A Scientific Approach to the Investigation
On Anomalous Atmospheric Light Phenomena

MASSIMO TEODORANI, Ph.D.
Astrophysicist / NARCAP Research Associate

ABSTRACT. Anomalous atmospheric light phenomena tend to occur recurrently in several places of our planet. Statistical studies show that a phenomenon’s real recurrence area can be identified only after pondering reported cases on the population number and on the diffusion of communication media. The main scientific results that have been obtained so far after explorative instrumented missions have been carried out are presented, including the empirical models that have been set up in order to describe the observed reality. Subsequently, a focused theorization is discussed in order to attack the physical problem concerning the structure and the dynamics of “light balls” and the enigma related to the central force that maintains them in spherical shape. Finally, several important issues are discussed regarding methodology, strategy, tactics and interdisciplinary approaches.

Keywords: anomaly, astrophysics, energy, electromagnetism, geophysics, Hessdalen phenomenon, instrumentation, plasma physics, physical theory, photonics, statistics, research strategy.

Introduction

Sightings of anomalous light phenomena have been reported from several locations in the world. Most of them have been classified as “earthlights” (Adams, website; see Fig.2). The appearance of these kinds of unidentified aerial phenomena doesn’t show a solid structure or the clear evidence of a surface, but it looks more often like a very bright spherically shaped object showing very peculiar characteristics in its structure, motion, and luminosity/colour variations. Most of these events have been documented by visual sightings; less frequently, they have been captured on video. Only a few of them have been monitored using scientific instrumentation. The first part of this paper will show, in a statistical way, how the sighting reports of Unidentified Anomalous Phenomena (UAP) in general are spatially dependent on the population number of a given area and temporally dependent on the increase of communication media such as internet and cell phones. Only if these factors are accurately taken into account, a real area of recurrence of UAP of any kind, can be identified and localized precisely, considering that anomalous light phenomena such as “earthlights” of still not fully explained natural origin might be a very consistent part of all the aerial anomalies in general. Some missions to Italian areas are briefly reminded. The second part will be dedicated to a description and discussion concerning observations that have been carried out using scientific methods. What do we know scientifically of this kind of aerial anomaly? In fact we must fix in simple terms what we are effectively able to document from observations where data can be effectively recorded. Some working hypotheses on the possible physics of these phenomena are offered but not yet definitively established; this can happen only when obtained data are in sufficient number and when they are collected over a wider range of wavelengths than the ones that have been carried out so far and also guaranteeing a closer simultaneity of different measurements instruments together. The third part will deal with the biggest physical problem concerning the way in which such light phenomena show the spherical shape that they have, and a possible physical-mathematical method to model such phenomena in a similar way as in the case of astrophysical objects. The fourth part will present a methodological discussion concerning several very important prerequisites that any researcher should follow in this specific field, such as
the ability to distinguish the “signal” from the “noise”, research strategies and tactics, the importance to determine once and for all crucial parameters such as target’s distance, the necessity to study light anomalies within a wider context including geophysical/geological and atmospheric factors, and the absolute necessity to proceed in an interdisciplinary way and to make an appropriate subdivision of competences. A choice of optimum instrumentation for research will be presented as well, in which new, specifically aimed, instrumental observations are intended to provide us with a more complete physical picture of what is seen and also to prove or confute working hypotheses concerning the possible physical nature of atmospheric light phenomena.

1 – Statistical considerations

A very recent experiment carried out by this author (Teodorani, 2009b) in order to verify how and how much UAP databases can furnish information of scientific interest, show the following fundamental points of evidence:

A. The almost exponential increase with time of reported sightings concerning anomalous aerial phenomena in general is explainable by the increase with time of communication media such as internet or cell phones (see Fig. 1a), so that, except for some quite well identifiable very short-duration “time-flaps” in history since 1950 up to now that are probably intrinsic to some kind of unidentified phenomenon, judging the general and long-term trend it can be concluded that such kind of anomalies are subject to no real increase in time.

B. The spatial distribution of anomalous aerial phenomena in very specific areas, such as, for instance, the New York and Connecticut States in USA, is totally dependent on the population number concerning people who report such phenomena (see Fig. 1a). This is clearly a sharp selection effect, which doesn’t show at all a real spatial recurrence of strange anomalous aerial events. In fact once a ratio between population number of specific areas – such as cities, towns, townships and hamlets – and number of sightings reported from those specific locations is determined, what we see is that the spatial recurrence of UAP reports diminishes drastically. This can be demonstrated if we take into account only specific locations where, for instance, at least 5 sightings have been reported in the last 60 years. This analysis shows that in such a way we can approach more realistically what can be considered a “spatial recurrence area” for anomalous aerial phenomena. This is clearly only an example (applied only to the NY and CT States), but it demonstrates that such a selective method can be of great help in localizing what can be considered truly an anomaly area, even if represented by a sort of “spatial error box”. In fact what we see from the specifically tested areas is that the real anomaly area of interest is constituted by the Hudson valley at quite specific locations such as Pine Bush, for instance (see Fig. 1b). Considering that most UAP cases are probably a misinterpretation of known natural and/or manmade phenomena (IEA, website; Teodorani, 2008; 2009a; 2010a), it is reasonable to suggest that the residual that can be extracted in such a way may furnish to us information on some possible real anomaly of presumably natural origin that is located around quite specific spots.

The most important of these anomalies have been recently baptized with the name of “earthlights”, showing very well-characterized features (IEA, website). Apart from occasional encounters by pilots (Haines, 2007; NARCAP, website), in general earthlights tend to be reported recurrently in specific areas of Earth. Many of such locations where light phenomena are recurrent are well recognized without any need to make a statistical selection on population. The reliability
of sighting reports from these locations is based on the fact that such anomalous light phenomena are seen most often in areas where the population number is very low: probably Hessdalen, a small valley in central Norway inhabited only by 150 persons, is the most famous of these areas in Europe (Strand, 1984). An approximate evaluation of the spatial distribution of “earthlights” in the entire world is shown in Fig 2. Of course the shown maps must be “read” critically due mostly to two precise reasons: 1) some of these areas (maybe most of them) show a light phenomenon that might be explained by prosaic causes in the future and, especially in USA, the reports of light phenomena of earthlight kind can be probably mixed up with some other aerial phenomenon of different and possibly artificial nature (without excluding a possible still undisclosed technology coming from the military; Hourcade, 2007); 2) after cleaning up, in case, these maps from prosaic phenomena mistaken for true anomalies by inexpert reporters, the residual result might anyway represent only an “inferior limit”, spatially speaking, of what anomalous is really happening in the world, considering that many of these (still unreported) anomalies might occur within very scarcely inhabited areas or where people is not interested to communicate their existence. Therefore the maps that are shown here are only indicative and must be taken cautiously.

Figure 1A. A1. Temporal trend of UAP reported sightings from 1993 to 2007, in the US States of New York (full squares) and Connecticut (full triangles) and in the Canadian Province of Ontario (full circles). A2. Increase of the diffusion of cell phone number from 1993 to 2007. B1. UAP reported sightings in the New York and Connecticut States. B2. Distribution of real UAP sightings, filtered from population number of the locations where anomalies have been apparently reported.
Figure 1B. Concentration of real UAP sightings in a very specific area of New York State (USA).

Figure 2. World distribution of locations (clear squares) where, according to existing reports, anomalous light phenomena of the “earthlight” kind occur more often (author’s processing). Small dark dots represent fault areas.
2 – Monitoring investigations in Italy

Anomalous light phenomena are quite frequent and recurrent in several places of Italy, with a particular predominance in the geographic area of the Centre-North, just on the Northern part of the Apennines. Several research groups have been contributing (and some of them are doing this still now) in monitoring such phenomena, in some cases using measurement instruments such as VLF-ELF receivers, magnetometers, in addition to video and photography (45° G.R.U., website; CROSS Project, website; ICPH, website; LTMA Observer Project, website; Progetto M.A.L.D.A., website; Project UAP Italia, website; Sassalbo Project, website; SOSO Live Camera, website), including my own research work in this specific field (Teodorani & Nobili, 2004; Teodorani, 2008; see Table 1, see Figs. 4, 5, 6, 9). A lot of work has been done during at least ten years by almost all of the cited organizations and researchers, who are all motivated in this field. The work done in these areas has, particularly in some cases, permitted to make a quite precise cataloguing of the phenomenon’s behaviour as it is observed, but (despite some EM instrumentation was used sometimes) no real scientific results and/or conclusions have been obtained so far, except for a quite accurate correlation analysis of reported cases with geological and geophysical parameters (Straser, 2007; 2009). A specific case occurring in Sicily (Canneto di Caronia; Il Mistero di Caronia, website), showed a suspect correlation between the manifestation of highly energetic and beamed microwaves (of probable human origin) and the apparition of “light spheres” in the area: this reminds laboratory experiments where the injection of microwaves in the atmosphere may trigger plasma phenomena of ball lightning kind (Ohtuski & Ofuruton, 1991; Teodorani, 2010b).

