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GENERAL RELATIVISTIC QUANTUM THEORIES  

Foundations, the Leptons Masses 

 
Claudio Parmeggiani (clparm@infinito.it) 

Abstract 
Here the space-time is represented by an usual, four-dimensional differential manifold, X. Then it is assumed that at 

every point x of X, we have a Hilbert space H(x) and a quantum description (states, observables, probabilities, 

expectations) based on H(x). The Riemannian structure of X induces a connection on the fiber bundle associate to H and 

this assumption has many relevant consequences: the theory is regularized; the interaction energy is a well defined self-

adjoint operator; finally, applying the theory to electro-weak interactions, we can obtain a “specter” of leptons masses 

(electron, muon, tau).  
 

Introduction. Summary 
We shall discuss (the foundations of) a General Relativistic Quantum Theory: now the Hilbert space of the 

quantum description is replaced by a fiber bundle (here called quantum bundle) based on a four-dimensional 

differential manifold (the space-time); the typical fiber is a complex, infinite-dimensional, separable Hilbert 

space; on every fiber there are states (vectors or rays), observables (operators), probabilities and expectations 

(Section 1).  

The ordinary derivative (in Schrödinger equations) is replaced by a sort of covariant derivative on the 

quantum bundle. This derivative, at a space-time point, depends on the value of the space-time metric tensor 

(the gravitational field) at the same point: this is the main hypothesis. The standard quantum field theories 

are formally recovered, for a “constant” metric tensor (that is when the gravitational field goes to zero); but, 

in fact, even for an isolated elementary particle we have to consider the gravitational field of the particle 

itself (Section 2).  

The quantum fields and the energy operator (the “Hamiltonian”) are now well defined (eventually self-

adjoint) operators; the Pauli-Jordan distributions are now true, differentiable functions (gravitation 

dependent, obviously); therefore the Theory is regularized: there are no more divergences (Section 3). 

The presence of our “covariant” derivative not only regularizes the theory but, as a consequence, the (ratios 

of the) masses of the leptons are, by some supplementary assumptions, theoretically predictable. In fact, 

imposing the constancy of the sum of the space-time dependent self mass (logarithmically diverging, with 

zero gravity) and of a space-time dependent counter term, we arrive at a second order partial differential 

equation; the self values of this equation are (proportional to) the leptons masses (Sections 4 and 5). 

Finally note that we have only to postulate the existence of three stable elementary leptons (electrons, 

positrons and electron neutrinos); the other ones (the μ and the τ particles, their neutrinos) and their masses 

are derived, so to speak, as excitations. 

 

1. Fiber Bundles and Quantum Bundles 

A fiber bundle (see, for example, [Bourbaki 2007] or [Lang 1985]) is a tuple (F, X, π, F) where F and X (the 

base space) are topological manifolds; π is a continuous surjection from F to X; the fibers at x (a point of X), 

F(x) := π
–1

(x) are all isomorphic to the typical fiber F. A (cross) section is a function Ψ from X to F such 

that: 

π(Ψ(x)) = x      (1) 

Locally (on an open subset U of X) F(x) can be identified to F; hence, always locally, the sections can be 

expressed as (ordinary) maps from U to F; in the following we shall generally employ this local expressions. 

A quantum bundle is defined as a tuple (H, X, π, H) where the base space X  is a four-dimensional 

Riemannian manifold (g is its (+1, –1, –1, –1) metric tensor); the fibers at x, H(x), and the typical fiber, H, 

are infinite-dimensional, complex, separable Hilbert spaces. The Schrödinger function is now a section of the 

quantum bundle, locally expressed by a map from X to H; the observables are expressed by operator-valued 

maps, assigned on X. For example, the average value of the observable ξ, the “system” being in the state Ψ, 

can be (locally) written as: 
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(Ψ(x)|ξ(x)|Ψ(x))H / (Ψ(x)|Ψ(x))H     (2) 

where the inner product is taken on H. Obviously in a Schrödinger picture the section ξ will be “constant” (in 

a sense make precise in Subsection 2.2). 

 

2. Derivatives. Dynamics 
To relate quantum objects defined at different space-time points we need a way to connect them, at least 

when they are “infinitely near”; thence we shall introduce a notion of covariant derivative.  

 

2.1.  Covariant Derivatives 
If Ψ is the local expression of a section of the Quantum Bundle and u is a 4-dimensional vector (space-like or 

time-like), the covariant derivative of Ψ, in the direction u, is defined as: 

DuΨ(x) := ∂uΨ(x) + Cu(x).Ψ(x)     (3) 

where ∂u is the ordinary derivative (along u) and Cu(x) is a space-time dependent operator on the Hilbert 

space H. And for an observable (an operator) ξ: 

Duξ(x) = ∂uξ(x) + [Cu(x), ξ(x)]      (4) 

If γ is a smooth path on X, parameterized by the real variable s, a section Ψ along γ is said parallel if: 

DuΨ(γ(s)) = 0  (u = γʹ(s))     (5) 

 

2.2.  Schrödinger Equation 
The self-adjoint operator on H (u is again a 4-dimensional vector) 

Pu(x) = P0(x) u
0
 + P1(x) u

1 
+ P2(x) u

2 
+ P3(x) u

3
    (6) 

is the (local expression of the) energy-momentum observable, at space-time point x; it is an energy operator if 

u is time-like, a momentum operator when u is space-like. Typically Pu(x) can be decomposed as: 

Pu(x) = Pu
(FREE)

(x) + Pu
(INT)

(x)     (7) 

where Pu
(INT)

(x) = 0, for a space-like u. 

