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Abstract. Over 35,000 cases of Japanese encephalitis (JE) are reported worldwide each year. Culex tritaeniorhynchus
is the primary vector of the JE virus, while wading birds are natural reservoirs and swine amplifying hosts. As part of
a JE risk analysis, the ecological niche modeling programme, Maxent, was used to develop a predictive model for the
distribution of Cx. tritaeniorhynchus in the Republic of Korea, using mosquito collection data, temperature, precipita-
tion, elevation, land cover and the normalized difference vegetation index (NDVI). The resulting probability maps from
the model were consistent with the known environmental limitations of the mosquito with low probabilities predicted
for forest covered mountains. July minimum temperature and land cover were the most important variables in the
model. Elevation, summer NDVI (July-September), precipitation in July, summer minimum temperature (May-August)
and maximum temperature for fall and winter months also contributed to the model. Comparison of the Cx. tritae-
niorhynchus model to the distribution of JE cases in the Republic of Korea from 2001 to 2009 showed that cases among
a highly vaccinated Korean population were located in high-probability areas for Cx. tritaeniorhynchus. No recent JE
cases were reported from the eastern coastline, where higher probabilities of mosquitoes were predicted, but where only
small numbers of pigs are raised. The geographical distribution of reported JE cases corresponded closely with the pre-
dicted high-probability areas for Cx. tritaeniorhynchus, making the map a useful tool for health risk analysis that could
be used for planning preventive public health measures.

Keywords: Culex tritaeniorhynchus, geographical distribution, ecological niche modeling, Japanese encephalitis virus,
Republic of Korea.

Introduction

Culex tritaeniorhynchus Giles is the primary vec-
tor of Japanese encephalitis (JE) virus, and JE is dis-
tributed in parts of Asia and the Pacific (Straus and
Straus, 2002; Erlanger et al., 2009). Worldwide,
more than 35,000 cases of JE, with approximately
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10,000 deaths, are reported annually. Although only
about 1 per 200 infections with JE are symptomatic,
many of those who survive suffer mild to severe
long-term neurological sequelae.

While JE virus has been detected in several species
of mosquitoes, the primary vector is Cx. tritae-
niorhynchus, which prefers to feed on water birds,
pigs and cattle. The primary natural reservoirs for
JE are large water birds associated with streams,
ditches, canals and rice paddies. Swine, when in
proximity to large water birds, serve as amplifying
hosts, which results in high infection rates in the
mosquito populations.

A national vaccination programme, initiated in
1967, greatly reduced the incidence of JE cases in the
Republic of Korea (ROK) over the last two decades
from thousands of cases (e.g. 6,897 in 1958) to 0-7
cases annually (K-CDC, 2008). Additionally, the K-
CDC vector surveillance programme alerts the pub-
lic when high populations of  Cx. tritaeniorhynchus
occur and advises the use of personal protective
measures against mosquito bites. As a result of the
vaccination and vector surveillance programmes,
transmission and disease risk among unvaccinated
populations (e.g. US military and travelers) is
unknown.  While the incidence of JE remains low in
the ROK, JE cases are on the increase in other coun-
tries (e.g. Bangladesh, Cambodia, India and Lao
People’s Democratic Republic) which lack compre-
hensive vaccination and vector control programmes
(Erlanger et al., 2009). 

Ecological niche modeling programmes have been
used to predict the distribution of vector popula-
tions (e.g. Peterson and Shaw, 2003; Moffett et al.,
2007; Foley et al., 2009). These modeling programs
use known occurrence locations of the species and
environmental data in a raster format to infer envi-
ronmental requirements of the species, and produce
output maps predicting species distributions. In our
current research effort, we used the Maxent pro-
gramme (Phillips et al., 2006) to model the distribu-
tion of Cx. tritaeniorhynchus in the ROK.  

