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Abstract: The aim of this study 1s to evaluate the Nitrogen Oxides (NOx) emissions trough an accurate analysis
of vehicle driving behaviour. For this purpose, a three-way contingency table will be carried out, crossing the
NOx emissions, the speed and the acceleration. This contingency table will be analysed by the partition of
Marcotorchine index. To complement the survey Ordered Non-Symmetric Correspondence Analysis (ONSCA)

will be applied.
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INTRODUCTION

The Transport activities contribute significantly to air
pollutant emissions and the impact on emissions 1s a key
element in the evaluation of any transport policy or plan.
They are an important and often dominant source of air
pollution with direct and indirect negative impacts on
human health. Besides CO, emission, other traffic
emissions (HC, CO, NOx) have a relevant impact on
human health and, for historical towns, on manmade
heritage. Tts evaluation has therefore gained institutional
umportance in the International Commumity, both in USA
than in Europe and emerging Asian countries (Andre,
2004; Gholamhassan et al., 2007; Saidur et al., 2008).

Nowadays emission factor models are generally
structured in three large groups depending from their
general aim. Different space and time scale models are
developed for different analysis and traffic impact
assessment. National, region and c¢ity emission inventory
requires overall average emission estimation based on few
mput parameters as fleet composition and average
mission profile, average speed related to average traffic
situation. A more detailed analysis requires vehicle
driving behaviour represented by the time series of
vehicle speed in the link, called hereinafter driving cycle.
The assessment of environmental impact of measures
regarding road crossing control or development of new
mnfrastructure, requires the analysis of mstantaneous
emissions of individual vehicles to estimate the effect of
planned measure on vehicle speed and acceleration.

COPERT IIT and TV (Ntziachristos et al, 2006)
developed in Europe, as well MOBILES (USEPA, 2006,

CARB, 2002) models m the United States, predict
emissions having as kinematic input only the average trip
speed. These are the so called macro-scale models whose
aim 18 the evaluation of an emission mventory of a large
road network or a comparing with a national emission
inventory. These models work well for large regional areas
and also they could not be utilized for micro scale or
instantaneous evaluation. Also they need mput kinematic
data of variable complexity and are therefore adapted to
different usages, for assessing national emissions, as far
as for calculating the impact of a local traffic control
(Ntziachristos ef al., 2006).

In the United States since 1995 to 2005 further
developments) CE-CERT at the University of
Califorma-Riverside  developed the so  called
Comprehensive Modal Emission Model (CMEM), a modal
emission model for light duty and small trucks vehicle
(Barth et al., 2002). In this model emissions are calculated
as a function of the vehicle operating mode; moreover
CMEM 1s capable to predict second by second emaissions
and fuel consumption for a wide range of vehicle and
technologies category, also for extremely low emitting
vehicles (Schulz et al., 2000; Barth et ai., 2001).

Recently in Europe the research project ARTEMIS
{Assessment and reliability of transport emission models
and inventory systems) funded by the FEuropean
Commission within the 5th Framework Research
Programme, ammed at combimng the experience from
different emission calculation models and experimental
research in order to arrive at a harmonised methodology
for emission estimates at the national and international
level (Hickman and McCrae, 2003). Duning the activities
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of this project, different models are developed and
grouped instantaneous  model, traffic situation
models and kinematic models (Joumard et al., 2006,
Hickman and McCrae, 2003).

Kinematic Emission Model (KEM) approach in
ARTEMIS was developed by Rapone et al. (2008, 2005)
and predicts average emissions on a micro-trip (driving
pattern) obtaining a detailed description of velocity profile
using a multidimensional approach. This kinematic model
is defined as a meso-scale emission model and it is to
point out that it may require less detailed information with
respect to instantaneous model. Also, it is based on the
analysis of an existing huge emissions data base (different