Table 1 – Locations of anomaly recurrence visited by this author in the course of instrumented missions.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>LATITUDE (° ‘ ”)</th>
<th>LONGITUDE (° ‘ ”)</th>
<th>DATE</th>
<th>MISSION DURATION (number of monitored nights)</th>
<th>MISSION TEAM NUMBER</th>
<th>USED INSTRUMENTS</th>
<th>RESULTS (reported anomalies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hessdalen (Norway)</td>
<td>62 47 48 N</td>
<td>11 11 28 E</td>
<td>March-April 1994</td>
<td>2 (+ 5 of Scientific Workshop)</td>
<td>10</td>
<td>camera, binoculars</td>
<td>None</td>
</tr>
<tr>
<td>Hessdalen (Norway)</td>
<td>62 47 48 N</td>
<td>11 11 28 E</td>
<td>August 2000</td>
<td>10</td>
<td>3 + 2</td>
<td>cameras, VLF, microwave, NVS, videocamera, Geiger, EM meters, radiometer</td>
<td>videos, photos, VLF signals</td>
</tr>
<tr>
<td>Hessdalen (Norway)</td>
<td>62 47 48 N</td>
<td>11 11 28 E</td>
<td>July-August 2001</td>
<td>30</td>
<td>5 + 2</td>
<td>cameras, VLF, videocamera, telescope, CCD camera, dispersion grating, Geiger, EM meters</td>
<td>videos, photos, spectra</td>
</tr>
<tr>
<td>Hessdalen (Norway)</td>
<td>62 47 48 N</td>
<td>11 11 28 E</td>
<td>August 2002</td>
<td>14</td>
<td>6 + 2</td>
<td>cameras, VLF, radar, dispersion grating, Geiers, videocamera, EM meters</td>
<td>photos, spectra, radar tracks</td>
</tr>
<tr>
<td>Arizona Desert (USA)</td>
<td>32 47 48 N</td>
<td>113 32 29 W</td>
<td>March-April 2003</td>
<td>14</td>
<td>3</td>
<td>cameras, telescope, H.R. spectrograph, videocameras, VLF, magnetometers, dispersion grating, EM meters, Geigers, A.S.</td>
<td>photos, videos, telescopic sighting</td>
</tr>
<tr>
<td>Montemonaco - Monti Sibillini (Central Italy)</td>
<td>42 53 58 N</td>
<td>13 20 02 E</td>
<td>July 2003</td>
<td>4</td>
<td>2</td>
<td>cameras, EM meter, dispersion grating, Geiger</td>
<td>photos, EM signals, visual sightings</td>
</tr>
<tr>
<td>Solignano (PR - Center-North Italy)</td>
<td>44 36 51 N</td>
<td>09 58 36 E</td>
<td>June-July 2004</td>
<td>1 + 4</td>
<td>2 + 2</td>
<td>cameras, EM meter, Geiger, VLF, infrared, dispersion grating</td>
<td>VLF signals, EM signals</td>
</tr>
<tr>
<td>Piana di Castelluccio - Monti Sibillini (Central Italy)</td>
<td>42 49 45 N</td>
<td>13 12 30 E</td>
<td>July 2005</td>
<td>4</td>
<td>2</td>
<td>cameras, EM meter, Geiger, VLF, infrared, dispersion grating</td>
<td>visual sightings, VLF signals, photos</td>
</tr>
<tr>
<td>Casalborno (FC - Center-North Italy)</td>
<td>44 02 35 N</td>
<td>12 08 26 E</td>
<td>August 2005</td>
<td>1</td>
<td>1</td>
<td>camera, EM meter, VLF, dispersion grating, Geiger</td>
<td>visual sighting, photo</td>
</tr>
<tr>
<td>Gabicce (PU _ Center-North Italy)</td>
<td>43 57 46 N</td>
<td>12 46 22 E</td>
<td>January 2006</td>
<td>1 + 1</td>
<td>2</td>
<td>camera, EM meter, dispersion grating, Geiger</td>
<td>visual sighting</td>
</tr>
<tr>
<td>Piana di Castelluccio - Monti Sibillini (Central Italy)</td>
<td>42 49 45 N</td>
<td>13 12 30 E</td>
<td>July 2007</td>
<td>2</td>
<td>2</td>
<td>camera, EM meter, VLF, dispersion grating, Geiger</td>
<td>VLF signals</td>
</tr>
<tr>
<td>Pietra di Bismantova (Center-North Italy)</td>
<td>44 25 00 N</td>
<td>10 25 00 E</td>
<td>July 2008</td>
<td>4</td>
<td>2</td>
<td>camera, EM meter, VLF, dispersion grating, EEG, Geiger</td>
<td>visual sighting, photo</td>
</tr>
<tr>
<td>Montefiorino-Bismantova (Center-North Italy)</td>
<td>44 21 05 N</td>
<td>10 37 24 E</td>
<td>July 2009</td>
<td>2</td>
<td>3</td>
<td>cameras, dispersion grating, VLF, EEG, Laser</td>
<td>visual sightings, photos, visual spectrum</td>
</tr>
<tr>
<td>Ontario (Canada)</td>
<td>43 46 26 N</td>
<td>79 56 44 W</td>
<td>July-August 2009</td>
<td>17</td>
<td>2</td>
<td>cameras, dispersion grating, BEFEC, videocameras, EM meter, Geiger, VLF, Lasers, radio scanner</td>
<td>visual sighting, VLF signals</td>
</tr>
</tbody>
</table>
Figure 4. Light phenomenon photographed by this author in Casalbono (FC) in August 2005, using a Fuji Finepix S-2 Pro reflex digital camera equipped with a 70-300 mm lens. The time was about 22:30 local time. Zoomed and processed image is shown on the right.

Figure 5. Suspect transient fast moving earthlight photographed by this author using a Fuji Finepix S-2 Pro reflex digital camera equipped with a 70-300 mm lens. Location of anomaly is on the top of a flat mountain called Pietra di Bismantova (RE), Italian Northern Apennine area, on the right side. Enhancement is shown below. The date is July, 8, 2009, at about 23:00 local time. Photo was taken from a spot located a few Km away from Montefiorino (MO).
Figure 6. Up. An example of a light phenomenon photographed by this author in Monti Sibillini (Central Italy), July 2003 and 2005. Centre. VLF spectrogram acquired by this author in Monti Sibillini, July 2005, showing a high level of electrostatic activity (vertical lines known as “spherics”) in the area. Down. VLF spectrogram acquired by this author in Solignano (PR, Centre-North of Italy), July 2004, showing still unexplained signals (in both cases the Y axis represents frequency, while the X axis represents time).
Spherical shaped light phenomena (when not already identified as being dubious videos on Youtube or other channels of popular media) have been confirmed as an existent phenomenon through scientific studies that have been carried out at locations where this kind of phenomenon has shown itself to be reasonably recurrent (Adams, 2007; Akers, website; Bunnell, 2003; Marfa Lights Research, website; Long, 1990; Orbwatch, website; Project Hessdalen, website; Rutledge, 1981; Stephan et al., 2009; Strand, 1984, 1996; Straser, 2007; Teodorani, 2004, 2005, 2008; Warren, 2004). The Hessdalen valley in Norway might be probably considered of prototype of these special locations, not just due to the many events that are reported, photographed, and videoed (and sometimes occasionally measured) but because of the existence of a permanent measuring station there and the occurrence of many international missions in the area. This location has become a sort of “laboratory area” that is very well suited for the investigations of physical scientists in general (Project Hessdalen, website). It can now be confirmed that similar recurring phenomena also have been sighted in other areas of the world: for instance the Brown Mountain (Warren, 2004) and Marfa light phenomena (Marfa Lights Research, website; Stephan et al., 2009) in the U.S.A. and the Min-min phenomena in Australia (Strand, 1996) are quite well known and have been scientifically monitored.

Concerning the research carried out by this author and some of his collaborators in Hessdalen (Teodorani, 2004, 2008), it has been possible to depict a provisional but quite precise observational scenario concerning the characteristics shown by these luminous spheres, the most important of which probably are the following ones:

1. They are most often of spherical shape, of different colours (mostly white), often of long duration (up to 30-60 min, spaced out by periods of “off” and “on” phases), and relatively large dimensions (1-10 meters). Their duration and dimensions are respectively much shorter and smaller than apparently similar phenomena such as ball lightning, given the empirical fact that duration and dimensions are correlated (Stenhoff, 1999). These phenomena have been provisionally ascribed to the class of “earthlights” (IEA, website). Yet such a phenomenon, together with ball lightning, are the only anomalous aerial phenomena whose existence has been effectively confirmed by scientific methods of observation and statistical analysis.

2. They are often able to emit a high level of radiant energy. The most credible measurement attributed to them a power on the order of 20 KW in the optical spectrum (Teodorani, 2004). The brief description which follows here concerns the chosen method. In such a case the absolute radiant power P was obtained by using the following equation (Maccabee, 1999):

$$P = 4\pi \cdot d^2 \cdot \frac{E}{\tau \cdot \frac{\pi}{4} \left(\frac{F}{f}\right)^2 \cdot T} \cdot e^{\frac{3.9d}{V}}$$

Where: d is the distance (in m), $E = I \cdot A$ (in lm·sec) is the total energy received by the film (for a 100 ASA Kodak Ektachrome slide) integrated over the image area, I is the energy per unit area of the image (in lm·sec m$^{-2}$), A is the image area (in m2), V is the optical visibility distance (in m), τ is the duration of the light phenomenon (in sec), F and f are respectively the focal length and the f-number of the camera (the ratio $D = F / f$ gives the aperture diameter of the lens, in m2), T is the lens transmission factor.
Less credible evaluations report (guessed, not measured) values of 1 MW. These phenomena are most often unstable in luminosity and are subject to light variability at the rate of a few seconds or less, with no clear periodicity, i.e., irregular. They can remain on for some minutes (while pulsating) and then turn off during a similar duration. When they are turned off in the visible spectrum they might still be (sometimes very strongly) visible if a night vision system or the night-shot option of a video camera is used.