Initial Cx. tritaeniorhynchus modeling efforts in
the ROK, used 27 adult mosquito collection sites

that were part of a routine surveillance programme
on US military bases (Masuoka et al., 2009). In this
earlier study, several problems were noted in the
use of these data for modeling. The sampling areas
were restricted primarily to urban land cover at
lower elevations (<310 m). To improve environ-
mental sampling in the current study, additional
mosquito collection sites were incorporated. The
accuracy and contribution of the environmental
input variables to the resulting model were exam-
ined. The output prediction map of Cx. tritae-
niorhynchus distribution was compared with
reported JE case locations from 2001 to 2009,
swine density and human population density in the
ROK. 

Understanding the geographical distribution of
Cx. tritaeniorhynchus can lead to targeted preven-
tive measures against the transmission of JE virus to
humans, e.g. vaccination in high risk areas, mosqui-
to control and use of effective insect repellents.
Because mosquito distributions are limited by envi-
ronmental factors (e.g. temperature, precipitation,
elevation, etc.), these variables can be used to devel-
op mosquito distribution models.

Materials and methods

Mosquito data

Mosquito data were collected by the U.S.
Army’s 65th Medical Brigade (Yongsan Army
Garrison, ROK) (Kim et al., 2004, 2005). Adult
and larval mosquito data came from collections
made from May through October in the period
2002-2009 at US military installations, training
sites, and other non-military areas of the ROK.
Although the mosquitoes were collected by a vari-
ety of methods (i.e. dipping and multiple light-
trap types), the data were used only to demon-
strate the presence of Cx. tritaeniorhynchus for
the purpose of modeling. Each positive collection
site was assigned a value of one mosquito, regard-
less of the number of mosquitoes collected at that
site. Using this strategy, a total of 96 unique col-
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lection locations (presence records) for Cx. tritae-
niorhynchus were obtained. 

To study the seasonal abundance of adult mosqui-
toes in the ROK, data from bimonthly adult mos-
quito collections, using black-light traps model
“Black Hole” by BioTrap (http://www.bio-
trap.com), were examined for seven locations in
agricultural settings during the summer of 2009.
The numbers of Cx. tritaeniorhynchus mosquitoes
collected bimonthly were totaled and mapped to
show their distribution. The seven collection loca-
tions were included as part of the 96 presence
records for the model.   

Environmental data

Environmental raster data for this project were
obtained from several sources. Each raster layer was
resampled to 1-km pixels, georeferenced and subset
to the ROK study site.

Climate data for the model were obtained from
WorldClim, version 1.4 (http://www.worldclim.
org).  Gridded WorldClim precipitation and temper-
ature data are based on monthly ground weather
station measurements and averaged from years
1950 to 2000 for each month (Hijmans, 2005).    

Elevation data were also obtained from
WorldClim. The programme processed the Shuttle
Radar Topography Mission (SRTM) data obtained
from NASA (http://www2.jpl.nasa.gov/srtm) to the
same projection and scale as the other WorldClim
layers. 

Land cover data, derived from Moderate
Resolution Imaging Spectroradiometer (MODIS),
were obtained from Boston University
(http://www.modis.bu.edu/landcover). The data are
in the International Geosphere Biosphere
Programme (IGBP) classification scheme consisting
of 17 land cover classes. 

Rice fields serve as an important larval habitat for
Cx. tritaeniorhynchus. Unfortunately, the IGBP
classification does not have a separate class for rice,
which is the primary agricultural crop in the ROK.
The ROK produced nearly twice as much rice by

weight as any other single crop in 2007 (http://fao-
stat.fao.org/site/339/default.aspx). While cropland
cannot be directly substituted for rice land cover, it
does provide an indication of where rice fields are
likely to be located. 

