
Models of tumour spheroid response to radiation: 
identifiability analysis

Federico Papa

Technical Report n. 9, 2009



Models of tumour spheroid response to radiation: 
identifiability analysis

Federico Papa

Technical Report n. 9, 2009



Models of tumour spheroid response to radiation: 
identifiability analysis

Federico Papa

Technical Report n. 9, 2009



MODELS OF THE TUMOUR SPHEROID RESPONSE TO

RADIATION:

IDENTIFIABILITY ANALYSIS

F. Papa1

1Dipartimento di Informatica e Sistemistica “A. Ruberti”
Sapienza Università di Roma
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Abstract

Two spatially uniform models of tumour growth after a single instantaneous radiative treat-
ment are presented in this paper. The two ordinary differential equations models presented
may be obtained from two equivalent partial derivative equations models, by integration with
respect to the radial distance. The main purpose of the paper is to study their identifiability
properties. In fact, a preliminary condition, that is necessary to verify before performing the
parameter identification, is the global identifiability of a model. A detailed study of the identi-
fiability properties of the two models is done, pointing out that the first one, the basic model, is
only locally identifiable, whereas the second one, the model with subcompartments, is globally
identifiable, provided that the responses to two different radiation doses are available.

Keywords: Tumour spheroids models; Radiotherapy; Local and global identifiability.
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1 Introduction

The mathematical literature on solid tumour growth is very wide. Looking through it, this
evolution line can be recognized: the earliest models were focused on avascular tumour growth;
then models of angiogenesis were developed; more recently, models of vascular tumour growth
are starting to emerge [1].

With reference to mathematical models of avascular tumour growth we can underline the pres-
ence of two different kinds of models: the spatially uniform models and the spatially structured
models.

The first class of models concerns with models in which details of the spatial structure of the
tumour are neglected and the attention is focused, for instance, on the tumour overall volume or on
the total number of cells present within the tumour itself. The resulting models are formulated as
systems of ordinary differential equations (ODE models) and have been widely used by clinicians
to estimate kinetics parameters associated to tumour growth in vivo and in vitro and to asses
the efficiency of different therapeutic strategies [1].

On the other hand, the second class concerns with models in which the spatial coordinates
are taken into account, in order to investigate the role of rate limiting, diffusible growth factors
on the tumour development. When the geometry of the tumour is simple (for instance the
spherical geometry of tumoral spheroids in vitro or of small metastasis in vivo, or the cylindrical
geometry of the tumoral cords) it is possible to take the spatial structure into account only
considering one spatial coordinate (one dimensional growth). These models are formulated as
systems of partial derivative equations (PDE models) and typically comprise reaction-diffusion
equations for the growth factors and an integro-differential equation for the tumour radius, in the
case of spherical or cylindrical symmetry. The reaction-diffusion equations are necessary in such
models to take into account the diffusion through the tumour of internal (produced by cells) or
external (externally supplied) chemical agents and to predict their concentration variations. The
chemicals of interest may be, for instance, glucose or oxygen, that promote the cell division, or
chemotherapeutic drugs, tumour necrosis factors and products of cell degradation, that promote
the cell death [1].

In this paper two spatially uniform models of tumour growth, after a single instantaneous
radiative treatment are presented, with the main purpose of studying their identifiability proper-
ties. These models come from the integration with respect to the spatial coordinate of the partial
derivative equations of two spatially structured models [2], [3], [4], when it is possible to neglect
the distribution of oxygen concentration inside the tumour. In fact, the oxygen concentration is
generally very important in such models because it influences the radiosensitivity of cells [5] and
it determines the cell death when its level is too low. Nevertheless, when the tumoral spheroid,
during all its growth, remains smaller than a critical dimension at which an internal necrotic
region starts to develop, then it can be assumed that:

1. the oxygen concentration is higher than the minimum value necessary to the cell life

2. the initial distribution of oxygen inside the spheroid is sufficiently uniform to be assumed
constant

Thus, in view of 1. the cell death for insufficient oxygenation can be neglected and the radiation is
the only cause of death. Moreover for 2. it can be assumed that the radiosensitivity coefficients are
constant for all the tumoral cells inside the spheroid. With these two assumptions, the two ODE
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models presented in this paper are completely equivalent to the original PDE models presented in
[2], and they may be obtained from the latter by integration with respect to the radial distance,
as mentioned above.

2 ODE mathematical modelling of the tumour spheroid response
to radiation

2.1 The linear quadratic model for the radiation action

Radiation produces a variety of lesions in a cell [6]. These lesions induce a lethal damage in
a fraction of cells, that loses the capacity of continuous proliferation and will die at a subsequent
time (clonogenically dead cells). Thus, after irradiation, the living tumour cell population will be
composed by a subpopulation of viable cells and a subpopulation of live but lethally damaged,
clonogenically dead cells. The death of lethally damaged cells may occur by premitotic apoptosis
or after one or more cell divisions (postmitotic apoptosis).

The main pathways of lethal damage production are the direct action of radiation that pro-
duces unreparable damages and the binary misrepair of double-strand breaks (DSB) of DNA. In
the case of impulsive irradiations, both the direct action and the effect of binary misrepair will
be considered instantaneous and described by a non linear relation named linear-quadratic (LQ)
model [7]. Denoting by δ the surviving fraction of cells after a single impulsive irradiation, the
LQ dose-response relation has the form:

δ = e[−αd−βd
2] , (1)

where d is the dose, and α and β the radiosensitivity parameters, related, respectively, to the
direct action of radiation and to the binary misrepair of DSBs. The equation (1), as shown in the
following, will be used in the models presented in this paper to initialize the state vector, taking
the effect of the radiation into account.

2.2 The basic dynamical model

Although quiescent cells have been evidenced in tumour spheroids [8], [9] for simplicity we
will assume that all viable cells proliferate with the same rate and this assumption is reasonable
because the models are formulated under the assumption of ‘small spheroids’, where the oxygen
level is sufficiently high and uniform. So in a spheroid we will distinguish: viable cells, lethally
damaged cells and dead cells. The model variables are the total volumes of the three types of cells
inside the spheroid and they are functions of t. So we denote with V (t), VD(t) and VN (t), the
volumes of viable cells, lethally damaged cells and dead cells, respectively obtained by integration,
with respect to the radial coordinate, of the local volume fractions of the model in [2].