3. The mechanism that determines their irregular pulsation, which causes an only apparent increase of the light surface, is now quite well documented from instrumental observations. The inflation is not due to the expansion of the spheres themselves but to the sudden appearance of many smaller spheres (see Figs. 7, 10) that gather together around a common barycentre and that multiply and “reproduce” themselves in a very short period of time following a mode that is very similar to cellular multiplication. Due to this behaviour an in-depth study is presently suggested in order to verify the possible evidence of a “plasma life form” (Tsytovich et al., 2007). The observed multiplication of secondary spheres forms a “light cluster” and determines a strong luminosity increase that is caused by the increase of the total surface emitting area, whose angular diameter is given by the empirical formula:

\[\alpha \approx \frac{D}{d} = \frac{2}{d} \left(\frac{L_E}{4\pi \cdot K} \right)^\frac{1}{2} \]

where \(D = 2R \) is the intrinsic diameter of the light cluster (\(R \) is its intrinsic radius), \(d \) is the distance from the observer, \(L_E = 4\pi \cdot R^2 \cdot K \) is the luminous power emitted in the optical wavelength and \(K \) is the crucial constant of the problem, as both photometric and spectroscopic observations give \(K = T \), where \(T \) is the temperature. It is therefore clear that just the radius \(R \) is the only parameter that determines the intrinsic luminosity variation, assuming that here we deal with an isotropic radiator and that the observer, at distance \(d \), perceives a “received luminous power” given by \(L_R \propto \frac{L_E}{d^2} \). This means that the light phenomenon behaves (at least at the time of measurements) isothermally, with no adiabatic expansion as a cooling mechanism. This is confirmed both by photometric data, where luminosity increases linearly with surface area (see Fig. 8), and by spectroscopic data, where the main observed spectral features remain unchanged when luminosity varies. The nucleus of such a cluster of spheres seems to be animated by apparently electrostatic forces, which determine totally erratic movements around the nucleus or their sudden appearances and disappearances, whose origin might be due to a sort of “central force” able to trap the "dancing spheres" (Teodorani, 2008; see Fig. 11) or to an external electrochemical mechanism mediated by water vapour and aerosols that is able to confine them from the outside (Teodorani, 2004, 2008; Turner, 2003; see Fig. 11). Occasionally some of these light clusters are able to eject some of the secondary spheres following a sort of almost “instantaneous motion”. This behaviour suggests a type of electro-statically driven kinematics and that all the components of the light complex are plasma spheres, whose heat is maintained constant by a force that prevents the heated gas from cooling: the “off-luminosity” phases are suspected to be one of the main self-regulating modes that prevents these spheres from liberating their energy explosively when the temperature is too high within a too small confining volume. Nevertheless the clustering behaviour can be observed only when these light phenomena are observed with a zoom lens or a telescope, or when the distance away from them is very little. When seen with the naked eye these light phenomena appear just like single occasionally “inflating” spheres, but upon more careful observation shows that they are composed of many secondary spheres whose appearance
and disappearance cause the observed light pulsation effect. In addition to the Hessdalen case, a similar behaviour, such as the one described here, has been reported by witnesses who observed and videoed the same kind of phenomenon in the case of the Min-min lights in Australia (Strand, 1996) and the Hornet and Paulding lights in the U.S.A. (Teodorani, 2008).

![Image of the clustering effect](image)

Figure 7. The “clustering effect” manifested by the light spheres observed in Hessdalen: observed “light spheres” are in reality composed of many secondary spheres, whose increase in number is the main cause of light variability (as shown by the diagram in the lower part of this figure).

4. The 3-D light distribution of the overall light phenomenon is not usually of Gaussian kind (typically represented by a smoothed bell-shaped curve where luminosity decreases exponentially away from the nucleus) such as in the case of a more typical spherically-shaped plasma concentration as is found associated with a typical star (Limb darkening, website), but it is quite rectilinear, as it would be expected by an uniformly illuminated solid (Teodorani, 2004). Apparent solidity can be more successfully explained by a model where electrochemical forces intervene in confining the plasma (Teodorani, 2004, 2008; Turner, 2003).

5. The very few optical spectra that have been obtained of the light phenomenon do not show a “unified pattern” (such as that of a star of a given spectral type, for instance). This means that such a phenomenon doesn’t contain specific chemical abundances of its own but its spectrum is strictly dependent on temperature, density and pressure of the air where the localized heating occurs, on the dust dispersion in the air, and also on the location of the light phenomenon relative to the ground. In fact, if the phenomenon occurs close to the ground or if some earth-particles are occasionally suspended in the air, as happens very often (see Fig. 10), it can produce a spectrum that reflects the composition of the soil (Teodorani, 2008). Such a spectrum can be highly time-variable according to the abundance of chemical elements encountered in its path by the plasma ball (Warren, 2004). Sometimes, if mold spores are approached by the onset of a localized plasma
condition of the surrounding air the optical spectra can simulate semi-conductive characteristics showing a light-emitting diode- (LED) like spectrum (Teodorani, 2004). Therefore spectra vary according to several parameters and do not constitute a fixed “unchangeable identity card” of these objects (Teodorani, 2008; Warren, 2004).

6. Quite often the light phenomenon presents a radar track (Strand, 1984), and anomalous radar signatures also can be recorded when a luminous phenomenon is not in sight (Montebuggioni et al., 2002). This is very interesting because it might indirectly demonstrate that when the plasmoid is invisible it is also (possibly) still emitting in the infrared wavelengths as low-energy plasma. This might be further supported by the fact that – as it has been reported indeed – when the phenomenon is in its off phases in the optical it can be visible using an image intensifier (Teodorani, 2008).

7. Most phenomena that have been studied so far possess a spherical shape, but a few cases do exist in which other shapes have been encountered and where such a spherical shape changes into something else (Teodorani, 2008).

Figure 8. Up. Time variability during 3 minutes of the received luminosity (numeral counts) of one light phenomenon (composed of many secondary clustered spheres) observed in Hessdalen, July 2001. Data were obtained using a Canon TM-1 professional videocamera. Received luminosity has been calculated using the technique of “aperture photometry”, where a computer generated aperture over a grid of pixels is used and the numeral counts within the aperture are added up. Down. Correlation between received luminosity and surface area of a light phenomenon characterized by a “clustering effect”.

12
8. A time correlation with magnetometric measurements (Strand, 1984, 1996) and/or with VLF-ELF measurements is occasionally confirmed and/or strongly suspected (Teodorani, 2004, 2008). Possibly magnetic field intensity and VLF-ELF emission is strictly dependent on the distance to the observer and/or to intrinsic properties, which might change over time. In some cases the appearance of light phenomena seems to be correlated with an enhancement of the amplitude of signals of well-known ionospheric origin (Teodorani, 2008).

9. There is no clear scientific proof that such phenomena are subject to colour change when their speed varies. On the contrary, it can often happen that spheres of different colours (most often white, red and blue) coexist together in a static configuration (see Fig. 10, Teodorani, 2004).

10. Many witnesses report that such phenomena very often tend to approach people and/or animals in a way that goes beyond a simple mechanism of electrostatic attraction. In fact biophysical studies, to be possibly correlated with the findings coming from recent experimental research (Tsytovich, 2007), have been deeply encouraged (Teodorani, 2008).

![Figure 9. Some of the portable instruments that are currently used more frequently by this author: portable optical photographic and spectrographic equipment, telescopes and catadioptric lenses, polarizing and infrared filters, VLF-ELF spectrometer, analogical magnetometer, Geiger, Laser and EEG.](image)
Figure 10. Up. An example of a light phenomenon photographed by this author in Hessdalen, Norway, July 2001, using a conventional Yashica 107 Multi-Program reflex film camera equipped with a 35-70 mm zoom lens. Down left. An example of a multiple light-ball photographed by this author in Hessdalen, Norway, July 2002, using a conventional Praktica BX-20 reflex film camera equipped with a 270 mm lens. The three brighter lights are white, the upper light is red and the fainter light on the left is blue. Down right. Shape and dimensional variation is shown, after using shorter focal lengths.
These are the essential observational elements that can be technically described based upon observations carried out so far according, at least, to the investigations of this author and his comparative studies with other investigators. Instrumented missions carried out by this author to other parts of the world where anomalous light phenomena happen recurrently, such as the Arizona desert, the Ontario area in Canada, and some Italian areas, have permitted to collect some data (Teodorani, 2005; 2008; 2009b; Teodorani & Nobili, 2004) concerning testimony of particularly spectacular events, photos of light anomalies and presumably related EM fields. These missions, anyway, though enhancing quite strongly the technical expertise of deploying measurement instruments on the field, didn’t permit yet to construct a self-consistent and coherent picture as it happened during the missions to Hessdalen.

It is beyond the scope of this part of the presentation to discuss in detail the theories and/or working hypotheses that explain the triggering causes and confinement mechanisms of such plasma spheres. It can only be mentioned that the best candidate theories for the triggering causes of these light balls are so far of a geophysical nature, in particular piezoelectricity, triboluminescence and the more recent and complete P-hole theory (Freund, 2003; Teodorani, 2004, 2008), while the proposed plasma confinement mechanisms have involved several kinds of central forces of magnetic, electromagnetic, gravitational and electrochemical nature (Fryberger, 1997; Smirnov, 1994; Teodorani & Strand, 1998; Teodorani, 2004, 2008; Turner, 2003; Zou, 1995). The schematics of two possible models proposed by this author are presented in Fig. 11.