The land cover was used in its original format and
was also processed with a filter that counted the
number of cropland pixels within each 5x5 block of
pixels in the file (approximately 5x5 km). The fil-
tering allows the model to take into account the
amount of cropland surrounding the mosquito col-
lection sites and not just the one pixel (1 km2) at the
collection site. In capture and release studies,
Cx. tritaeniorhynchus mosquitoes have been collect-
ed up to 8.4 km from the release site (Wada et al.,
1969) but are believed to have a more typical flight
range of <1.0 km. Therefore, a 5x5 pixel filter
includes pixels within 2.5 km of each collection site
to account for this flight range. 

The normalized difference vegetation index
(NDVI) was used in the model as a measure of the
amount of healthy green vegetation on the
ground. NDVI was derived from SPOT vegetation
sensor data. The NDVI data were processed to
create 12 monthly mean composite NDVI images
from data collected from May 1998 to April
2008.  

Modeling

The ecological niche modeling programme
Maxent (Phillips et al., 2004, 2006; Phillips and
Dudik, 2008) was used to model the distribution of
Cx. tritaeniorhynchus. Maxent takes raster environ-
mental layers (e.g. temperature, elevation) and a
text file of species’ locations, infers the environmen-
tal requirements for the species and produces a map
that predicts the distribution of a species. This pro-
gramme can be downloaded from Princeton
University (http:// www.cs.princeton.edu/~schapire
/maxent). Maxent is one of several programmes
available for ecological niche modeling and was
selected for this project based on its performance
compared to other modeling programmes (Elith et
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al., 2006) and because it does not require species
absence data, which were not always available for
this study.  

To test the accuracy of the model, 25% of the 96
Cx. tritaeniorhynchus presence records were ran-
domly selected and reserved for testing, and the
remaining 75% were used for building the model
(training points). Maxent uses two methods to cal-
culate the accuracy of the model. The first method is
a calculation of the area under the curve (AUC) for
the receiver operation characteristic (ROC), a graph-
ical representation of the sensitivity versus 1 minus
the specificity. The AUC method has been described
by other authors and is widely used to evaluate mod-
els (Swets, 1988; Fielding and Bell, 1997), including
ecological niche models (Phillips et al., 2006).  

In the second method to test accuracy, a threshold
(e.g. minimum training presence) is used to split the
continuous range of probability values into two sets
representing predicted presence or absence. The
programme then calculates the p-values for the null
hypothesis that test points are predicted to be no
better than they would by a random prediction
(Phillips et al., 2006).  

In order to determine the importance of each envi-
ronmental variable to predicting the species pres-
ence, the Maxent programme performs a jackknife
test. The jackknife procedure runs the model numer-
ous times: (i) a model  is created with all variables;
(ii) models are created with all variables excluding
one variable each time the model is run; and (iii)
models are created using only one variable at a time
(Phillips et al., 2006). The importance of an envi-
ronmental variable is determined based on having a
large training gain when the variable is used alone in
the model and a subsequent decrease in training
gain when removed from the model.  

Because many of the collection sites fell within
urban land cover pixels, we wanted to compare the
influence of land cover versus climate and eleva-
tion on the output probability maps. Therefore,
the Maxent model was run using three different
sets of environmental data: (i) all available layers
(climate, elevation, and land cover related layers

such as NDVI); (ii) climate and elevation; and (iii)
climate.

Comparison data sets  

To help determine how useful the model is in
predicting JE for the ROK, the model output was
compared to three other geographic data sets. JE
human case data were obtained for 2001-2009
from the Disease Web Statistics System of the
Korea Centers for Disease Control (K-CDC)
(http://stat.cdc.go.kr/). Case locations were report-
ed at either the city or district level. An approxi-
mate latitude/longitude position, for the center of
each city or district where cases were reported, was
determined using a geographical information sys-
tems (GIS) approach.

As swine serve as an amplifying host of JE, com-
parison of the distribution and density of pig popu-
lations with the model is useful in providing a better
understanding of potential human disease. A grid-
ded estimate of pig density (number of pigs per km2)
was obtained from the Food and Agricultural
Organization (FAO) (http://www.fao.org/geonet-
work).  