The following main assumptions are essential for the spatial integration of the original PDE
equations [2]: the growth of the tumour spheroid never goes over a critical dimension, at which the
internal necrosis starts to occur (this dimension depends on the external oxygen concentration
and it has been found to be 200 ÷ 300µm [2] in standard in vitro conditions, with an oxygen
concentration of 0.28mM), and the initial spheroid dimension is ‘sufficiently’ smaller than this
critical dimension.

Under these hypothesis, by integrating the PDE equations presented in [2], [4] the following
basic model can be obtained:
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V̇ (t) = χV (t)
V̇D(t) = (χD − µD)VD(t)
V̇N (t) = µDVD(t)− µNVN (t)

, (2)

where with χ and χD we denote the constant proliferation rates, respectively, of the viable cells
and of the lethally damaged cells (that we suppose to progress across the cell cycle and to divide
until they die), with µD and µN , respectively, the death rate of the lethally damaged cells and
the degradation rate of the dead cells. All these dynamic parameters are positive and, since the
lethally damaged cells eventually die, it is necessary to assume that µD > χD. The output of the
model is the total volume of the spheroid, obtained by the sum of the state variables:

y(t) = V (t) + VD(t) + VN (t) . (3)

Without loss of generality, cells are assumed to occupy all the volume of the spheroid.
Considering only impulsive irradiations, the initial conditions for the basic model, according

to (1), are: 
V (0+) = e[−αd−βd

2]V (0−)
VD(0+) = (1− e[−αd−βd2])V (0−)
VN (0+) = 0

, (4)

where V (0−) is the spheroid volume before irradiation.
Equations (2), with their initial conditions (4), define a linear time-invariant dynamical system

and (3) is the corresponding linear output equation. A block scheme of the basic model is
represented in figure 1.

Figure 1: Block scheme of the basic model. The bold arrow entering the compartment of the viable
cells represents the initial action of radiation dose d at 0− and the vertical dashed arrow, between the
compartments of viable cells and lethally damaged cells, represents the instantaneous redistribution of the
cells at 0+ between the two compartments, in agreement with the LQ model.
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2.3 The model with subcompartments

Through the comparison with experimental data of the irradiated spheroid growth obtained
from different tumour cell lines [10], it appears that the the basic model was not be able to
fit some experimental trends of the irradiated spheroid growth. In fact, in some experimental
data, the regression of the spheroid radius is not immediate after irradiation, but it is delayed
[10], [2]. So in order to obtain a different dynamic, in which the peak of the exit flow from the
compartments of lethally damaged cells and dead cells is delayed with respect to the irradiation
time, it is convenient to divide the compartments of lethally damaged and dead cells into m
subcompartments [2]. In the following we will restrict ourselves to consider the case of three
subcompartments for both the compartments cited above.

The choice to modify the basic model introducing compartmental dynamic for the death of the
lethally damaged cells and for the degradation of the dead cells, and the further choice to consider
just three subcompartments, are justified by the analysis of the experimental data of different cell
lines, as shown in [2], [4]. In fact with three subcompartments it has been obtained a significantly
better fit than the previous model with only one compartment, particularly in the initial part of
the treated response for high doses. Attempts with a larger number of subcompartments did not
give appreciable improvements [2].

The equations of the model with subcompartments are:

V̇ (t) = χV (t)
V̇D1(t) = (χD − µD)VD1(t)
V̇D2(t) = (χD − µD)VD2(t) + µDVD1(t)
V̇D3(t) = (χD − µD)VD3(t) + µDVD2(t)
V̇N1(t) = µDVD3(t)− µNVN1(t)
V̇N2(t) = µNVN1(t)− µNVN2(t)
V̇N3(t) = µNVN2(t)− µNVN3(t)

, (5)

with the output equation

y(t) = V (t) + VD1(t) + VD2(t) + VD3(t) + VN1(t) + VN2(t) + VN3(t) , (6)

and the initial conditions 

V (0+) = e[−αd−βd
2]V (0−)

VD1(0+) = (1− e[−αd−βd2])V (0−)
VD2(0+) = 0
VD3(0+) = 0
VN1(0+) = 0
VN2(0+) = 0
VN3(0+) = 0

. (7)

The modifications to the basic model neither modify the model structure, which remains linear
and stationary, nor increase the number of parameters. In fact the model with subcompartments
has the same parameters of the previous one (χ, χD, µD, µN , α and β), with the same biological
meaning. A block scheme of the model with subcompartments is represented in figure 2.
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Figure 2: Block scheme of the model with subcompartments. The bold arrow entering the compartment of
the viable cells represents the initial action of radiation dose d at 0− and the vertical dashed arrow, between
the compartment of viable cells and the first subcompartment of the lethally damaged cells, represents the
instantaneous redistribution of the cells at 0+ between the two compartments, in agreement with the LQ
model.

3 Parametric identifiability

3.1 Identifiability of the basic model

A problem which constantly can be found in the mathematical modelling of biological sys-
tems (and more generally in all applicative fields of mathematical modelling) is that some model
parameters are unknown. This problem takes on particular significance when the unknown pa-
rameters represent biological attributes which are not directly measurable, but are nevertheless
of considerable scientific interest [11]. In this case we may wonder whether these parameters can
be indirectly estimated by observing the system response to given inputs.

The identifiability refers to the possibility that the information obtainable from an experiment
or from a set of experiments is sufficient to give a unique solution to the parameter values, in
the absence of measurement noise. Therefore the main problem is to verify, before trying to
estimate the unknown parameters, if the model structure allows this or, differently, if it gives no
sense to it. The question of whether or not the unknown parameters of a dynamical system can
be determined uniquely from an input-output relation constitutes the parametric identifiability
problem.