Figure 11. Two alternative models proposed by this author in order to explain plasma confinement mechanisms inside a “light sphere”. **Model A.** Plasma trapped by a central force represented by a strong magnetic field in the centre of the light ball, where an adiabatic expansion and cooling of the plasma sphere occurs when the magnetic force decreases. **Model B.** Plasma confined from outside by inward electrochemical forces (derived from a theory by chemical physicist David Turner: [Turner, 2003]) mediated by increasing water vapour and aerosols balancing the outward adiabatic expansion of the plasma.
4 – The main physical problem for “light balls”

One way to attack the physics of the problem (we do not consider here electrochemical mechanisms, but rather a purely physical plasma ball) can, in principle, be quantified by considering an essential set of equations, which do not differ substantially from the ones normally used in stellar physics (Kippenhahn & Weigert, 1994), where equilibrium between several physical forces is considered. The main concept that must be described deals with a balance between an inward central force of whatever nature and the outward pressure of the plasma gas. We now want to try to establish quantitatively the structure of a plasma spheroid. Assuming that the plasma is represented by a high-temperature perfect gas\(^1\) having pressure \(P\), temperature \(T\), mass \(M\) and density \(\rho\), that the sphere containing it has a radius \(r\), and that the gas pressure is counterbalanced by a “central force” of whatever nature that is able to maintain the stability of the plasma sphere, we can fix the following set of simple equations:

\[
\frac{dP(r)}{dr} = -\frac{\eta \cdot M \cdot \rho(r)}{r^n}
\]

Hydrostatic Equilibrium

Where \(\eta\) is a constant depending on the central force keeping all the particles together (to be still defined because we have no confirmation yet of the real mechanism, but we have only hypotheses related to it), and \(n\) is an exponent that determines the way in which this force varies with the radius of the sphere (if this force is gravity, as in the stars, \(n = 2\)).

\[
\frac{dL(r)}{dr} = 4\pi \cdot r^2 \cdot \rho(r) \cdot \varepsilon
\]

Energy Generation

Where \(L\) is the luminous energy of a plasma sphere characterized by a thermodynamic equilibrium between matter and radiation, and \(\varepsilon\) is a coefficient of “energy generation” (in the case of stars this energy is constituted by nuclear fusion), which might be due to several factors according to the model that is used to describe that which appears as a self-regulated structure. Assuming that the plasma sphere is an isotropic radiator, then its bolometric luminosity (Lang, 1998) (at all frequencies from X-rays to radio waves, passing through the optical) is given by:

\[
L_B = 4\pi \cdot r^2 \cdot \sigma \cdot T^4
\]

Bolometric Luminosity

Where \(\sigma\) is the Stefan-Boltzmann constant. This is quite an important equation because it relates intrinsic physical properties such as \(T\) to radiant properties such as \(L_B\). Clearly \(L_B\) corresponds to the “absolute luminosity” that can be known only if we are able to measure the distance \(d\) of the plasma sphere and the apparent luminosity \(L_A\) through observations, where \(L_A\) is given by

\[
L_A = L_B / 4\pi \cdot d^2
\]

Moreover, assuming that what we observe in the distance is not the intrinsic radius of the sphere but only the angular radius \(\alpha \approx r / d\), we realize that if we measure \(\alpha\) and we derive \(d\) using several methods (radar, Laser range finding, triangulation) we are then in a position to obtain \(r\), which permits us to use practically the equations that have been posed. Assuming that the produced luminosity is related to Temperature, we also have:

\(^1\) Perfect gas. An ideal gas where: 1) the particles composing it are all point-like; 2) collisions between them are elastic (namely, characterized by no energy dispersion); 3) no interaction forces in distance exist between particles. All this is described by a general and fundamental thermodynamic law given by \(P \cdot V = n \cdot R \cdot T\), where \(P\), \(V\) and \(T\) are respectively the pressure, the volume and the temperature of the gas, \(n\) is the amount of substance of the gas (in moles) and \(R\) is a constant.
\[\frac{dT}{dr} \propto - \frac{L}{\beta \cdot 4\pi \cdot r^2} \]

Energy Transport

Where \(\beta \) is a coefficient to be specifically defined in the case of plasma spheres (in the case of stars a thermal conductivity coefficient is used).

Here we have prepared an essential set of equations that define the “plasma sphere structure”, after assuming that a plasma sphere can be considered as a sort of “mini-star”, and after showing how observed parameters are linked with intrinsic physical parameters. But, differently from the case of stars, here we do not yet know the boundary and initial conditions with sufficient precision, which must remain arbitrary at the present time, if we want to integrate this system of differential equations and if we want to see the evolution of the involved physical parameters with independent variables such as the radius and the time (Kippenhahn & Weigert, 1994).

Moreover it must be pointed out that we considered only the way in which luminosity is related to temperature, but still we do not know exactly how these parameters are related to electrical and/or magnetic parameters. In fact, due to some observed facts concerning plasma spheres several reasons exist to suggest that plasma spheres are also electrical/magnetic physical systems. The inclusion of these parameters (we do not know yet how exactly) inside previous equations renders the problem quite complicated and the solution of a complete set of equations less than easy (yet not impossible). This is only a semi-quantitative reasoning aimed at stimulating a possibly complete way to fix the problem to be solved quantitatively in a subsequent phase.

We clearly see here that, at the present point, what is important is to elaborate a specific theory that explains the way in which light-balls are “self contained” (we are not yet in a condition to do this as there is not yet a sufficient and quantitative/predictable match between theory and observations, the last ones of which are still lacking). Concerning this it is absolutely necessary to focus on the nucleus of the problem that can be synthesized by some important considerations that follow. To appear in such a way, a light ball allegedly composed of some kind of plasma, can be the result of two opposite forces, one inward and the other one outward. It is obviously much easier to know the nature of the second: if the light ball is made of plasma the outward force must be represented by the external pressure of adiabatic naturally expanding ionized/excited gases. The main difficulty is to try to deduce what is the inward force: we know that in stars this is the gravitational force, but we do not know what the counterpart in these plasma balls is. And it is highly premature to insert work-hypotheses inside equations: we can do that only and if we'll have at our disposal more experimental data. Only in that case we'll be in a condition to determine the value of the posed coefficients \(\eta, \varepsilon \) and \(\beta \) and exponent \(n \) so that it would be time to integrate the equations numerically for values of the radius \(r \) ranging from \(r = 0 \) to \(r = R \), in order to see how after setting fixed values for variables such as the radius \(r \) all the other physical variables such as pressure \(P \), temperature \(T \), and luminosity \(L \) vary. In such a way we would be in a condition to predict the “internal structure” of a light ball after inserting some observed values such as \(r \) and \(L \). This procedure might in principle allow us to build up a predictable picture in the dominion of space, assuming several dimensional configurations for light balls. This might help us to verify how and if the luminosity \(L \) parameter is linked with the radius \(r \), for instance. Of course the success of this potential mathematical simulation will totally depend on the data that we are able to obtain from observations, reminding that our ability to obtain observationally parameters such as \(r \) and \(L \) will only depend on the accuracy with which we’ll be able to measure the distance \(d \) of the
phenomenon and its angular diameter θ. The following simple equations show how observed data concerning the light phenomenon are related to the intrinsic data of the phenomenon:

$$L \propto 4\pi \cdot \frac{R^2}{d^2} \cdot T^2 \quad \Theta \propto \frac{2R}{d}$$

Where: L is the received luminosity, R is the maximum value of the radius acquired by the light ball, T the temperature, and d is the distance from the observer. Figure 12 shows the situation intuitively.

![Figure 12. The way in which a light ball is observed in distance.](image)

The observed reality is, anyway, more complicated as light balls are often observed in clusters and not only singularly. Therefore the system of equations for mathematical simulation must be extended to all of the components of the complex. Consequently what we may study is not only L but rather the “integrated luminosity” given by:

$$L_{\text{INT}} = \sum_{i=1}^{n} L_i$$

Where n is the maximum number of the components of a “light ball cluster”. Clearly all this means that mathematical modelling must be extended to all the complex of light balls. As a light complex is not composed of a constant number of light balls but rather by a number that is highly variable in time (on a very short timescale), a new modelling is needed here dealing with the main source of light ball variability. This means that an “evolutionary process” for a light ball complex must be taken into strict account in order to simulate the mechanism of light variability, after modelling the spatial and energetic structure of light ball components all together. In such a way observations must furnish to us the (approximate) period Π of light variability and/or its variation in time, namely: $\dot{\Pi} = d\Pi / dt$ where t is the time variable. Period increase or decrease can be represented by a “pulse-up” and a “pulse-down”, respectively. In such a way we can derive a simple general equation describing the way in which the luminosity varies according to the observed time-variation in the case that the pulsation period (in addition to a constant variability represented by Π) is subject to a “pulse-up” or a “pulse-down” too, which can be given by:

$$\frac{\dot{\Pi}}{\Pi} \propto \Pi \cdot L_{\text{INT}}^m$$

Where m is an exponent to be determined directly from observations. Of course the empirical data that are obtained from observations, when they are in sufficient number, must be simulated
mathematically, in order to be in a condition to predict the overall phenomenon’s behaviour in time. This operation is not so simple, but in principle it is feasible for future research, as soon as many more data can be rendered available with reasonable constancy both in Hessdalen and in other places of the world where such phenomena are recurrent.