Human population density, in combination with
other factors, can affect potential human JE disease
rates. A LandScanTM 2008 High Resolution Global
Population Data Set was obtained from UT-Battelle,
Oak Ridge National Laboratory, to compare with
the locations of the JE cases (http://www.ornl.gov
/sci/landscan/). LandScan is worldwide population
data stored in a 30- by 30-second resolution lati-
tude/longitude grid. Each cell within the grid repre-
sents an estimate of the number of people located
within that grid cell during daylight hours (Dobson
et al., 2000). 

Results

Maxent modeling results

Of the 96 collection sites for Cx. tritae-
niorhynchus, 72 points were used to build the model
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(training points) and 24 points were withheld to test
the model (Fig. 1a). The model was run three times
to observe the effect of using: (i) all layers (land
cover, NDVI, climate and elevation); (ii) only the cli-
mate and elevation; and (iii) only the climate layers
(Fig. 1b-1d). The climate only and the climate with
elevation models were similar. The model using land
cover showed higher probabilities in the same areas
as the other two models, but locally, the land cover

layers made small differences to the probability val-
ues. The final model using all variables is available
for download at http://www.mosquitomap.org.

Maxent’s statistical evaluation of the models indi-
cated that all three models provided useful predic-
tions (Table 1). For all of the models, the AUC was
above 0.9, indicating very high accuracy (Swets,
1988; Manel et al., 2001). The model that included
all variables had the highest AUC. Relatively high

Fig. 1. Modeling results. (a) presence records for Cx. tritaeniorhynchus used in the model showing the randomly selected train-
ing and testing points; (b) Maxent output map showing the predicted probability (0 to 1) of occurrence for Cx. tritaeniorhynchus
based on all variables; (c) Maxent output map using  elevation and climate; and (d) Maxent output map using only climate. 
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AUC values (>0.8) for the testing points, were
another indication of the predictive power of the
model. Finally, Maxent tests the null hypothesis that
the test points are predicting no better than a ran-
dom prediction using various thresholds (Phillips et
al., 2006). All models demonstrated highly signifi-
cant, better-than-random performance (P <0.001). 

Contributions of the variables to the model

The jackknife test (Fig. 2) showed minimum tem-
perature in July (tmin07) as the environmental vari-
able with the highest training gain when used alone
in the model, which indicates that it had the most
predictive ability of any variable. The variable,
which decreased the gain the most when excluded
from the model, was land cover (BU_Landcover_
ealaea.sds01), indicating that land cover had the
most unique contribution to the model.  

Comparison of training gains of models built with
single variables illustrates some interesting varia-
tions during different seasons. For example, the
training gain increased in the summer months for
both NDVI (spot07mean-spot09mean) and mini-
mum temperature (tmin05-tmin08) variables.
However, for maximum temperature, the training
gain was higher in the fall and winter months, indi-
cating that winter maximum temperatures help
determine the probability of mosquito occurrence.
The training gain for precipitation was highest dur-
ing the month of July before the peak Cx. tritae-
niorhynchus populations occur.

Response of Cx. tritaeniorhynchus to environmental
variables

An examination of the environmental conditions
at the collections sites (Tables 2, 3 and 4) and

Input data to model AUC training points AUC test points P-value minimum training presence

All environmental data

Climate and elevation data only

Climate data only

0.940

0.921

0.915

0.884

0.898

0.889

<0.001

<0.001

<0.001

Table 1. Statistical evaluation of models built using same presence records but different sets of environmental variables.

Fig. 2. Jackknife of regularized training gain. Red bar repre-
sents the training gain achieved by a model using all variables.
Each dark blue bar represents the training gain achieved in the
model using a single variable. Each aqua bars represents the
training gain achieved when that particular variable is dropped
from the model. See abbreviations of variable names in Table 2.
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graphs of environmental variables versus the prob-
ability of occurrence (Fig. 3), illustrate the envi-
ronmental limits of Cx. tritaeniorhynchus in the
ROK.