Consider a general finite dimensional time-variant dynamical system depending on a param-
eter vector θ belonging to an admissible set Θ ⊂ Rν :{

ẋ(t; θ) = f(x(t; θ), u(t), t, θ), x(0+; θ) = h(x0− , θ)
y(t; θ) = g(x0− , u(t), t, θ)

where the state vector x(t; θ) ∈ Rn, the input u(t) ∈ U ⊂ Rp and the output y(t; θ) ∈ Rq. Denot-
ing the couple (x0− , u) as an experiment, we can define an experiment set E = {(x0− , u)/x0− ∈
L ⊂ Rn;u(·) ∈ U([0, T ])}, where U is a suitable class of functions with u(t) ∈ U ⊂ Rp, t ∈ [0, T ].
So let us recall the following definitions:

Definition 1. The couple of parameter vector (θ, φ), with θ ∈ Θ and φ ∈ Θ, is called indistin-
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guishable with respect to the experiment set E if:

g(x0− , u(t), t, θ) = g(x0− , u(t), t, φ) , ∀t ∈ [0, T ] and ∀(x0− , u) ∈ E

Otherwise it is called distinguishable.

Definition 2. A parameter θ ∈ Θ is locally identifiable if ∃ε > 0 such that the couple (θ, φ) is
distinguishable for every φ ∈ S(θ, ε) ∩Θ, φ 6= θ.

Definition 3. A parameter θ ∈ Θ is globally identifiable if the couple (θ, φ) is distinguishable
for every φ ∈ Θ, φ 6= θ.

There are different methods for the study of the identifiability of dynamical systems. For
the models presented above it has been used the similarity transformation method [11], that can
be only used for linear dynamical systems. In general, some of the matrix elements of a linear
stationary dynamical system are not known. Therefore the similarity transformation method al-
lows to determine the identifiability properties of system parameters when they correspond to the
elements of the model matrices or when there is a univocal relationship between them. It is easy
to understand, looking at the structure of the matrices given below, that a univocal relationship
exists between the parameters (χ, χD, µD, µN ) and the elements of the system matrices whereas it
does not happen for the radiological parameters (α, β). Considering the parameter δ, given by (1)
and depending on the radiological parameters (α, β), even if it was identifiable, the parameters
α and β would not be univocally determined from its value. It will be shown that α and β can
be univocally identified by exploiting model responses to at least two different radiation doses.

Let us study, at first, the identifiability of the parameter vector θ of the basic model,

θ =


χ
χD
µD
µN
δ

 , (8)

ranging in the admissible set Θ ⊂ R5, with

Θ = {θ ∈ R5 | χ, χD, µD, µN > 0, µD > χD and 0 < δ < 1} . (9)

Denoting by

x(t) =

 V (t)
VD(t)
VN (t)

 (10)

the state vector of the basic model and by
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A(θ) =

 χ 0 0
0 (χD − µD) 0
0 µD −µN

 , cT (θ) =
[

1 1 1
]
,

b(θ) =

 δ
(1− δ)

0

 ,
(11)

respectively the model dynamical matrix, the state-output matrix and the fraction of the initial
state vector independent of the spheroid initial volume, the model can be rewritten as:{

ẋ(t; θ) = A(θ)x(t; θ) , x(0+; θ) = b(θ)V (0−)
y(t; θ) = cT (θ)x(t; θ)

. (12)

It is useful to observe, at this point, that the output y(t; θ) obtained by the model (12), in
which no input acts, is the same output obtainable by the following model{

˙̄x(t; θ) = A(θ)x̄(t; θ) + b(θ)u(t), x̄(0−) = 0
ȳ(t; θ) = cT (θ)x̄(t; θ)

, (13)

with
u(t) = u0(t)V (0−)

where u0(t) is a Dirac unit pulse function. In fact:

y(t; θ) = ȳ(t; θ) = cT (θ)eA(θ)tb(θ)V (0−) . (14)

Therefore, it is easy to understand from relation (14) that the identifiability problem of θ for the
model (12) is the same one for the model (13). With reference to model (13), let us recall now
the following definition:

Definition 4. The pair (cT (θ), A(θ)) is observable if

detO = det

 cT (θ)
cT (θ)A(θ)
cT (θ)A2(θ)

 6= 0 .

The pair (A(θ), b(θ)) is controllable if

det C = det
[
b(θ) A(θ)b(θ) A2(θ)b(θ)

]
6= 0 .

The triple (A(θ), b(θ), cT (θ)) is controllable and observable if the pair (A(θ), b(θ)) is control-
lable and the pair (cT (θ), A(θ)) is observable.

The same definition can be applied to model (12). In particular we can talk about controlla-
bility of the couple (A(θ), b(θ)), since the role of the matrix b(θ) in the model (12) is equivalent
to the one in the model (13).

The similarity transformation method is based on the following result:
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Theorem 1. Let the triples (A(θ), b(θ), cT (θ)) and (A(φ), b(φ), cT (φ)) be observable and con-
trollable. Then

cT (θ)eA(θ)tb(θ) = cT (φ)eA(φ)tb(φ) , t ∈ [0, T ] (15)

if and only if a nonsingular matrix P exists such that
PA(θ)P−1 = A(φ)
cT (θ)P−1 = cT (φ)
Pb(θ) = b(φ)

. (16)

Proof. It is immediate to see that (16) implies (15) by taking into account the power expansion
of the exponential. The inverse implication, that requires the controllability and observability
properties, was proved by Kalman [12], [13].

�

From theorem 1 it is easy to understand that given an indistinguishable couple (θ, φ) ∈
Θ for the system (12), if it exists, the corresponding system matrices, (A(θ), b(θ), cT (θ)) and
(A(φ), b(φ), cT (φ)), have the same structure and are linked by the algebraic relations (16). It is
easy also to see that if (16) have a unique solution (θ, I) then indistinguishable couples do not
exist. So the following obvious lemmas follow:

Lemma 1. Let the triples (A(θ), b(θ), cT (θ)) and (A(φ), b(φ), cT (φ)) be observable and con-
trollable. Then the system (12) is globally identifiable in Θ if and only if the equations (16), for
all fixed vector θ ∈ Θ, have the unique solution (φ, P ) = (θ, I).