Finally, similarly to a well known mathematical treatment of the radiation emitted by planetary nebulae in astrophysics, a photo-ionization factor should be taken into account as well, above all if the photons emitted by a single plasma ball are particularly energetic, especially if they radiate in the ultraviolet. In such a case we can define this quantity:

\[R_I = \left(\frac{3 \cdot N_*}{4 \pi \cdot \gamma \cdot n_p^2} \right)^{\frac{1}{3}} \quad \text{Ionization Radius} \]

Where \(N_* \) is the number of ionizing photons emitted in the unit time by the plasma sphere, \(\gamma \) is the recombination coefficient, and \(n_p \) is the number of atmospheric particles involved in the ionization process. Due to the spherical shape, this plasma object in general is expected to act isotropically, namely radiating in the same way in all directions. Clearly clusters composed of many spherical plasmoids are expected to produce many interacting “ionization influence spheres”, which should exert a marked influence on the surrounding atmosphere: this physical problem might be named: “circum-ball medium physics”. The method of study is substantially similar to the one used to study planetary nebulae or similar astrophysical objects, the difference being that the circumstellar medium is replaced by the circum-ball terrestrial atmosphere.

So far we considered only thermal forces just to simplify the physical problem. What happens if we add a magnetic component to the plasma? It is well known from Alfvèn theory (Lang, 1998) that magnetic force lines (if a magnetic field is effectively present in the plasma) are “frozen” inside the plasma. This has been studied in plasma formations (such as nebulae) in interstellar space (Hiltner et al., 1962; Lang, 1998). The inclusion of a magnetic field yields several important facts. Due to the existence of a factor given by “magnetic pressure” the dynamic properties of matter are influenced by this, in addition to mechanical pressure. Let’s now consider a plasma

Density of atmospheric chemical elements and electricity. Atmospheric gaseous constituents tend to vary as a function of geometric altitude during periods of minimum and maximum solar activity (U.S. Standard Atmosphere, website). An electrical component might also be responsible for this and perhaps affect the frequency of occurrence of plasma spheres. A new physical theory concerning a global electrical and plasma nature of the Universe (involving Earth’s atmosphere as well) has been proposed and is being currently developed (Peratt, 2000). This theory is currently controversial because it tends to dismantle many of our generally accepted paradigms in astronomy, cosmology and atmospheric physics, but it should be examined in more detail.

Anisotropic radiation. The assumption that the plasma is an isotropic radiator is employed as a mathematical approximation of the problem. This seems to be reasonable because of the observed reality in most of the cases – especially when two or more observers looking from different directions see the same plasma ball – but certainly not in all of them. In fact the possibility of a “beamed radiation” that occasionally overlaps with and/or replaces an isotropic radiating behaviour, cannot be in principle excluded.

Spectroscopic observation of a magnetized plasma. A possible magnetic field of a plasma sphere can be measured using reasonably high-resolution optical spectroscopy, as the magnetic field is able to produce the so called Zeeman Effect, which consists in the splitting of each of the present spectral lines into several symmetric components around the position where each spectral line should be. The more the wavelength extent of such a splitting – quantitatively measured by a factor \(\Delta \lambda \) (where \(\lambda \) is the wavelength) – the higher is the magnetic field intensity (Sobelman, 1980). This fact is very important observationally because it allows us to measure the magnetic field intensity directly from
sphere that, as it is extremely probable, contains its own magnetic field with its own pressure. If the sphere collapses for some reason the law of conservation of magnetic flux says that when the radius of the sphere is diminished the magnetic flux $\Phi = B \cdot r^{-2}$ is conserved, while the magnetic field intensity B increases as the square of the radius r of the sphere. Clearly while this happens the law of angular momentum conservation given by $\mathbf{L} = m \cdot \mathbf{\omega} \cdot r$ (where m is the mass of ionic and electronic particles and $\mathbf{\omega}$ its angular velocity) shows that if the radius of the sphere diminishes and the mass remains constant and if the plasma ball is subject to some spinning motion, the angular velocity increases. This means that when a plasma sphere collapses for some reason the plasma particles start to rotate faster and the magnetic field that is frozen inside it is amplified: this might be an example of magnetized plasma toroid in fast rotation (Seward et al., 2001). Clearly the increased amplitude of the pressure components (mechanical and magnetic) and of the gas density inside the plasma increase its temperature (due to the law of perfect gases) and consequently also its luminosity, so that we have a highly energetic plasma sphere that is suspiciously existing in a totally isothermal condition (constant temperature without adiabatic cooling via expansion), as it is effectively noticed by observations. Conclusively, a work hypothesis is ventured in which the possible collapse of a plasma ball is able to increase its temperature and that a single plasma ball might shift from a temperature regime to another, where anyway temperature is always maintained constant at any given regime. In such a way, if such a hypothesis is correct concerning observed reality, high-temperature isothermal plasma balls should be accompanied with high values for magnetic field intensity and rotation rate.

Finally, we now return to the plasma sphere hypothesis since naturally produced plasma spheres may well produce beams of radiation. Witness reports do exist about this kind of manifestation. How can this happen? We have not yet a definitive answer, of course. But this possibility might be a stimulus to trigger the development of a valid physics concerning this too. First of all we should ask what is able to produce a beam in such a specific case. It is not unreasonable to suggest that one possible cause is a mechanism to accelerate particles, possibly produced when high-energy electrons are extracted from a high-temperature plasma by an enhanced magnetic field whose morphology turns from spherical to cylindrical when the plasma ball collapses and starts to rotate faster. This is also known in the macro-scales of astrophysics such as in the case of active galactic nuclei or similar objects such as Quasars. This is an example of high-energy relativistic particle acceleration along magneto-channelled tubes called “jets” (Melia, 2009). This also happens on a much smaller scale with non-stationary stars such as T Tauri, FU Orionis stars, pulsars, neutron stars and magnetars that are surrounded by an accretion disc made of nucleons. All of these objects (galactic and extragalactic) are known to emit synchrotron radiation, whose mechanism is due to the acceleration of electrons and/or protons at relativistic velocities through a very strong “magnetic tube” that collimates them. An even smaller scale is just a particle accelerator normally used in our subnuclear laboratories, where particles are confined, collimated and accelerated by a very powerful magnet of cylindrical shape. So, is a plasma sphere able to occasionally work as a particle accelerator? Possibly yes, if some openings do exist on the plasma confined aggregate. In the case of a sphere this might occur in the polar regions (orthogonal to the direction of the plasma rotation), where magnetic lines are opened. This configuration of a magnetosphere is expected to be the same at all scales, i.e., on Earth, in pulsars, and even larger structures. Why not also in plasma spheres that are occasionally seen inside our atmosphere? (see Fig. 13).

optical spectroscopy: this measurement is absolute, regardless of the light source’s distance (differently from standard magnetometric measurements, which are strictly dependent on the distance of the source, where magnetic field intensity is expected to decrease exponentially with the distance of the source).
It is not possible to exclude that some kind of “self-regulating” mechanism is also able to “relax” the spherical symmetry into a cylindrical one (in a very similar fashion as in the case of particle accelerators), where the magnetic lines are possibly containing, collimating, confining and occasionally accelerating some of the particles that are inside it. We do not know yet how this symmetry change may occur in this kind of plasma concentrations, but we do know that observed light balls are often subject to shape change (Teodorani, 2004), including the one from spherical to cylindrical or other elongated shapes. This witnessed fact should make our neurons work. What we observe in nature is often stimulating and triggering our brain, especially if we then compare what we see (and occasionally measure) in this specific context with what we see and know about in the astrophysical environment. Nature should be “self-similar” from the micro to the macro scales, and this general law should help us to derive laws of physics everywhere\(^5\), even where we shouldn’t even expect it to, such as in the case of plasma light balls.

\(^5\) **New laws of physics?** Nature seems to be governed by similar laws when we pass from large to relatively small scales (not involving quantum effects). For instance, if we assume that an inner force (of whatever nature) is balanced by an external force such as pressure, an atmospheric plasma sphere of the Hessdalen-like kind can be potentially described by the same laws describing an object of stellar dimension. But we cannot exclude a priori that different physical laws that we do not yet know are sometimes operating at some specific scales. In fact, witnesses reported several peculiar behaviours of plasma spheres that cannot be easily explained using conventional physics. As an example of these peculiarities, according to several witnesses plasma spheres when appearing together at the same time but at different positions seem to behave following a sort of “synchronism” as if they all had a unique system driving them (Devereux, website). This behaviour strongly reminds us of one encountered in much smaller scales such as atomic or sub-atomic particles, where quantum laws, and more specifically, the mechanism of “quantum entanglement”, entirely govern their system. This is a still unexplored forest for our knowledge in physics, for which a “macro-quantum” behaviour (Teodorani, 2007b; 2008) is not yet accepted by the mainstream scientific community.
Let’s now briefly resume the physical concepts that have been discussed in detail in this section:

- In principle a “light ball” is expected to be the result of an harmonic equilibrium between one inward force of still unknown origin and an outward force represented by the pressure of naturally expanding ionized gases.
- Observations showed so far that, when light phenomena are in sight, such a force equilibrium is perfect as temperature is constant during all the time when it is observed (anyway this doesn’t mean at all that temperature cannot change and that new “temperature constancy” regimes are settled in further phases).
- Mathematical modelling using a set of equations derived from the original equations of stellar structure can be used in this case too, apart from some constants and exponents that depend on the specific nature of the inward central force whose nature is not known yet. If all the parameters are known we are in such a way in a condition to derive the spatial structure of a single light ball.
- Only observational data can drive theoretical modelling. Therefore a full theoretical analysis of the problem can be carried out only when observed geometric and physical quantities are opportunely related to intrinsic quantities once the distance factor is known with the necessary precision.
- The modelling physics applied to a single sphere must be extended to a cluster of spheres, so that a quantity called “integrated luminosity” becomes the most important observed parameter and the said modelling includes simultaneously N plasma balls simultaneously. In such a way we are in a potential condition to derive the spatial structure of a light ball cluster.
- The single components of a cluster might be connected together by electrostatic forces but without any thermal energy transfer from the one to the other. Therefore an additional physical model should be elaborated in order to describe quantitatively such a collective interaction.
- According to observations, the appearance and the disappearance of new spheres inside a cluster is, so far, believed to be the main cause of the time-variation and/or pulsation of “integrated luminosity”. Studying this variability means studying the time-dynamics of a light-ball cluster. This includes not only irregular or regular variability such as pulsation effects, but also a possible occasional increase and/or decrease of the pulsation period.
- A light ball can be determinant in exciting or ionizing the surrounding atmospheric medium, in the same way in which an astrophysical nebula brightens. This can be opportunely modelled using known techniques.
- The balance of forces that keeps united the plasma inside a single “light sphere” may not depend only on thermal quantities, but also on magnetic and rotational ones, whose presence or absence might determine a substantial increase or decrease of the values of fundamental parameters such as pressure, density and temperature. Therefore the simplified thermal problem might be matched with the physics of magnetism and of gas rotation, complicating the mathematical problem but rendering the treatment of the problem ontologically more realistic and complete.
- Plasma light balls might be the source of the acceleration of high-energy particles, by working as magneto-channelled means through which particles may be ejected, in a similar fashion as the one currently observed on much larger scales in some astrophysical objects such as active galactic nuclei, pulsars or magnetars. There might be a “self-similar” signature in nature, where certain physical processes are occasionally replicated at smaller scales.

All of these work hypotheses can be tested after appropriate measurements are done.
5 – Methodology of research

Research on this kind of anomalies of nature is quite difficult to carry out due to several reasons. Though being recurrently seen in specific areas of the world, the time of apparition of the targets of this research is not predictable at all. Therefore, only long-lasting explorative missions on the field can offer the possibility to acquire high-quality and redundant data. Of course automated video camera systems (Marfa Lights Research, website; Strand, website; SOSO Live Camera, website; LTPA Observer Project, website) are able to record a lot of events during a long time without any need of man’s presence. Nevertheless this kind of data can be scientifically useful mostly for statistical studies (Teodorani, 2004; Teodorani & Strand, 2001), to study occasionally the kinematical aspects of the light phenomenon and, in case, to establish time-correlations with electromagnetic data if at the same time EM and/or magnetometric instrumentation is automatically in function. But these data are not able, so far, to furnish information of more analytic scientific relevance such as the ones obtained using optical spectroscopy and/or operations using Lasers and Lidars (Teodorani, 2001; Strand, 1984), which are allowed only if expert personnel are present on the field with reasonable constancy. It is quite clear that all this requires a lot of money funding for research, which so far seriously lacked. And this is quite strange because such a phenomenology, showing often the manifestation of a high energy level and of mysteriously “self-contained” structures, should stimulate someone to encourage this investigation, which might furnish in the future a way to brindle this kind of energy for human use.

We now have only a preliminary scientific picture of the phenomenon. But we do not have yet any definitive and clear explanation of the enigma of the self-containment of such light balls, if they can be effectively considered plasma objects. Apart from the possible geophysical and/or atmospheric triggering causes of such phenomena (Bunnell, 2003; Freund, 2003; Teodorani, 2008) for which reasonable correlations can be found, and from remarkable work hypotheses on their intrinsic physical nature, the physical mechanism that makes so that these phenomena have the shape and the dynamical behaviour they manifest is almost unknown so far. The problem here is quite similar to what occurs with the ball lightning phenomenon, to which “earthlights” might be related in some way. Of course the only way to solve the still open physical problems in this field is to have the possibility to carry out a systematic and very well funded research, so that recurrence areas can be monitored constantly using both scientific personnel on field and automatic measurement equipment (Teodorani, 2001; Teodorani & Strand, 1998). We should now point out what the methodological philosophy of this research should be. This can be done through very specific points that are discussed here:

1. *Distinguishing the signal from the noise* – Many of the luminous phenomena that have been reported and studied so far tend to occur very close to the ground (see Fig. 10). This may create very often a lot of confusion between real anomalies and light manifestations that can be explained prosaically. For instance, car headlights, cottage lights, streetlights, flashlights, fire camps and several other sources of manmade origin can be mistaken for true “earthlights” by observers who are not used to reason carefully on what they have around and who, only too often, let themselves be dragged by autosuggestion, excessive emotional state and even delusional sickness (Teodorani, 2008; 2009a; 2009c). Conversely, gratuitously “sceptical” scholars having no knowledge and/or experience on the physical phenomenon under study, tend to dismiss true anomalies as prosaic facts basing their considerations on superficiality and unrealistic forcing (Adams, 2007; Teodorani, 2007a). All this said, it is also necessary to acknowledge that, in addition to simple misinterpretation of quite well known light sources and known astronomical objects
(UAPRS, website), insidious situations in nature may also occur when the light of a car, for instance, can be drastically altered and/or amplified by several effects such as Fata Morgana, mirage, reflecting soil and even diffraction effects when a car headlight is seen through trees that are seen far away from the observer (Pettigrew, 2003; Teodorani, 2005; 2008). Sometimes nature can produce quite deceiving effects that can be of serious obstacle to scientific research on the earthlight phenomenology. This is the reason why before carrying out an explorative mission to a specific area a good knowledge of the inhabited territory must very well possessed in all details.

The same reasoning is valid for airplane lights: it is quite well known that landing or turning airplanes can produce apparently strange light effects (such as light amplification, sudden appearance or disappearance, for instance), which are totally explainable indeed (IEA, website; Teodorani, 2008; 2009b). This is more than a good reason for any observer to check all the flights over the area he/she investigates. Another insidious situation can be created when some well-known luminous planets, such as Venus or Jupiter, is just rising low on the horizon: in some occasions it can appear just a bit above the top of a hill or a mountain giving to inexpert observers the illusion to have seen a “light ball”. This can be easily checked by consulting a very simple digital planetarium, which can furnish the position and the brightness level of any known celestial object at every date and time (Teodorani, 2005; 2009a). Another efficacious way to rule out or confirm prosaic lights is to take an optical spectrum of them. If, for instance, an apparently strange and flickering light is seen over the top of a mountain this doesn’t mean necessarily that it is an earthlight floating low in the sky. Most often this is a streetlight or cottage light that is located on a mountain behind that is not visible in the darkness or hidden by fog: this can be confirmed very easily and quickly after taking an optical spectrum of that light. If the spectrum shows the typical lines of Mercury or Sodium this is a confirmation that the observer is seeing a streetlight (Teodorani, 2010a). If the spectrum shows to be a continuum (without lines and/or monochromatic features in it) and if the light is slowly moving and occasionally changing intensity and speed, that can be more probably a car turning on a little road hidden somewhere in the bush (Teodorani, 2007a). All these are typical sources of “noise polluting the signal” that we are searching for, in order to fix them once and for all in order not to invalidate our data. These considerations demonstrate that this investigation demands great carefulness and precision in order not to mistake the real target of research and lose an amount of time and energy for nothing. This is an extremely important topic for the methodology with which specific research on earthlights must be carried out.

2. Research strategy – Using scientific instrumentation doesn’t necessarily mean to do science effectively. People who use these devices (even knowing their functioning very well) must be fully conscious of what they are searching for; on the contrary the numbers that come out from measurements are senseless and a time loss. Of course, in addition to a systematic and methodical monitoring of a specific area, “work hypotheses” on the possible nature of light phenomena (including possible prosaic causes of them) must be elaborated in order to prove or confute them once objective crucial instrumental measurements are taken. Of course physicists or, in case, particularly well prepared scientists of other branches and engineers are the most expert in this approach. Healthy (and not dogmatic) scepticism bust be always strictly joined with a healthy open minded approach as well: we do not know all of Nature, and sometimes reality might even surpass our fantasy (Teodorani, 2007b; 2008). What counts here is not the theory that is in case constructed to explain a certain anomaly, but its internal coherence, its match with observed/measured facts, and, possibly, its potentiality in offering the opportunity to reproduce phenomena at will under laboratory control (Freund, 2003; Teodorani & Strand, 1998). To conclude this topic, science is an eminently critical work that evolves through subsequent
approximations and not a parade of dogmas or a pure show of instruments. Sometimes it is much more important to use properly simple but well-working, fully portable and efficient scientific instruments than using very sophisticated or complex ones without adopting any strategy or being those instruments wholly useless to the main goal of this research (Teodorani, 2009c).