Elevation: The maximum elevation at the collec-
tion sites is 517 m with a mean elevation of 82 m
(Table 2). The elevation response curve (Fig. 3)
shows that as elevation increases, the probability of
JE occurrence decreases.  

Land cover: As determined from the land cover,
urban/built-up areas, and croplands are the domi-
nant land cover types at the collection sites (Table
3). Many of the cropland areas are rice fields, which
provide suitable habitat for Cx. tritaeniorhynchus.
The urban land cover class may be over emphasised
because many of the collection sites are located on
US military bases. Many of these urban military
bases are adjacent to rice cropland as demonstrated
by the 5x5 filtered cropland images; 60 of the 96

collection sites (62.5%) were within or near crop-
land pixels (Table 4). The probability of Cx. tritae-
niorhynchus occurrence increased with increasing
numbers of cropland pixels within a 5x5 pixel win-
dow up to 15 cropland pixels but subsequently
decreased (Fig. 3).  

Climate: The highest mean summer climate values
at the collection sites occurred during July for pre-
cipitation, August for minimum temperature and
August for maximum temperature (Table 2). Cx. tri-
taeniorhynchus probability of occurrence generally
increases as minimum temperature in July increases
(Fig. 3).   

NDVI: The highest mean NDVI at the collection
sites occurred during August (Table 2). For the
SPOT mean NDVI image in August, the probability
of Cx. tritaeniorhynchus presence initially increases
with increasing NDVI, and then decreases at the
highest NDVI values (Fig. 3). 

Environmental variable (unit) Abbreviation Mean Minimum Maximum

Elevation (m)

Precipitation June (mm)

Precipitation July (mm)

Precipitation August (mm)

Precipitation September (mm)

Precipitation October (mm)

Minimum temperature June (°C)

Minimum temperature July (°C)

Minimum temperature August (°C)

Minimum temperature September (°C)

Minimum temperature October (°C)

Maximum temperature June (°C)

Maximum temperature July (°C)

Maximum temperature August (°C)

Maximum temperature September (°C)

Maximum temperature October (°C)

NDVI June

NDVI July

NDVI August

NDVI September

NDVI October

srtm_worldclim

prec06

prec07

prec08

prec09

prec10

tmin06

tmin07

tmin08

tmin09

tmin10

tmax06

tmax07

tmax08

tmax09

tmax10

spot06mean

spot07mean

spot08mean

spot09mean

spot10mean

82

151

308

239

155

51

16.5

21.3

21.5

15.8

8.5

25.8

28.4

29.5

25.4

20.1

0.561

0.620

0.658

0.634

0.562

3

103

134

143

123

41

13.9

18.6

18.4

12.4

4.7

21.4

25.3

26.9

23.3

17.8

0.200

0.216

0.240

0.236

0.176

517

250

455

299

204

90

18.1

23.4

24.1

20.2

14.0

27.9

30.0

30.9

26.8

22.3

0.828

0.796

0.828

0.832

0.812

Table 2. Mean, minimum and maximum values for selected environmental variables calculated for collection site locations.
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Comparison of Cx. tritaeniorhynchus models to
other geographic data

JE cases reported from 2001-2009 were diagnosed
in patients residing in areas of predicted high prob-
abilities for Cx. tritaeniorhynchus (Fig. 4). Although
the site of transmission was not determined and case
locations are approximate due to reporting by city
or district rather than patient address, the general
pattern of cases matched the general trend of the
model. Similarly, JE cases were usually reported near
or in predicted areas of high densities of swine (Fig.
5a). Although cases were reported in both urban and
rural areas, more cases were reported in urban areas
(Fig. 5b).  