as

fleet composition, different driving sub-cycle and
laboratories mvolved in the emissions measurements),
coming from ARTEMIS EU project. It has to point out that
these physical models are extremely complex and require
hours of powerful computer runming time, so the models
mostly used are based on regression analysis of emission
data, collected either in laboratory or on the road. Such
models estimate real world emission by average or
instantaneous emissions data. KEM is based on the
Partial Teast Squares Regression. The response
considered is the measured emission when the car
performs a portion of a trip, called hereinafter Driving
Cycle (DC). This unit emission (commonly expressed in
g kan™") is a function of total mass and driven distance.
Because emissions are generally correlated, a set of four
dependent varables (CO, HC, NOx and CO,) was
considered. A consistent set of kinematic parameters 1is
used, to represent the real-world driving behaviour of
vehicles in any traffic situation, to develop a KEM.
Several explicative variables characterizing the kinematics
of Driving Cycles (DC) are used. As a starting selection
criterion, instead of considering a broad number of
kinematic variables and then selecting the most important
variables according to statistical criteria, a minimal set of
parameters was assumed on the basis of the physical
mechanism of emission production. Two complementary
ways of explamning emission varation were considered:
the vaniation in exhaust mass (function of energy spent by
the vehicle mn a driving cycle) and the frequency of
acceleration events at different speeds. Hence, variables
were divided into two conceptually meaningful blocks.
The
dynamic vehicle equation, plus idling time to consider
emission production during wvehicle stand-still. The
second block is obtained as transformation of a matrix
whose i-th row is the speed/acceleration joint distribution

first block concerns variables defined from the

for 1-th DC, so each row can be represented by a two-way
contingency table. Taking mto account the NOx
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emissions, a three way contingency table can be obtained
crossing the NOx emissions, speed and acceleration

The mnovative aspect of this paper 1s to study the
statistical dependence of the NOx emissions, as
dependent variable, speed and acceleration,
explanatory variables, preserving the data structure and
respecting the ordinal nature of the variables. For this
purpose an integrated approach CATegorical Analysis of
Variance (CATANOVA), (Light and Margolin, 1971)
and Ordered Non-Symmetric Correspondence Analysis
(Beh et al, 2007) will be discussed m the second
paragraph. Finally, the proposed approach will be applied
to a EURO 3 car fleet in the range of 1200-1400 cc and
some results in tabular and graphical forms and mndex to
test whether there exists (or not) an association between
the variables, will be presented.

on

MATERIALS AND METHODS

The analysis proposed in this study is based on an
emission database, built within the European project
ARTEMIS. The database 1s relative to a wide collection
of automobiles with different technology, powering
fuel, homologation and displacement class, tested on
a consistent scenario of real driving cycles, representative
of vehicle operating conditions m urban, rural and
highway roads and different (from congested to rush)
traffic situations. A large number of DC’s (about
203 cycles divided into 671 sub-cycles) are used for
measuring emission factors. Figure 1 shows the speed and
log(NOx) emission profiles of a vehicle, running a specific
DC, the ARTEMIS urban DC test. Such kind of time series
represents instantaneous profiles object of the study
presented in the research.

Several studies demonstrated exhaust emissions of
vehicles in real world operation, depend on the
speed (v(t)) and
acceleration (a(t)). In fact, the engine 1s designed to
supply the vehicle the power required to balance the drag
force, which is in turn a function of speed, acceleration
and vehicle characteristics (mass, aerodynamics,...). So,
instantaneous values of NOx emissions of vehicles are the
response, instantaneous values of speed and acceleration
are the explicative variables in owr analysis. A three-way
contingency table for each driving cycle is built, where
the value m a cell 13 the frequency of mstantaneous
values of velicle speed (v(t)), acceleration (a(t)) and log
NOx emissions detected in the specific class of speed,
acceleration and log NOx emissions. Table 1 describes the
classes. For the defimition of the speed, acceleration and
log NOx categories, the criterion proposed by Andre
(2004) is followed.

instantaneous values of vehicle
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Fig. 1: Speed and log NOx emission profile of test vehicle running Artemis-Urban DC

Table 1: The description of categories

Acceleration Log

Speed ¢kmh™h) (msec ) (NOx) (gfs)
Categories Ozspeedl<10 <o zaccl <-1.4] nox1<-0.625

10<speed2<20 -l.4<acc2<-0.6 -0.625<nox2<-0.225

20<speed3<30 -0.6<acc3<-0.2 -0.225<nox3<0.475

30<speed2<40 -0.2<accd<(0.2 0.475<nox4<1.175

40<speed5<50 0.2<acc5=0.6 nox5:1.175

Speeds > 50 0.6<acchr<1.4

1.4=accT<teo

In order to study the relationship between NOx
emissions speed and acceleration, several method can be
applied. In the next paragraph we describe some methods
for analysing a three-way contingency table, their
advantages and disadvantages and propose a combined
approach.