Lemma 2. Let the triples (A(θ), b(θ), cT (θ)) and (A(φ), b(φ), cT (φ)) be observable and con-
trollable. Then the system (12) is locally identifiable in S(θ, ε) ∩Θ, for all θ in Θ and for ε > 0
sufficiently small, if and only if the equations (16) have isolated solutions in Θ for the unknown
couples (φ, P ), in addition to the trivial one (θ, I).

At this point, in order to study the identifiability property for the basic model (12) by the
similarity transformation method it is necessary to verify, at first, the observability and the
controllability properties for θ ∈ Θ. The observability matrix for the basic model is:

O(θ) =

 cT (θ)
cT (θ)A(θ)
cT (θ)A2(θ)

 =

 1 1 1
χ χD −µN
χ2 χD(χD − µD)− µDµN −µ2

N

 .
The determinant of O(θ) is:

det{O(θ)} = −(χ+ µN )(χD + µN )(χ+ µD − χD) (17)

and it is negative in Θ because all the factors are positive. Hence the couple (cT (θ), A(θ)) is
observable in Θ.

The controllability matrix for the basic model is:
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C(θ) =
[
b(θ) A(θ)b(θ) A2(θ)b(θ)

]
=

=

 δ χδ χ2δ
(1− δ) (χD − µD)(1− δ) (χD − µD)2(1− δ)

0 µD(1− δ) µD(χD − µD − µN )(1− δ)

 .
The determinant of C(θ) is:

det{C(θ)} = δ(1− δ)2µD(χ+ µN )(χ+ µD − χD) (18)

and it is positive in Θ because all the factors are positive. Hence the couple (A(θ), b(θ)) is
controllable in Θ.

Now we can prove the following result.

Theorem 2. The basic model (12) is locally (but not globally) identifiable with respect to the
unknown parameter vector θ given by (8) and ranging in the set Θ defined by (9). In fact ∀θ ∈ Θ
there is a different parameter vector φ ∈ Θ that gives the same output, y(t; θ) = y(t;φ). These
two points are isolated into Θ, so in a neighbourhood of θ, S(θ, ε) ∩Θ, θ is identifiable.

Proof. Given θ ∈ Θ, let us consider the (1× 5) vector

φ =


χ∗

χ∗D
µ∗D
µ∗N
δ∗

 ∈ Θ

and the (3× 3) matrix

P =

 p11 p12 p13

p21 p22 p23

p31 p32 p33

 .
Rewriting the first equation of (16) as

PA(θ) = A(φ)P ,

it is easy to obtain the following system of equations: p11χ p12(χD − µD) + p13µD −p13µN
p21χ p22(χD − µD) + p23µD −p23µN
p31χ p32(χD − µD) + p33µD −p33µN

 =

=

 p11χ
∗ p12χ

∗ p13χ
∗

p21(χ∗D − µ∗D) p22(χ∗D − µ∗D) p23(χ∗D − µ∗D)
p21µ

∗
D − p31µ

∗
N p22µ

∗
D − p32µ

∗
N p23µ

∗
D − p33µ

∗
N

 .
(19)

Furthermore, rewriting the second equation of (16) as
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cT (θ) = cT (φ)P

and using also the third equation, it is easy to obtain, respectively, the following relations:
p11 + p21 + p31 = 1
p12 + p22 + p32 = 1
p13 + p23 + p33 = 1

(20)


p11δ + p12(1− δ) = δ∗

p21δ + p22(1− δ) = (1− δ∗)
p31δ + p32(1− δ) = 0

(21)

From the equality of the elements of position (1, 3) and of the elements of position (2, 1) of the
system (19), we obtain

p13(χ∗ + µN ) = 0, p21(χ+ µ∗D − χ∗D) = 0,

and keeping in mind the parameter constraints of Θ, it results that p13 = p21 = 0. Using these
first results and equalling the elements of position (1, 2) and then the elements of position (3, 1)
of (19), it is easy to show that also p12 = p31 = 0. From the first equation of (20) it results that
p11 = 1 while from the (21), using the value of the five elements of P obtained, it is immediate
to obtain, respectively, that δ∗ = δ, p22 = 1 and p32 = 0. Hence, until this point, the following
results are obtained:

P =

 1 0 0
0 1 p23

0 0 p33

 , with
{
χ∗ = χ
δ∗ = δ

and the relations that remain are:[
(χD − µD) + p23µD −p23µN

p33µD −p33µN

]
=
[

(χ∗D − µ∗D) p23(χ∗D − µ∗D)
µ∗D p23µ

∗
D − p33µ

∗
N

]
(22)

p23 + p33 = 1 (23)

By adding and then equalling the elements (1, 1) and (2, 1) of (22) it results that

χ∗D = χD .

By summing and then setting equal the elements (1, 2) and (2, 2) of (22) it is easy to obtain the
following expression for µ∗N

µ∗N =
p23χD + µN

p33
,

and from the elements (2, 1) of (22) it results that

µ∗D = p33µD .

From the equality of the elements (2, 2) of (22) and replacing the expressions obtained for µ∗D
and µ∗N , it results that
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(1− p33)µN − p23p33µD + p23χD = 0

from which, recalling (23), it results that two different solutions for the couple (p23, p33) exist:

p23 = 0, p33 = 1 or p23 =
µD − χD − µN

µD
, p33 =

χD + µD
µD

.

In conclusion we have that system (16) admits the two different solutions:

(θ, I)
and


χ
χD

µN + χD
µD − χD

δ

 ,
 1 0 0

0 1 µD−χD−µN
µD

0 0 χD+µD
µD




, (24)

which are both admissible, since the vectors belong to Θ and the matrices are non singular.
So, for lemma 2, we can say that the basic model is locally identifiable with respect to the five
considered parameters.