Development of Cx. tritaeniorhynchus populations
over one summer

The seasonal numbers of Cx. tritaeniorhynchus
mosquitoes collected bimonthly at seven pig farms
during the summer of 2009 showed a high degree of
variability (Fig. 6). In early June, low numbers of Cx.
tritaeniorhynchus mosquitoes were collected at only
one site on the southern coast of the ROK. As the
season progressed, the numbers increased and mos-
quitoes were collected further north. Cx. tritae-
niorhynchus was found at six of the seven collection
sites in late August with numbers decreasing in
September as cooler weather returned and rice fields
were drained marking the end of the growing season. 

Discussion

The present model predicted lower probabilities of
Cx. tritaeniorhynchus for higher elevations, which is
consistent with literature reports that Cx. tritae-
niorhynchus is infrequently collected above 1,000 m
in elevation (Peiris et al., 1993; Pandey et al., 2003).
The highest collection site in the ROK occurred at
517 m and the model approaches zero probability of
occurrence at approximately 600 m and above (Fig.
3). At higher elevations in the ROK, the forested,
steeply sloped hillsides and mountains have very

Number of crop pixels Number of sites

0

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

18

21

23

36

3

9

8

4

3

2

2

1

3

8

1

1

1

8

1

1

1

2

1

Table 4. Number of cropland pixels occurring at the collec-
tion sites.

Land cover class Number of sites

Water

Evergreen broadleaf forest

Mixed forests

Closed shrublands

Woody savannas

Savannas

Croplands

Urban and built-up

Croplands/natural vegetation

Unclassified

7

1

9

2

3

4

24

37

7

2

Table 3. Land cover at  the 96 Cx. tritaeniorhynchus collection
sites.



Fig. 3. Graphs of probability of Cx. tritaeniorhynchus occurrence versus selected variables:  (a) elevation (srtm_worldclim); (b)
count of cropland pixels within a 5x5 pixel area (BU_crop12_sum_5x5); (c) minimum temperature in July (tmin07); and (d)
NDVI in August (spot08mean).

P. Masuoka et al. - Geospatial Health 5(1), 2010, pp. 45-57 53

limited larval habitat (e.g. intermittent to permanent
streams and rock and stream pools). However, addi-
tional sampling would be needed to determine the
actual elevation limit of Cx. tritaeniorhynchus in the
ROK.

In our initial modeling efforts (Masuoka et al.,
2009), the data were collected primarily on US mili-
tary bases, resulting in an over-sampling of urban
land cover and a predictive bias towards this vari-
able in the model. This was a concern since Cx. tri-
taeniorhynchus primarily breeds in rice fields and is
not an urban container breeder. However, adult
mosquitoes can fly from rice fields that are adjacent
to peri-urban villages and outlying perimeters of
larger urban areas. While additional collection sites
were established and the new data contain more
sites located in croplands, urban pixels still account
for 37 of the 96 collection sites (Table 3).  

Removing land cover as a variable in the model
addresses the issue of how the urban collection sites
affect the model. NDVI is a type of land cover since
it maps the amount of vegetation on the ground.

Fig. 4. Location (red dots) of reported cases of JE in the
Republic of Korea from 2001-2009. Background image is the
Maxent probability of presence map for Cx. tritae-
niorhynchus created using all environmental input variables.
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When land cover, the filtered cropland image, and
NDVI were removed from the model (Fig. 1), the
prediction was similar to the model using all vari-
ables.  While land cover in the model does affect the
probability locally, the overall prediction pattern is
similar to the other models. 

From the jackknife test, NDVI contributed more
training gain to the model in the summer months. As
NDVI is a measurement of the amount of healthy
green vegetation on the ground, the NDVI difference
between vegetated and non-vegetated areas occurs
during the growing season, which may account for
the increase in training gain during the summer. 