3. Research tactics – What we are investigating is something that is suspected to emit radiation at several wavelengths, simultaneously or sequentially. Therefore, only a simultaneous measurement session using several sensors that are sensible to different wavelength ranges must be carried out, in order to explore the real and most complete behaviour of such phenomenon (Teodorani, 2001; 2009c; see Fig. 14; see Table 2). This approach can be only done dynamically and not statically (for instance a simple photo or video taken alone tells almost nothing scientifically). It is in fact expected – as it is also often observed and reported – that we are not dealing with an unchangeable light phenomenon such as a streetlight is, for instance, but with a highly variable phenomenon, able, in the optical range, to pulsate its light, to appear and to disappear. Of course we cannot confirm that the phenomenon per se has really disappeared if we do not check, at the time of disappearance, the other wavelength ranges such as VLF-ELF, microwave or the medium infrared, for instance. Only a simultaneous measurement at different wavelength windows can tell us something concrete on the way in which the phenomenon works, as it might very probably consist in something that is much more variegated than what our eyes normally see. Redundant measurements of this kind, coupled with a careful check of where and when exactly the phenomenon appears – just in terms of atmospheric conditions and geophysical characteristics of the area – can allow researchers to obtain information on a probably repeatable, and consequently numerically simulable, physical behaviour. This philosophy of research is exactly the same that is currently used in astrophysics, especially when variable celestial objects (such as pulsating stars or quasars) are studied (Lang, 1998; Teodorani, 2001). The dynamical processes that are understood in such a way allow us to construct a real physical model that is strictly based on the data that are acquired through the observation process. It is in this way, for instance, that astronomers understood the mechanism that makes a star, such as a Cepheid, pulsate. Of course the reality of facts in the field is not as simple and predictable as when one works from an astronomic observatory. In addition to the moments in which the phenomenon is not present and the instruments record nothing, it more normally happens that only a few instruments are effectively used all together due to reasons of limited funding or personnel and of a too short duration of instrumental monitoring sessions (Teodorani, 2009c; see Table 1). But it is a concrete fact that a more systematic approach can be realized in the course of instrumented expeditions only if these researches are properly funded and not only left in the hands of a few willing scientists and/or experts working on this subject in their free time. Nevertheless this voluntary research work has permitted to find something that might have scorched the surface of what these phenomena really are. In such a way it is inevitable that work hypotheses are ventured, just after observing preliminary data. These work hypotheses are of vital importance because they function as a guide for researchers: not in order to demonstrate forcefully a theory of which someone is in love, but as a “testing probe” of what is outside: this inevitably recalls more measurements and helps us to understand more clearly what we really need in order to solve some enigmas. Of course theories and hypotheses can be confirmed as well as confuted: but in this way science goes forewords in its own dialectic path. Moreover, it is important to take more theories into account and not only one, and study all of them carefully (Bunnell, 2003; Freund, 2003; Fryberger, 1997; Teodorani & Strand, 1998; Turner, 2003). Many of these theories might contain something that is near the effective truth; therefore they must be examined with much attention. Certainly the only way to trigger an intellectual dynamics in this specific research is to
follow a very rigorous scientific protocol, as the one introduced in the previous topics. This means not only a logical treatment of a few acquired data, but the same applied to all the possible data that can be effectively acquired in this specific case. Of course in order to drive this tactics to the construction of a real and complete physical science we need many instruments of different kinds to be used all together (possibly) at the same time both when the light phenomenon is in sight and when it is not. The most essential instruments that should be used are presented in Table 2.

![Image of Wavelength, Space, and Time](image)

Figure 14. Tactics of earthlight research in three parallel steps: a) the behaviour of the phenomenon at different simultaneous wavelengths; b) the way in which radiated power is distributed over a surface at any given time; c) the way in which the phenomenon changes its luminosity with time.

4. **The importance of the Distance parameter** — Variability studies of the light phenomenon carried out over a wide wavelength spectrum can furnish important information on the physics of the problem from the dynamical point of view. But if we do not know the distance of the light phenomenon, we cannot derive its intrinsic energy density and its effective spectral energy distribution at any given time, as what we measure is only the “apparent emitted power” of an energy source having an intrinsic power (at all wavelengths) that diminishes exponentially as the inverse of the distance squared: this is the law of electromagnetism that characterizes all radiating phenomena in the Universe. Apart from a few valuable exceptions, such as the possibility to derive the intrinsic magnetic field intensity of a light ball through optical spectroscopy without any need to know the distance of the light source (Teodorani, 2001; 2009c), more generally, without a knowledge of the light phenomenon’s distance we can do only a very limited and “symptomatic” physics. If we really want to understand what is a “light ball” we necessarily need to put all of our reference systems at zero distance from the ball. That’s the reason why measurement sessions using the appropriate sensors must be simultaneously accompanied by the determination of the source’s distance. This can be done in several ways or even redundantly (if the local conditions are able to permit this): the use of radars, Laser range finders, stereo photography, triangulation or even comparisons with the dimensions of known objects (such as trees, for instance) to which a light ball is demonstrably close to, can, in principle, furnish the distance of the light balls that are
seen. In the analysis phase the coupling of distance determination with physical parameters obtained using several electromagnetic sensors can allow us to obtain the intrinsic EM power together with the intrinsic area of a light ball, once apparent EM physical values and angular diameter are determined directly during a measurement session. This is the necessary goal to reach if we really want to transplant this research into our laboratories in order to reproduce and/or physically simulate the phenomenon using computer codes. Only if we’ll be able to do this research will enter in full title inside the field of fundamental physics. Otherwise it remains only in the realm of “fringe and partial physics” (even if certainly not pseudoscience, which is something totally different).

TABLE. 2 – Scientific information obtained using complete portable measurement equipment

<table>
<thead>
<tr>
<th>SCIENTIFIC INFORMATION</th>
<th>USED INSTRUMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>support to target sighting</td>
<td>night goggles, image intensifier</td>
</tr>
<tr>
<td>target position</td>
<td>radar, theodolite, datoscope</td>
</tr>
<tr>
<td>target tracking</td>
<td>radar, CCD camera</td>
</tr>
<tr>
<td>target recognition, identification</td>
<td>radio scanner, spectroradiometer</td>
</tr>
<tr>
<td>kinematical characteristics, regime of motion</td>
<td>videocamera, radar, thermocamera, weather station</td>
</tr>
<tr>
<td>distance, absolute luminosity, light surface distribution</td>
<td>Laser range finder, radar, triangulation, telescope, CCD camera, digital reflex camera, videocamera, thermocamera, weather station</td>
</tr>
<tr>
<td>temperature, pressure, density, chemical composition</td>
<td>telescope, digital reflex camera, CCD camera, thermocamera, microwave spectrometer, dispersion grating</td>
</tr>
<tr>
<td>magnetic field intensity</td>
<td>digital magnetometer, VLF-ELF spectrometer</td>
</tr>
<tr>
<td>electric and electrostatic fields</td>
<td>voltmeter, natural EM meter, electrostatic detector</td>
</tr>
<tr>
<td>electromagnetic emission: optical, infrared, ultraviolet, microwave, VLF-ELF</td>
<td>telescope, digital reflex camera, multi-filter CCD camera, thermocamera, ultraviolet detector, microwave and VLF-ELF spectrometers,</td>
</tr>
<tr>
<td>sounds and ultrasounds</td>
<td>VLF-ELF receiver, ultrasound detector</td>
</tr>
<tr>
<td>radioactivity</td>
<td>alpha, beta, gamma particles detector</td>
</tr>
<tr>
<td>reaction to laser light</td>
<td>300-600 mW green Laser, weather station</td>
</tr>
<tr>
<td>monitoring of specific areas</td>
<td>permanent automatic stations equipped with CCD camera, magnetometer, VLF-ELF spectrometer, radar</td>
</tr>
<tr>
<td>time variability</td>
<td>all the instruments</td>
</tr>
<tr>
<td>observational data analysis</td>
<td>specialized scientific software</td>
</tr>
<tr>
<td>statistical analysis of selected witness databases</td>
<td>data acquisition and inquiry from serious ufologists, computer data processing</td>
</tr>
<tr>
<td>physical modelling</td>
<td>specialized scientific software</td>
</tr>
</tbody>
</table>