�

This result can be easily confirmed looking at the explicit expression of the output y(t; θ). In
fact, for the basic model, it is easy to integrate the dynamical equations obtaining the following
expression:

y(t; θ) = [δeχt − (1− δ)µD
χD − µD + µN

e−µN t +
χD + µN

χD − µD + µN
e(χD−µD)t]V (0−)

from which it is immediate to verify that y(t; θ) = y(t;φ), if the vector φ is such that
χ∗ = χ
χ∗D = χD
µ∗D = µN + χD
µ∗N = µD − χD
δ∗ = δ

In order to study the identifiability of the radiological parameters α and β it is necessary to
consider two different doses d1 and d2 and the corresponding parameters δ1 and δ2 that depend
univocally from the couple (α, β): {

δ1 = e[−αd1−βd
2
1]

δ2 = e[−αd2−βd
2
2] (25)

It is easy to verify that the relation between (δ1, δ2) and (α, β) is one to one if d1 6= d2. In fact,
from (25) it results [

−d1 −d2
1

−d2 −d2
2

] [
α
β

]
=
[

ln(δ1)
ln(δ2)

]
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which admits a unique solution for the couple (α, β) provided that d1 6= d2. Therefore, let us
consider two different initial states x(1)(0+; θ) and x(2)(0+; θ) related to two different doses and
let us observe parallely the two corresponding system responses. Let us define a new parameter
vector

θ =



χ
χD
µD
µN
δ1
δ2

 (26)

ranging in the admissible set Θ ⊂ R6, with

Θ = {θ ∈ R6 | χ, χD, µD, µN > 0, µD > χD, 0 < δ1 < 1 and 0 < δ2 < 1} . (27)

Let us define by xT (t) ∈ R6 the total state vector

xT (t) =
[
x(1)(t)
x(2)(t)

]
, (28)

that is the union of two state vectors of the type (10), x(1)(t) and x(2)(t), related to the two
different initial states, and the block matrices

AT (θ) =
[
A(θ) 0

0 A(θ)

]
, CT (θ) =

[
cT (θ) 0

0 cT (θ)

]
,

BT (θ) =
[
b(1)(θ) 0

0 b(2)(θ)

]
,

(29)

where A(θ) and cT (θ) are the same matrix defined in (11), and b(1)(θ), b(2)(θ) are such that

b(1)(θ) =

 δ1
(1− δ1)

0

 , b(2)(θ) =

 δ2
(1− δ2)

0

 . (30)

Obviously, AT (θ), CT (θ) and BT (θ) are, respectively, (6× 6), (2× 6) and (6× 2) matrix and the
basic extended model can be written as: ẋT (t; θ) = AT (θ)xT (t; θ) , xT (0+; θ) = BT (θ)

(
V (0−)
V (0−)

)
yT (t; θ) = CT (θ)xT (t; θ)

, (31)

where yT (t; θ) ∈ R2 is the union of the two outputs related to the two different initial states.
The observability matrix of the couple (CT (θ), AT (θ)) is
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OT (θ) =


CT (θ)

CT (θ)AT (θ)
...

CT (θ)A5
T (θ)

 =



cT (θ) 0
0 cT (θ)

cT (θ)A(θ) 0
0 cT (θ)A(θ)
...

...
cT (θ)A5(θ) 0

0 cT (θ)A5(θ)


.

that is a (12× 6) matrix from which it is possible to extract the (6× 6) minor

M =



cT (θ) 0
cT (θ)A(θ) 0
cT (θ)A2(θ) 0

0 cT (θ)
0 cT (θ)A(θ)
0 cT (θ)A2(θ)

 .

that is non singular in Θ because it is

det{M} = [det{O(θ)}]2

and det{O(θ)} is different from zero, as shown in (17) and commented above.
Similarly the controllability matrix of the couple (AT (θ), BT (θ)) is

CT (θ) =
[
BT (θ) AT (θ)BT (θ) ... A5

T (θ)BT (θ)
]

=

=
[
b(1)(θ) 0 A(θ)b(1)(θ) 0 ... A5(θ)b(1)(θ) 0

0 b(2)(θ) 0 A(θ)b(2)(θ) ... 0 A5(θ)b(2)(θ)

]
,

which is a (6× 12) matrix from which it is possible to extract the (6× 6) minor

N =
[
b(1)(θ) A(θ)b(1)(θ) A2(θ)b(1)(θ) 0 0 0

0 0 0 b(2)(θ) A(θ)b(2)(θ) A2(θ)b(2)(θ)

]
,

which is non singular. In fact its determinant is

det{N} = det{C(1)(θ)} · det{C(2)(θ)}

where det{C(1)(θ)} and det{C(2)(θ)} are the determinants of the controllability matrices related
to the doses d1 and d2, respectively, and are different from zero, as already shown in (18). So
(31) is observable and controllable.

Now we can prove the following result.

Theorem 3. The basic model (12) is locally (but not globally) identifiable with respect to the
unknown parameter vector θ given by (26) and ranging in the set Θ defined by (27), exploiting
the outputs of the model obtained from two different radiation doses.

Proof. Given θ ∈ Θ, let us consider the (1× 6) vector

14



φ =



χ∗

χ∗D
µ∗D
µ∗N
δ∗1
δ∗2

 ∈ Θ

and the (6× 6) matrix

P =



p11 p12 ... p16

p21 p22 ... p26

p31 p32 ... p36

p41 p42 ... p46

p51 p52 ... p56

p61 p62 ... p66

 .