The NDVI response curve (Fig. 3d) plots the ini-
tial increase of Cx. tritaeniorhynchus probability of
occurrence as NDVI increases but then shows a
decreasing probability at higher NDVI values. The
drop in probability with the highest NDVI values
may reflect the under-sampling of densely vegetated
sites (many sample sites contain urban areas with
lower NDVI). In addition, mixed pixels containing
water (low NDVI) and vegetation have lower NDVI
than pure vegetation pixels containing no water or
mosquito habitat. Finally, previous studies have
shown initial planting and tillering rice stages to
have the highest immature abundance and decreas-
ing larval abundance with increasing rice height
(Mutero et al., 2000; Sunish and Ruben, 2001;
Jacob et al., 2007). Increased rice height is thought
to decrease larval abundance by blocking oviposi-
tion and reducing the temperature of the water by
blocking sunlight.

Precipitation in July, minimum temperature in the
summer months and maximum temperature in the
fall and winter months all strongly contributed to
the training gain in the jackknife test. Cx. tritae-
niorhynchus mosquitoes overwinter as adults on the
Korean peninsula and first appear at its southern tip
(Hong et al., 1993, 1994). The adults increase in
number with peak populations occurring in August
and September. Heavy rainfall in July and warmer
minimum summer temperatures would be con-
ducive for habitat formation and mosquito develop-
ment, respectively. In the model, more training gain

Fig. 5. (a)  Locations of reported cases of JE (red dots) compared
to predicted pig density (pigs per km2) in the Republic of Korea
for 2005,  (b) comparison of human population to locations of
reported JE cases (2001-2009) shown in red. Source of back-
ground image: LandScan 2008TM, ORNL, UT-Battelle, LLC.
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Fig. 6. Number of adult Culex tritaeniorhynchus mosquitoes collected over the summer of 2009 from seven locations.
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in winter months for the maximum temperature
may be a reflection of warmer temperatures that are
important for the survival of overwintering adult
mosquitoes. Because Cx. tritaeniorhynchus use the
rice fields as breeding sites, we incorrectly expected
that the sum of cropland pixels in a 5x5 pixel area
would be a more predictive variable in the model
than the land cover. The jackknife test showed that
the sum of the cropland pixels did not produce
much gain in the model when used by itself. In the
response curves (e.g. Fig. 3b), the sum of the crop-
land initially increases the probability and then
drops after 15 pixels of cropland. This is a reflection
of small cropland areas often associated with nar-
row stream and river valleys surrounded by forested
hills and mountains.    

There is an increased probability for the presence
of Cx. tritaeniorhynchus on the northeast coastline
(Fig. 4), with adults collected at two locations (Fig.
1a), but no recent cases of JE. The population image
(Fig. 5b) depicts some cities and smaller towns in
the area of predicted occurrence, so the lack of JE
cases is not due to low population numbers. The
lack of JE cases from these regions may be the result
of low estimated pig (amplifying hosts) populations
along the east coast (Fig. 5a), reducing the risk of JE
infections in mosquitoes and transmission to
humans. Human behaviours and practices in this
region such as housing structure or mosquito con-
trol practices, may also have an effect.

In summary, the Maxent output probability dis-
tribution maps were consistent with known ecolog-
ical characteristics for the distribution of Cx. tritae-
niorhynchus. The jackknife analysis showed that
elevation, land cover, minimum summer tempera-
tures, maximum fall and winter temperatures, and
summer NDVI are important in modeling the
species. An overlay of recent JE cases on the mos-
quito probability map showed that these maps are a
useful prediction of areas that are at increased risk
for JE. The prediction maps are useful for public
health officials to develop JE control strategies by
focusing limited resources on vaccine, vector control
and disease prevention programmes. 

The model developed here estimates the probabil-
ity of species occurrence. In disease control, the
abundance of the vector is also an important factor.
In future work, we will examine the use of satellite
weather data and NDVI to predict mosquito abun-
dance within the geographic high-risk areas and
attempt to expand the model to include other parts
of Southeast Asia.
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