A quick look at methods for three-way contingency table:
When the variables are collected in a contingency table,
classical statistical tools as correspondence analysis and
log linear models are applied.

The aim of correspondence analysis, as well as many
multivariate data analytic techniques is to determine
scores which describe how different two categories are.
To determine the scoring of the rows and columns and the
strength of the association between them, the Pearson
ratio is partitioned using the method of singular value
decomposition.

The log lLnear analysis focuses on detecting
interactions in a multiway contingency table. The basic
strategy in loglinear modeling involves fitting models to
the observed frequencies in the cross-tabulation of
categorical variables. The models can then be represented
by a set of expected frequencies that may or may not
resemble the observed frequencies. Once the model has
been fitted, 1t 13 necessary to decide which model
provides the best fit. The overall goodness-of-fit of a
model is assessed by comparing the expected frequencies
to the observed cell frequencies for each model. The
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Pearson Chi-squared statistic or the likelihood ratio (L%
can be used to test a model fit.

In this analysis, both the methodologies can not be
used because there 1s a directional relationship between
the variables {one response variable and two predictors).
Moreover the chi squared test requires that the expected
cell frequencies are not too small (preferably at least five).
Instead our contingency table show several cells equal to
Zero.

The most proper methodology to analyse our
data 1s to partitioming the Marcotorchino mndex Ty, Eq. 1
for a three-way contingency table with three ordered
categorical variables using orthogonal polynomials
(Beh ef al., 2007). It allows us to study the dependency
relationship between the emissions and kinematic
variables respecting the asymmetric and ordinal structure
of the data and picking up the nonlinear relationship
within the data.

Congider a three-way contingency table N that
cross-classifies n units according to I row, J column and
K tube categories. Denote the (i, j, k)th joint frequency by
1y with a relative cell frequency of py = ny/n. Let p.. be
the 1th row marginal proportion so that

1
P =1

Similarly let p.. and p... be the jth column and kth tube
marginal proportions so that

3P PPl

Suppose that the relationship between these three
variables 1s such that the J column and K tube categories
are predictor variables and are used to predict the
outcome of the T row response categories. A measure of
predictability can be made by calculating the
Marcotochine mdex, defined as:
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It varies from O to 1, where, t,; = O mdicates there 1s

T

no dependence, T, = 1 indicates there 1s perfect
dependence.
Orthogonal  polynomials: The numerator of

Marcotorchino can be decomposed using orthogonal
polynomials for each of the ordinal-scale variables
mmvolved in the partition. The advantage of considering
these polynomials is that they reflect sources of category
variation. Let us compute the polynomials for the column
variables. Let b,(j) be the vth order polynomial for the jth
column category, it can be derived using the general
recurrence formula of Emerson (1968):

b, (3)=5.[(5, ()~ T.)b,. (5) - Vb, ()] 2)

where:

1
T, =Y p..5 (b, (i)
=

V= X0 b ()b (1)

i

o]

for v=10,1,..J-1, where, b_, (j) =0, b,(j) = 1 e 54j) is the
score assigned to jth column category. We consider
natural scores such that 3,(j) = j for j = 1,2,....,]. These
polynomials are subject to the orthonormal constraint:

)
P8 ()b,

i

m—ﬁ—wym

3)

Similarly, we define ' (i) the uth order polynomial for
the ith row category and c,(k) the wth order polynomial
for the kth tube category.

The partition of Marcotorchino's index for a three-way
contingency table with three ordinal-scale variables: For
three asymmetrically related variables, different
decompositions of Marcotorchine numerator are possible
depending on the number of ordinal-scale variables. For
sake of simplicity, we here illustrate the case where all the
three variables are on ordinal-scale. The Marcotorchino
numerator, N, can be partitioned so that:
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Tt is demonstrated (D*Ambra et al., 2005) that the
quantity (n-1) 2 1s a Chi-squared statistic with 1 degree
of freedom proposed by Agresti (1990) to measure the
linear relationship between the two ordinal variables; the
quantity

T2
EjzleJI_Q

1s the Yates (1948) or Anderson and Landis (1982)
statistic. Large value of Q indicates an overall linear trend
or mean, compared with overall distribution.

For the sake of simplicity, Eq. 4 can be alternatively
expressed as:

N, =T; T +Tp + Ty (5)

where, T, is the numerator of Goodman and Kruskal (1954)
index between the [ row response categories and the J
column predictor categories, Ty 1s the numerator of
Goodman-Kruskal index between the I row response
categories and the K column predictor categories, Ty is
the Chi-squared statistic between the two predictors, Ty
1s the trivariate association between the response and two
predictor variables.