Dividing the P matrix into four (3× 3) blocks

P =
[
P11 P12

P21 P22

]
(32)

it is easy to show that from the matrix equations (16), developing the block products, the following
subsystems are obtained:

(a)


P11A(θ) = A(φ)P11

cT (θ) = cT (φ)P11

P11b
(1)(θ) = b(1)(φ)

(b)


P12A(θ) = A(φ)P12

0 = cT (φ)P12

P12b
(2)(θ) = 0

(c)


P21A(θ) = A(φ)P21

0 = cT (φ)P21

P21b
(1)(θ) = 0

(d)


P22A(θ) = A(φ)P22

cT (θ) = cT (φ)P22

P22b
(2)(θ) = b(2)(φ)

(33)

The subsystems (a) and (d) of (33) are similar to the one studied in the proof of theorem 2. So
both the subsystems have two solutions of the type (24). So from (a) and (d) it results that



χ∗ = χ
χ∗D = χD
µ∗D = µD
µ∗N = µN
δ∗1 = δ1
δ∗2 = δ2
P11 = P22 = I

or



χ∗ = χ
χ∗D = χD
µ∗D = µN + χD
µ∗N = µD − χD
δ∗1 = δ1
δ∗2 = δ2

P11 = P22 =

 1 0 0
0 1 µD−χD−µN

µD

0 0 χD+µD
µD


.

Moreover, since the two subsystems (b) and (c) of (33) are similar, it is sufficient to study one of
them, for instance the problem (b). From the first solution obtained from (a) and (d) of (33), the
system (b) can be rewritten as
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 p44χ p45(χD − µD) + p46µD −p46µN
p54χ p55(χD − µD) + p56µD −p56µN
p64χ p65(χD − µD) + p66µD −p66µN

 =

=

 p44χ p45χ p46χ
p54(χD − µD) p55(χD − µD) p56(χD − µD)
p54µD − p64µN p55µD − p65µN p56µD − p66µN

 , (34)

with


p44 + p54 + p64 = 0
p45 + p55 + p65 = 0
p46 + p56 + p66 = 0

,


p44δ + p45(1− δ) = 0
p54δ + p55(1− δ) = 0
p64δ + p65(1− δ) = 0

. (35)

Equalling the elements (1, 3) and then the elements (2, 1) of (34), it results that p46 = p54 = 0.
Applying the same procedure to the elements (1, 2) and then (3, 1) of (34), it follows that p45 =
p64 = 0. Through (35) it is easy to verify also that p44 = p55 = p56 = p65 = p66 = 0.

Similarly, from the second solution obtained from (a) and (d) of (33), the system (c), taking
into account that

A(φ) =

 χ 0 0
0 −µN 0
0 (µN + χD) (χD − µD)

 ,
can be rewritten as

 p44χ p45(χD − µD) + p46µD −p46µN

p54χ p55(χD − µD) + p56µD −p56µN

p64χ p65(χD − µD) + p66µD −p66µN

 =

=

 p44χ p45χ p46χ
−p54µN −p55µN −p56µN

p54(µN + χD) + p64(χD − µD) p55(µN + χD) + p65(χD − µD) p56(µN + χD) + p66(χD − µD)

 ,

with


p44 + p54 + p64 = 0
p45 + p55 + p65 = 0
p46 + p56 + p66 = 0

,


p44δ + p45(1− δ) = 0
p54δ + p55(1− δ) = 0
p64δ + p65(1− δ) = 0

.

Proceeding as for (34) and (35), it is easy to obtain that the (3× 3) matrix P12 = 0. So, for both
the solutions of (a) and (d) of (33), the solutions of the subsystems (b) and (c) of (33) are the
matrices P12 = P21 = 0.
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In conclusion we have that system (16) admits the two different solutions:

(θ, I)
and


χ
χD

µN + χD
µD − χD
δ1δ2

 ,


1 0 0 0 0 0
0 1 µD−χD−µN

µD
0 0 0

0 0 χD+µD
µD

0 0 0
0 0 0 1 0 0
0 0 0 0 1 µD−χD−µN

µD

0 0 0 0 0 χD+µD
µD




.

which are both admissible, since the the vectors belong to Θ and the matrices are non singular.
So, for lemma 2, we can say that model (12) is locally identifiable by exploiting the model response
yT (t; θ) to at least two different doses d1 and d2.

�

3.2 Identifiability of the model with subcompartments

In this section it will be proved the global identifiability of the model (5) - (7). Let us study
at first, as for the previous case, the identifiability of the parameter vector θ,

θ =


χ
χD
µD
µN
δ

 , (36)

ranging in the admissible set Θ ⊂ R5, with

Θ = {θ ∈ R5 | χ, χD, µD, µN > 0, µD > χD and 0 < δ < 1} . (37)

Denoting by

x(t) =



V (t)
VD1(t)
VD2(t)
VD3(t)
VN1(t)
VN2(t)
VN3(t)


(38)

the state vector of the model with three subcompartments, and by
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A(θ) =



χ 0 0 0 0 0 0
0 (χD − µD) 0 0 0 0 0
0 µD (χD − µD) 0 0 0 0
0 0 µD (χD − µD) 0 0 0
0 0 0 µD −µN 0 0
0 0 0 0 µN −µN 0
0 0 0 0 0 µN −µN


,

cT (θ) =
[

1 1 1 1 1 1 1
]
,

b(θ) =



δ
(1− δ)

0
0
0
0
0


,

(39)

respectively the model dynamical matrix, the state-output matrix and the fraction of the initial
state vector independent of the spheroid initial volume, the model (5) - (7) can be again rewritten
in the compact form (12).

In order to prove the identifiability property of this model by the similarity transformation
method it is necessary to verify the observability and the controllability properties of the system,
for θ ∈ Θ. With reference to the observability matrix O(θ) of the couple (cT (θ), A(θ)), we obtain
by symbolic computation (using MATLAB 7.6):

det{O(θ)} = −µ3
Nµ

3
D(χ+ µD − χD)3(χ+ µN )3

(µ3
N + 3χDµ2

N − 3µNχDµD + 3µNχ2
D + χ3

D − 2χ2
DµD + χDµD)3

, (40)

and it is easy to verify that, for θ ∈ Θ, each factor of the above expression is positive. In
particular the last factor can be written in the following form, by defining X = µD/χD > 1 and
Y = µN/χD > 0:

χ9
D[X2 − (2 + 3Y )X + (1 + Y )3]3 ,

and it is immediate to verify that the second-order polynomial in X in square brackets is always
positive for Y > 0. Hence the couple (cT (θ), A(θ)) is observable in Θ.