5. The importance of knowing the atmospheric and geophysical boundary conditions – The light phenomenon under study is reported recurrently in specific areas of the world, some of which is quite close to fault lines and/or characterized by very particular composition of the soil (Devereux, website; Straser, 2007; 2009; Teodorani, 2008). In particular, the presence of quartz, iron, copper, hematite, when subject to tectonic stresses of several kinds (such as seismic or simple dilation/compression of rocks from daytime to nighttime due to temperature differences, for instance) may trigger piezoelectric or similar effects that are able to produce sufficient voltage to trigger the formation of plasmoid forms in the low atmosphere. Piezoelectricity, triboluminescence, and P-holes (Freund, 2003) are currently believed to be one of the most
important causes for the formation of anomalous light phenomena. This is a more than valid reason to study such light anomalies not only as objects per se but also as phenomena that are possibly produced at a first phase by specific characteristics of the territory. This means that the physics of light phenomena must be strictly studied in connection with parallel geological and geophysical surveys (Straser, 2007; 2009). Knowing the triggering cause of these phenomena may also help to understand the physics of light phenomena themselves. Moreover, once the geophysical and geological causes of the formation of light phenomena are fully understood, it is potentially possible to identify new areas of the world, whose soil characteristics are well known, where (apparently unreported) light phenomena may occur recurrently. At the same time a possible atmospheric/ionospheric factor in creating light phenomena must be studied as well, both as a separate aspect and as an interacting factor with the specific local geophysical aspect. What’s more, a full knowledge of the allegedly typical characteristics of low-height atmospheric conditions, such as temperature inversions, occurrence of mirages and/or other atmospheric refraction effects may help researchers to identify possible causes of the formation of “light effects” resulting only as a form of refraction of known manmade light sources (Pettigrew, 2003). The same can be said for the specific geological aspect, when, for instance, the soil, due to the minerals constituting the surface, presents characteristics of high reflectivity and, in case, also of particular concavity able to work as a lens able to focus light sources of known manmade nature (Teodorani, 2008). The “space weather” should be checked as well all the time, together with its possible interaction with the local atmosphere. Cosmic rays, particularly during active phases of the sun, may in principle work as a possible ionizing factor, which must be carefully taken into due account (Teodorani & Strand, 1998; 2001). And finally, peculiar planetary geometric configurations must be controlled when they may be a triggering cause of seismic events at particular areas of Earth (Straser, 2008), due not to gravitational effects that are totally negligible but rather to “resonance effects” that so far have not been sufficiently considered in depth. These ones might be another possible indirect cause of the triggering of light phenomena. Finally, only apparently “heretic” ideas such as the one called “electric universe theory” (Peratt, 2000) should be examined more in depth: electric effects in the interplanetary environment are not well known and the possible existence of electric charges in space has been too superficially dismissed by current astronomical theories. Of course electric effects in space may have an effect directly on our planet too, in some areas of which this effect may appear in enhanced form also possibly producing luminous plasmoids in the atmosphere. So we see that the study of anomalous light phenomena cannot be studied alone as physical objects per se, but rather as a physical phenomenology that must be inserted in a wider context, where geology, geophysics, meteorology, atmospheric physics, space and solar physics may play a quite important role. These interdisciplinary aspects should be studied all together as the cause of the formation of anomalous light phenomena might be the result of an interplay of many of these physical factors. This obviously means that a strict collaboration of scientists of several disciplines should be built up on a stable basis. Finally, a specific aspect of importance may be represented by the behaviour of plasmas in particular conditions, especially when they interact with very fine dust grains in our atmosphere (aerosol might be a potential example of this). Quite recent researches (Tsytovich et al., 2007) show that, once such an interaction is established, such grains may acquire an electric charge by sucking electrons from the plasma surrounding them, so that they may form a nucleus of electrons that in their turn are able to attract positively charged ions that belongs to the plasma itself: this mechanism can create the so called “plasma crystals”. The most stunning aspect of such recent discoveries is that plasma crystals tend to create sort of helical shapes that are absolutely similar to the DNA in biochemistry: strong similarity is noticed both in the helical shape and in the characteristics of multiplication and replication of plasma crystals. Is Life a biological process based
only on the chemistry of Carbon, or can it be created, in particular conditions, also by a purely physical process where plasma (a highly “cooperating structure” per se) interacts with fine dust grains? These discoveries might be well applied to study the behaviour of Hessdalen-like plasma forms, which in several occasions, in addition to producing occasionally spiral tracks (Strand, 1984), effectively tend to show a sort of self-replication process (Teodorani, 2004; 2008). This aspect of research, which is based not on speculations, but rather on experimental/simulation quantitative studies, should be soon extended to the physics of anomalous light phenomena with a main work-hypothesis in mind to be accurately tested: are “balls of light” a Life form? This hypothesis should be examined more deeply and experiments/observations aimed at proving or confuting this in the specific case of light phenomena should be accurately prepared.

6. Appropriate partitioning of competences – As we have already seen, this research demands necessarily a fully interdisciplinary approach. This means that scientists of different orientations should work together and not that one scientist or engineer, in addition to the one for which is fully competent, does also a work for which is not specifically competent. Knowing several aspects of research doesn’t necessarily mean that all of those aspects can be effectively done all together by single individuals who own only specific specializations. For instance, acquiring a VLF spectrogram or an optical spectrum is an operation that can be done also by opportunately trained scientists and/or engineers who are not specifically specialized in this field. Anyway, such a procedure may be successful as it may not be. Experts in a specific field know exactly how to proceed, as in some cases – such as optical spectroscopy – also the data acquisition phase requires a specific competence that a non-specialist in the field doesn’t necessarily have (Teodorani, 2009c). For instance, if we want to obtain a spectrum using a dispersion grating that is really scientifically treatable we need to use long focal lengths for the optics; otherwise the resolution will be seriously compromised. Low resolution spectra are rarely of some scientific relevance and whatever analysis carried out on them may be just tentative in the best cases and wrong in most cases. This can obviously happen when one passes from the data acquisition phase to the data analysis one. If spectra are not taken in the appropriate way and if the procedures for analysis and physical interpretation are not fully correct, the physics that comes out may be consequently a deception of the real physics of the problem. Who studies (decent) spectra of these phenomena (which are normally very difficult to obtain due to the transient nature of anomalous light phenomena) must know fully before what is spectroscopy and how the spectrum of a physical object should be: this competence in general belongs to physicists, physical chemists, astronomers, astrophysicists and engineers of some specific branch, not to other scholars (whatever their preparation in their specific field). This is a very important issue for a correct interpretation of physical evidence in the subject under study. In order to increase efficiency and effectiveness in these procedures it is absolutely necessary that the researcher who operates occasionally in fields that do not belong to his/her specific competence, consults punctually with specialists in the field before publishing results containing a bit too hasty conclusions (Hauge, 2007). Optical spectroscopy is just one example, which must be obviously extended to VLF-ELF spectrometry, magnetometry, microwave physics, infrared, radar and other techniques that are relevant to this research. Conversely, physical scientists who are not specialized in the functioning of some instruments (except for the use of them for data acquisition and analysis) are expected to consult with engineers of the appropriate branch, before running to conclusions. In few words, in order to optimize the effectiveness of this research non-specialists must always advise with specialists of specific branches (scientific and/or technical), especially when the data analysis phase is carried out, and in some cases also when the data acquisition phase is undertaken.
So we see that the only real condition to obtain real and concrete results in this so interesting research on “earthlights” is to fulfi
l at least the six points that have been discussed here. Science is most of all a method, not a collection of notions to be manipulated arbitrarily according to the intuition of the moment. Of course intuition is extremely important (and elaborating some speculations too, in some cases), but it acquires a really high valence only when it is explicated through the rational/experimental method, which must always bring to a quantitative outcome. Nobody is God and, except for scientific intuitions by single researchers that might be really basic for the research conduct, it is inevitable that the (different) technical competence of many must converge towards a common goal: substantially this means that only team work can bring to concrete and definitive results. Of course this is not always possible, especially when money funding and a concrete scientific infrastructure and organization are lacking (as it happens normally in this specific research). But it remains that the academic approach to scientific problems of whatever nature, including earthlights, is the only one that can bring to the production of real results. Conversely, a rigid academic behaviour, wayward to new possible physical realities and to true innovation, can bring necessarily to the stagnation of science, which belongs to mankind and not to a small ring similar to the “Pickwick circle”. Open mind matched with healthy scepticism must always lead us in this research, where there is not space for emotionality but only for the enthusiasm and Teutonic determination in reaching the main goal.

Conclusions

The most appropriate conclusive remark that can be given here is probably the one that stresses the real main goal of this research, consisting in searching for the physical mechanism that keeps light balls so perfectly confined in a spherical shape and that makes them produce so much energy. Once we’ll understand definitively this mechanism we’ll have at our disposal the key to reproduce this energy – possibly a clean form of it – in a laboratory and consequently to use it for many mankind’s needs, now compelling in this so critical period of our civilization. After all, quite recent laboratory experiments were able to reproduce for a short time lapse a ball lightning of small size (Muir, 2007). Why not thinking that we might replicate in a lab a much more energetic phenomenon such as a so called “earthlight”? Of course the use of this possible new energy source might be double-faced: a) tapping it under control conditions and peacefully in a similar manner as in electric or nuclear centrals; b) using this energy as a weapon system. The second possibility seems possible as well, or even easier (Teodorani, 2010b): after all, once the physical mechanism is known it might be possible to find out a way to liberate suddenly the energy contained inside a light ball by nullifying instantly the central force that permits a hydrostatic equilibrium with the outward pressure force. The implications of this are really weird. But, as we all know, the use of some science or technology depends mostly on the nature of man. The main wish is that mankind becomes more peaceful and mature, so that an “infinite possibility” might be managed only for the common well.

References

1. 45° G.R.U. : http://www.45gru.it/STRUTTURA.htm
5. CROSS Project (Gian Franco Lollino et al.): http://www.copernico-online.org/cross.asp
15. Italian Committee for Project Hessdalen (ICPH): http://www.itacomm.net/PH/CIPH/HOME_PAGE.html
20. LTPA Observer Project : http://ltpaobserverproject.weebly.com/
27. Orbwatch : http://www.globalserve.net/~mallet/
32. Project Hessdalen : http://www.hessdalen.org/
33. Project UAP Italia : http://www.projectuap-italia.org/
39. SOSO Live Camera (Massimo Silvestri et al.) : http://www.ciph-soso.net/SOSO/SOSO_LIVE_CAMERA.html
63. Unidentified Aerospace Phenomena Reporting Scheme (UAPRS) : http://www.uapreporting.org/
Convegno

FENOMENI LUMINOSI IN ATMOSFERA E PRECURSORI SISMICI
UNA NUOVA FRONTIERA DELLA SCIENZA ?

Comune di Fornovo Taro – Assessorato alla Cultura
Fornovo – 21 Aprile 2010