Multiplying each term of N, by

(1-1)(n-1)/1-%, "

we obtain C statistics (Light and Margolin, 1971):

(I-1){n-1)7, (I-D{n-1j7, .
1- 2;1 Pf“ 1= 2:=1p,2..
N (I-1){n—1)7, | (I-1){n—1j7, _

1- 21:1 Pi_ 1- E;pi.

=C, +Cx +Cy +C

Cyy +

(6)

The first term, C;;, can be compared with the statistic
obtained from the chi-squared distribution with (I-1)(JT-1)
degrees of freedom. Therefore (C;) can be used to
determine 1if there 18 a sigmficant asymmetric association
between the row and column categories. The other terms
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can be treated in the same marmner. Therefore, the
Marcotorchino index, Ty, can be used to determine a global
association between the three variables.

Ordered three-way non symmetrical correspondence
analysis: To graphically describe the dependence
structure between the variables, Ordered Non-Symmetric
Correspondence  Analysis (ONSCA) proposed by
Lombardo et al. (2007) can be carried out. The ONSCA
looks for the orthonormal basis which accounts for the
largest part of inertia to visualize the dependence
structure between the variables in a lower dimensional
space by using orthogonal polynomials. The coordinates
for the ith row, jth column and kth tube are:

I-1 . -1 . K-l 7
£, = Y (0. 8, = D02, By = e 0z, (7)
u =l w=l

To complement the correspondence plots, more
formal tests of the influence of particular categories may
be made by comnsidering the confidence circles for the
ONSCA. Lombardo et al (2007) showed that 95%
confidence circles for the j explanatory column category
represented n a two dimensional non-symmetrical
correspondence plot has radu length:

&)

The confidence circles, that contain the origin,
identify exploratory categories that are not statistically
mfluential in helping to explain the response.

RESULTS AND DISCUSSION

The proposed approach is illustrated by results
relative to a EUURO 3 car fleet in the range of 1200-1400 cc.
Urban driving cycles are considered. We consider a
three-way contingency table that cross-classifies the
units according toT =57 =7 and K = 6 categories of the
variables NOx emissions, acceleration and speed,
respectively. We treat the NOx emissions as the response
variable.

For our three-way contingency table N, = 0,297, it
has an associated C-statistic of C = 3743.451 (p-value =
0.000). Therefore we can conclude that the speed and
acceleration influence the NOx emissions.

If we take into account the ordinal nature of the three
variables, we can partition the Marcotorchino index and
test whether there exists (or not) an association between
the variables. The results are shown in Table 2. By
partitioning C we find that:

Table 2: The Partitions of Marcotorchine numerator and the C-statistics

i} K JK K Marcotorchino num.
T 0.01 0.12 0.11 0.05 0.29
%Cont. 5.15 40.37 37.63 16.85 100.00
C 192.95 1511.18 1408.61 630.71 3743.45
DoF 24.00 20.00 30.00 120.00 194.00
p-value 0.00 0.00 0.00 0.00 0.00
Table 3: Partition of the Cy
Source Statistic-value DoF p-value Percentage
Linear 125.25 6 0.00 65.91
Quadratic 6.90 6 0.09 3.58
Error 60.80 12 0.00 31.51
C statistic 192.95 24 0.00 100.00
Table 4: Partition of the Cy
Source Statistic-value DoF p-value Percentage
Linear 1296.62 5 0.00 85.80
Quadratic 118.05 5 0.00 7.81
Error 96.51 10 0.00 6.39
C statistic 1511.18 20 0.00 100.00

»  Both of predictor variables are statistically significant
in influencing the NOx emissions, however the speed
is more influential predictor than the acceleration

» There 13 a statistically significant association
between the two predictor variables

+  There is an interaction between all three variables

Since, all three variables are statistically related to
one another, we can identify whether there is a location,
dispersion, or higher order mteraction between at least
two of the variables. Table 3 shows the partition of the C;;
using orthogonal polynomials. The table highlights that:

+  Linear and error components are significant (p-value
<0.05)
»  The linear (location) component is prevalent

Table 4 shows the decomposition of Cy.. In this case
all components are significant and the lmear is the
dominant component.