The determinant of the controllability matrix C(θ) is similarly obtained by a symbolic com-
putation:

det{C(θ)} = δ(1− δ)6µ12
D µ

3
N (χ+ µN )3(χ+ µD − χD)3 (41)

and it is positive in Θ because all the factors are positive. Hence the couple (A(θ), b(θ)) is
controllable in Θ.

Now we can prove the following result.

Theorem 4. The model (5) - (7) is globally identifiable with respect to the unknown parameter
vector θ given by (36) and ranging in the set Θ defined by (37). In fact ∀θ ∈ Θ it does not exist
in Θ another parameter vector φ that gives the same output.
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Proof. Given θ ∈ Θ, let us consider the (1× 5) vector

φ =


χ∗

χ∗D
µ∗D
µ∗N
δ∗

 ∈ Θ

and the (7× 7) matrix

P =



p11 p12 ... p17

p21 p22 ... p27

p31 p32 ... p37

p41 p42 ... p47

p51 p52 ... p57

p61 p62 ... p67

p71 p72 ... p77


.

From the first equation of (16) it is easy to obtain the following equation system:

r1

r2

r3

r4

r5

r6

r7


=
[

c1 c2 c3 c4 c5 c6 c7

]
, (42)

where ri is a (1× 7) row vector

ri =



pi1χ
pi2(χD − µD) + pi3µD
pi3(χD − µD) + pi4µD
pi4(χD − µD) + pi5µD
−pi5µN + pi6µN
−pi6µN + pi7µN
−pi7µN



T

, i = 1, 2, ..., 7 ,

and ci is a (7× 1) column vector

ci =



p1iχ
∗

p2i(χ∗D − µ∗D)
p2iµ

∗
D + p3i(χ∗D − µ∗D)

p3iµ
∗
D + p4i(χ∗D − µ∗D)
p4iµ

∗
D − p5iµ

∗
N

p5iµ
∗
N − p6iµ

∗
N

p6iµ
∗
N − p7iµ

∗
N


, i = 1, 2, ..., 7 .
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Furthermore, using the second and the third equation of (16) it is easy to obtain, respectively,
the following relations: 

p11 + p21 + ...+ p71 = 1
p12 + p22 + ...+ p72 = 1
...
p17 + p27 + ...+ p77 = 1

(43)



p11δ + p12(1− δ) = δ∗

p21δ + p22(1− δ) = (1− δ∗)
p31δ + p32(1− δ) = 0
...
p71δ + p72(1− δ) = 0

(44)

From the equality of the elements of position (1, 7) and of the elements of position (2, 1) of
the system (42) we have

p17(χ∗ + µN ) = 0, p21(χ+ µ∗D − χ∗D) = 0,

and keeping in mind the parameter constraints of Θ, it results that p17 = p21 = 0. Using these
first results and equalling the elements of the first row of both sides of (42) and then the elements
of the first column of both sides of (42), it is easy to show that p12 = p13 = p14 = p15 = p16 =
p31 = p41 = p51 = p61 = p71 = 0. From the first equation of (43) it results that p11 = 1; using this
value and setting equal the (1, 1) element of (42) it results that χ∗ = χ. So, from system (44) it
is immediate to obtain that δ∗ = δ, p22 = 1 and p32 = p42 = p52 = p62 = p72 = 0.

Now, equalling the elements under the principal subdiagonal of (42) it is easy to obtain that
p43 = p53 = p63 = p73 = 0 from the equalities of the second column, p54 = p64 = p74 = 0 from the
equalities of the third column, p65 = p75 = 0 and p76 = 0, respectively from the equalities of the
fourth and fifth column. So, at this point, by summing the elements of the second column of the
left-hand of (42) and of the right-hand of (42), and then setting them equal, it is easy to obtain
that χ∗D = χD. Repeating the same procedure for the fifth column of both sides of (42) we have

(p25 + p35 + p45)χD = 0

from which, since χD > 0
p25 + p35 + p45 = 0 . (45)

From (45) and from the fifth equation of (43) it follows that p55 = 1. Equalling the elements
(3, 2), (4, 3) and (5, 4) of (42) it can be obtained respectively that

p33µD = µ∗D, p44µD = p33µ
∗
D, µD = p44µ

∗
D

which imply that µ∗D = µD and p33 = p44 = 1. At this point, equalling the elements of the second,
the third and the forth row of the both sides of (42), we obtain that p23 = p24 = p25 = p26 =
p27 = 0, p34 = p35 = p36 = p37 = 0 and p45 = p46 = p47 = 0.

At this point we have obtained that
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P =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 p56 p57

0 0 1 0 0 p66 p67

0 0 0 0 0 0 p77


, with


χ∗ = χ
χ∗D = χD
µ∗D = µD
δ∗ = δ

and the available equations are: −µN + p56µN −p56µN + p57µN −p57µN
p66µN −p66µN + p67µN −p67µN

0 p77µN −p77µN

 =

=

 −µ∗N −p56µ
∗
N −p57µ

∗
N

µ∗N p56µ
∗
N − p66µ

∗
N p57µ

∗
N − p67µ

∗
N

0 p66µ
∗
N p67µ

∗
N − p77µ

∗
N


(46)

and {
p56 + p66 = 1
p57 + p67 + p77 = 1

. (47)

By summing the elements of the third column of the left-hand of (46) and of the right-hand of
(46), and then making them equal, it is easy to obtain that

µN = p77µ
∗
N (48)

and then making the elements (2, 1) and (3, 2) equal we obtain

p66µN = µ∗N , p77µN = p66µ
∗
N (49)

From (48) and (49) it follows that p66 = p77 = 1 and µ∗N = µN . With these last results, from
(46) and (47), it is immediate to verify that p56 = p57 = p67 = 0.

Therefore we have that system (16) admits only the trivial solution (θ, I). So, from lemma
1, we can say that the model (5) - (7) is globally identifiable with respect to the five considered
parameters.

