner and not an OWL reasoner 

database 

Sesame 2.3.1 Yes Yes Unable to reason on data type restrictions. 
OWLIM is compatible with Sesame, but it is only 
an OWL Lite reasoned 

file,  
database 
(MySql, 
Postgres), binary 
files 

 
Desirable features for the Feed Adapter implementations are represented by: 

 Support for OWL 2, which represents the most recent recommendation (dated 27th 
October 2009) of W3C that refines and extends OWL, the Ontology Web Language, 
see OWL Working Group at W3C (2009); 

 ability to reason and make inference over data type restrictions; 
 support for a variety of persistence methods; 
 support for SPARQL Protocol and RDF Query Language (SPARQL, see SPARQL 

Working Group at W3C (2008)) queries. 
 
Unfortunately, as the table shows, among the most popular products in this sector, no “full 

featured” framework is available. 
However, the most “promising” frameworks to be adopted within the Collective Knowledge 

Management System were identified to be OWL API 3 and Sesame 2.3.1 1 (see OWL API 
(2010) and Sesame (2010), respectively, both of them Open Source), also considering the fact 
that they are supported by an active community of developers. 

In order not to be tied to a particular implementation and to a precise framework, the Feed 
Adapter was designed as a middleware block acting as an adapter between annotations, coming 
from parsers described in section 3, and an ontology. For the moment only the adapter for the 



Sesame 2.3.1 framework was implemented, with the OWL API 3 implementation being in 
progress. 

4.1 Sesame Adapter implementation details 

The Sesame Adapter is designed around the SesameModelHandler and includes the 
SesameGazetteerParser and SesameOpenCalaisParser classes. 

The SesameModelHandler maintains a reference to a Repository interface, which is 
part of the Sesame API and can be used to access various Repository implementations, such 
as the SailRepository (also part of the Sesame API), which defines a Sesame repository 
that contains RDF data that can be queried and updated and operates on a stack of Sail 
objects. Sail objects can store RDF statements and evaluate queries over them. 

Through the SesameModelHandler it is therefore possible to get access to statements 
that are present in the repository and to modify the repository itself. 

As for the SesameGazetteerParser and SesameOpenCalaisParser, these are 
extensions, respectively, of the DefaultGazetteerParser and OpenCalaisParser, 
of which they override the visit method: this allows mapping annotations coming from the 
NLP process to assertions in the ontology. Although implemented only for the previously 
mentioned parsers, this construct may be generalised to any kind of parser. 

A usage sample of the adapter is given in Table 3, which illustrates an excerpt from a JUnit 
test case which also represents an example of how to use the framework for an ontology 
evolution process. It is to be noted that the natural language processing step is centrally 
managed through the AnnotationEngine class, whereas in Table 1 it was handled through 
the GateManager. 

Table 3. Code excerpt showing how to implement the ontology evolution process 

public class OntoEvolutionTest { 
 private AnnotationEngine annotationEngine; 
 private final String BASE_URI = 
"http://www.ifac.cnr.it/test#"; 

 private final String REPOSITORY_PATH = "nativeStore/owlim"; 
 
 @Before 
 public void setUp() throws Exception { 
  GateManager.getInstance(); 
 
 SesameModelHandler.getInstance().createOWLIMRepository(REPOS
ITORY_PATH); 
   
  AnnotationEngineConfig config = new 
AnnotationEngineConfig.Builder() 
         .pluginName("ANNIE") 
         .pluginName("Tagger_OpenCalais") 
         .resourceRegister(new 
AnnotationDeleteRegister()) 
         .resourceRegister(new 
SentenceSplitterRegister()) 
         .resourceRegister(new 
DefaultTokenizerRegister()) 
         .resourceRegister(new POSTaggerRegister()) 
         .resourceRegister(new 
DefaultGazetteerRegister()) 



         .resourceRegister(new OpenCalaisRegister(...))
         .resourceRegister(new 
OWLIMTransducerRegister()) 
         .annotationParser(new 
SesameGazetteerParser(BASE_URI)) 
         .annotationParser(new 
SesameOpenCalaisParser(BASE_URI)) 
         .textToAnnotate(text) 
         .build(); 
  this.annotationEngine = new AnnotationEngine(config); 
 } 
  
 @Test 
 public void testDoAnnotation() throws Exception { 
  this.annotationEngine.doAnnotation(); 
   
  RepositoryConnection connection = 
SesameModelHandler.getInstance().getRepository().getConnection()
; 
  ValueFactory valueFactory = 
SesameModelHandler.getInstance().getRepository().getValueFactory
(); 
  try { 
   URI aURI = valueFactory.createURI(BASE_URI, "..."); 
   RepositoryResult<Statement> statements = 
connection.getStatements(aURI, OWL.INDIVIDUAL, null, true); 
   ... 
  } finally { 
   connection.close(); 
  } 
 } 
} 

 

5 Conclusions and future developments 

The report illustrates details regarding the Java implementation of an Ontology Evolution 
Manager, which is a software that extracts structured information from natural language and 
uses it for “growing” ontologies. 

As such, it aims at exploiting synergies between Web 2.0 and the Semantic Web, potentially 
acting as a bridge from user contributed (unstructured) text to information organized in 
ontologies. 

Future work implementation work related to the processing logic layer of the knowledge 
management system will regard enriching the framework with support for relations discovery 
using WordNet (see WordNet (2010)) and the Scarlet (see Scarlet (2010)) framework. As for 
ontology management, it will be interesting to evaluate Empire (see Empire (2010)), which is 
an implementation of the Java Persistence API (JPA) for RDF and the Semantic Web. Adoption 
of JPA for persistence would represent a step ahead towards integration of the collective 
knowledge management framework within Java Enterprise Edition applications. 
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