The element Cy; is a symmetric association measure
between the two predictor variables so the components
are calculated for both rows and the columns. Table 5
and 6 show the decomposition of Cy; for the rows and the
tubes, respectively. The two tables highlight that all
components are significant for both the rows and the
columns. There 1s no a dommant component for the rows,
whereas the quadratic is the dominant component for
the columns. Moreover, the Agresti statistic is equal 9.45
(p-value = 0.002), so there a significant linear relationship
between the speed and acceleration.

When all three variables are considered, we can
determine the cause of bivariate associations. Table 7-9
show the decomposition of Cp for all three variables.
We can see that the asymmetric association between
the Nox emissions and the acceleration is affected by the



J. Applied Sci., 11 (4): 693-699, 2011

Table 5: Decomposition of Cy; for the rows

Source Statistic-value DoF p-value Percentage
Linear 479.81 3] 0.00 34.06
Quadratic 459.00 3] 0.00 32.59
Error 469.82 18 0.00 33.35

C statistic 1408.61 30 0.00 100.00
Table 6: Decomposition of Cy for the columns

Source Statistic-value DoF p-value Percentage
Linear 65.24 5 0.00 4.064
Quadratic 800.71 5 0.00 56.84
Error 542.66 20 0.00 38.52

C statistic 1408.61 30 0.00 100.00
Table 7: Decomposition of Cir: Row-Colurmn

Source Statistic-value DoF p-value Percentage
Linear 242,38 6 0.00 3843
Quadratic 149.93 3] 0.00 23.77
Error 238.40 12 0.00 37.80

C statistic 630.71 24 0.00 100.00
Table 8: Decomposition of Cire: Row-Tube

Source Statistic-value DoF p-value Percentage
Linear 97.60 5 0.00 15.47
Quadratic 211.85 5 0.00 33.59
Error 321.26 10 0.00 50.94

C statistic 630.71 20 0.00 100.00
Table 9: Decomposition of C: Column-Tube

Source Statistic-value DoF p-value Percentage
Linear 179.67 [ 0.00 28.49
Quadratic 238.52 [ 0.00 37.82
Error 212.52 18 0.00 33.70

C statistic 630.71 30 0.00 100.00

signmficant and dominant linear order differences m the
speed (Table 7). Similarly, the quadratic order differences
of the NOx emission categories are the most dominant
feature that leads to the significant association between
the two predictor variables (Table 9) and the non linear
order differences of the acceleration categories influence
the asymmetric association between the NOx emission
levels and the speed (Table 8).

To provide graphical summary of the relationship
between the response and explanatory variables one may
consider the correspondence plots.

Figure 2 shows the projection of the emission and
acceleration categories on subspace spammed by linear
and quadratic component. The graph shows a positive
relationship between modalities of the two variables. In
fact comstant or deceleration levels affect low NOx
emissions. Similarly, acceleration levels tend to lead to
high NOx emissions. In the plot 95% confidence circles
have been included. The confidence circles highlight
that the levels 4 and 7 of variable acceleration are not
statistically significant because their circles involve
originn.  This suggest
classes.

to review the distribution in

*
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Fig. 2: Non-symmetrical correspondence plot: NOx-
acceleration
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Fig. 3: Non-symmetrical correspondence plot: NOx-Speed

Figure 3 shows the projection of the emission and
speed categories on subspace spanned by linear and
quadratic component. Also, in this case the plot shows a
positive relationship between the categories of two
variables. That is low speeds affect low NOx emissions.
Similarly, high speeds tend to lead to high NOx emissions.
In this case all the categories are statistically sigmificant
because no confidence circle involves the origin.
Moreover the categories 5 and 6 of variable speed could
be unified.

CONCLUSIONS

In this study, we proposed an integrated approach to
study the dependence relationship among the NOx
emissions and the two independent variables: acceleration
and speed. The CATANOVA showed that both
acceleration and speed affect in sigmficant manner the
NOx emissions. The correspondence plot showed that
high speeds and accelerations tend to lead to high NOx
emissions. The confidence circles enabled for identifying
non significant categories for the response. This

suggsests that a next survey should review the
distribution in classes of the two independent variables.

Our survey can be a valid instrument of decision
support mdicating the variables which affect the NOx

emissions, so we are going to applied the same approach
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for the evaluation of CO, CO and NOx emissions in
different traffic and road situations.
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