�

Theorem 4 does not establish the global identifiability of the model (5) - (7) with respect to
the radiological parameters. In order to obtain the identifiability of the couple (α, β) we again
have to consider two different doses and the corresponding parameters δ1 and δ2 that depend
univocally from the couple (α, β), as done previously for the basic model. So, let us consider
two different initial states x(1)(0+; θ) and x(2)(0+; θ) related to the two different doses and let us
observe parallely the two corresponding system responses. Let us define a new parameter vector
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θ =



χ
χD
µD
µN
δ1
δ2

 (50)

ranging in the admissible set Θ ⊂ R6, with

Θ = {θ ∈ R6 | χ, χD, µD, µN > 0, µD > χD, 0 < δ1 < 1 and 0 < δ2 < 1} . (51)

Let us define by xT (t) ∈ R14 the total state vector

xT (t) =
[
x(1)(t)
x(2)(t)

]
, (52)

that is the union of two state vectors of the type (38), x(1)(t) and x(2)(t), related to the two
different initial states, and the block matrices

AT (θ) =
[
A(θ) 0

0 A(θ)

]
, CT (θ) =

[
cT (θ) 0

0 cT (θ)

]
,

BT (θ) =
[
b(1)(θ) 0

0 b(2)(θ)

]
,

(53)

where A(θ) and cT (θ) are the same matrix defined in (39), b(1)(θ) and b(2)(θ) are such that

b(1)(θ) =



δ1
(1− δ1)

0
0
0
0
0


, b(2)(θ) =



δ2
(1− δ2)

0
0
0
0
0


. (54)

Hence, the extended model with subcompartments can be written as in (31), with AT (θ), CT (θ)
and BT (θ) that are now, respectively, the (14× 14), (2× 14) and (14× 2) matrices shown in (53).

The observability matrix of the couple (CT (θ), AT (θ)) is the (28× 14) matrix

OT (θ) =



cT (θ) 0
0 cT (θ)

cT (θ)A(θ) 0
0 cT (θ)A(θ)
...

...
cT (θ)A13(θ) 0

0 cT (θ)A13(θ)


,

from which it is possible to extract a (14× 14) minor
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M =



cT (θ) 0
...

...
cT (θ)A6(θ) 0

0 cT (θ)
...

...
0 cT (θ)A6(θ)


,

that is non singular in Θ, because it is

det{M} = [det{O(θ)}]2

and det{O(θ)} is different to zero, as shown in (40) and commented above.
Similarly the controllability matrix of the couple (AT (θ), BT (θ)) is the (14× 28) matrix

CT (θ) =
[
b(1)(θ) 0 A(θ)b(1)(θ) 0 ... A13(θ)b(1)(θ) 0

0 b(2)(θ) 0 A(θ)b(2)(θ) ... 0 A13(θ)b(2)(θ)

]
,

from which it is possible to extract a (14× 14) minor

N =
[
b(1)(θ) . . . A6(θ)b(1)(θ) 0 . . . 0

0 . . . 0 b(2)(θ) . . . A6(θ)b(2)(θ)

]
,

which is non singular. In fact its determinant is

det{N} = det{C(1)(θ)} · det{C(2)(θ)}

where det{C(1)(θ)} and det{C(2)(θ)} are the determinants of the controllability matrices related,
respectively, to the doses d1, d2 and they are different from zero, as already shown in (41). So
the triple (AT (θ), BT (θ), CT (θ)) is observable and controllable.

Now we can prove the following result.

Theorem 5. The model (5) - (7) is globally identifiable with respect to the unknown parameter
vector θ given by (50) and ranging in the set Θ defined by (51), exploiting the outputs of the
model obtained from two different radiation doses.

Proof. Given θ ∈ Θ, let us consider the (1× 6) vector

φ =



χ∗

χ∗D
µ∗D
µ∗N
δ∗1
δ∗2

 ∈ Θ

and the (14× 14) matrix
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P =


p11 p12 ... p114

p21 p22 ... p214
...

...
. . .

...
p141 p142 ... p146

 .
As already done in the proof of Theorem 3, let us divide the P matrix into four (7×7) blocks,

as in (32). We obtain the same four subsystems (33), where now the triple (AT (θ), BT (θ), CT (θ)),
is the one defined in (53).

The subsystems (a) and (d) of (33) are similar to the one studied above in this section. So
both the subsystems have only the trivial solution (θ, I). So from (a) and (d) it results that

χ∗ = χ
χ∗D = χD
µ∗D = µD
µ∗N = µN
δ∗1 = δ1
δ∗2 = δ2
P11 = P22 = I

. (55)

It is simple to verify, as in the proof of Theorem 3, that, with the results (55), the subsystems
(c) and (b) of (33) give the solutions P12 = P21 = 0.

Therefore we have that system (16) admits only the trivial solution (θ, I). Thus, from lemma
1, we can say that the model (5) - (7) is globally identifiable by exploiting the model response
yT (t; θ) to at least two different doses d1 and d2.

�

4 Concluding remarks

In this paper we have considered two spatially uniform dynamical models of tumour growth
after a single instantaneous radiative treatment: the basic model of Section 2.2 and the model
with multiple subcompartments of Section 2.3. In these two models the details of the spatial
structure of the tumour are neglected and the attention is focused on the temporal evolution
of tumour overall volume after the radiative treatment. The models can be used for different
applications. For instance, to asses the efficiency of the radiotherapeutic treatment, but for this
application it is necessary to identify the unknown parameters. A preliminary condition, that is
necessary to verify before performing the parameter estimation, is the global identifiability of the
model.

In this paper a detailed study of the identifiability properties of the two models is done, point-
ing out that the basic model is only locally identifiable, whereas the model with subcompartments
is globally identifiable, provided that the responses to two different radiation doses are considered.

Therefore the model with subcompartments shows better properties with respect to the basic
one. In fact, in addition to a significantly better fit that can be obtained by this model with
respect to the fitting obtainable with the basic model, it enjoys the important property of global
identifiability that assures a correct formulation of the parametric identification problem. The

24



parametric identification of the model and the corresponding validation, with respect to both the
fitting and the prediction capability of the experimental data, are treated in [2].
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