A section Ψ satisfies a Schrödinger equation (in a Schrödinger picture) if 

DuΨ(x) = ∂uΨ(x) + Cu(x).Ψ(x) = –i Pu(x).Ψ(x)    (8a) 

while, for all observables ξ: 

Duξ(x) = ∂uξ(x) + [Cu(x), ξ(x)] = 0     (8b) 

Observe that, because Pu(x) and Pv(x) commute and DuPv(x) = 0 (for every couple of vectors, u and v), we 

have DuDvΨ(x) = DvDuΨ(x). 

In an interaction picture 

DuΨ
(INT)

(x) = –i Pu
(INT)

(x).Ψ
(INT)

(x)     (9a) 

Duξ
(INT)

(x) = i [Pu
(FREE)

(x), ξ
(INT)

(x)]     (9b) 

In the following we shall always use the interaction picture. 

 

2.3.  Explicit expression of the Covariant Derivative 
Having defined a vacuum state (at space-time point x), Φ0(x), others states (and observables) can be 

generated by means of the creation and annihilation operators, a*n,p(x) and an,p(x) (see, for example, 

(Bogoliubov 1980) or (Weinberg 1995)). Here n is an index = 1, 2, …, N and  

p = (ε, p),  ε = √(p
2
 + M

2
)     (10) 

ε, p and M are the particles energy, momentum and (bare, unobservable) mass.  

Evidently we must have, for the vacuum, DuΦ0(x) = ∂uΦ0(x) + Cu(x).Φ0(x) = 0 (and also ∂uΦ0(x) = 0). 

In our interaction picture 
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[Pu
(FREE)

(x), an,p(x)] = – (p.u) an,p(x)     (11) 

so: Duan,p(x) = –i (p.u) an,p(x). Afterward we shall assume (this is a fundamental postulate) that: 

 [Cu(x), an,p(x)] = iκ cu(x,p) an,p(x)     (12) 

where cu is an ordinary numerical function dependent on x and p (but not on n) and, at least in a first 

approximation, that:  

cu(x,p) = –∑αβ Γu
αβ

(x). pαpβ = ½ ∑αβ ∂ug
αβ

(x).pαpβ     (13) 

Here the g
αβ

 are the “contravariant” components of the metric tensor g; the Γ are its Christoffel symbols; κ is 

a numerical, universal parameter. We are using absolute unit of measure, that is hPLANK = 2π and MPLANK = 1. 

Hence we are lead to the differential equation (c(x,p) := ½ ∑αβ g
αβ

(x).pαpβ)  

i ∂uan,p(x) = ((p.u) + κ ∂uc(x,p)) an,p(x)    (14) 

which can be immediately integrated:  

an,p(x) = exp(–ip(x–x0)).exp(–iκ(c(x,p)–c(x0,p))).an,p(x0)   (15) 

x0 is a fixed space-time point. Evidently for a constant, “special relativistic” g, we shall recover the usual 

definitions, relatively to the free creation and annihilation operators (see again [Bogoliubov 1980] or 

[(Weinberg 1995)). 

For a “near constant” g (that is in a weak gravitational field approximation, see [Weinberg 1972])  

c(x,p) = ½ M
2
 + (M

(GRAV)
 / r(x))(ε

2
 + p

2
)    (16) 

M = √(ε
2
 – p

2
) is the bare mass; M

(GRAV)
 is the gravitating mass; r(x) is the distance from x to the source of 

the gravitational field.   

 

2.4.  Commutations and Anti-commutations Relations 
At the same space-time point x0 

[am,p(x0), an,q*(x0)]± = Np δ m,n δ p,q     (17) 

hence, for a real κ (positive or negative): 

[am,p(x), an,q*( x0)] ± = Np.exp(–ip(x–x0)).exp(–iκ(c(x,p)–c(x0,p))) δ m,n δ p,q   (18)  

where x is a generic space-time point. The bracket [ , ]± refer to Fermi or Bose statistics; Np is a 

normalization factor, usually set equal to 1 (as in [Weinberg 1995]) or to √(p
2
 + M

2
)/M. 

Observe that, if κ is imaginary, κ = –iκʹ, κʹ positive, we get a term like exp(–κʹ(c(x,p)–c(x0,p))).   

 

3. Quantum Fields 
It is possible to define neutral and charged quantum fields φ and ψ (now well defined, operator-valued 

functions assigned on X) as: 

φ(x) = ∫(ap(x) + ap*(x)) dμ(p)     (19) 

ψ(x) = ∫ ap(x) dμ(p) + ∫ bp*(x) dν(p)    (20) 

dμ and dν are measure on R
3
, eventually matrix-valued. Obviously, for κ=0, we shall obtain the usual, 

singular quantum fields. These are free fields (the Pu
(INT)

(x) term is not considered), but the gravitational 

effects are fully included in the field operators.  

Afterward we can build the Pauli-Jordan functions Δ(x,y): they depend on κ(c(y,p)–c(x,p)) and are, generally, 

not translation invariant. But they are now true, differentiable functions (assigned on X
2
) and, for κ=0, we 

shall obtain the usual distributions (singular functions), translation invariant. We have, for example, for a real 

κ: 

Δ(x, y) = [φ(x), φ(y)]  = 2 ∫sin(p(y–x)+κ(c(y,p)–c(x,p))) dμ(p)   (21) 

but for an imaginary κ = –iκʹ, κʹ positive: 
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Δ(x, y) = [φ(x), φ(y)]  = 2 ∫sin(p(y–x)).exp(–κʹ(c(y,p)+c(x,p))) dμ(p)   (22) 

that leads to an exact, canonical equal time commutation relation. 

 

4. Interactions. Self-Energies 
 

4.1.  Interaction-Energy Operator 
Let us consider a tri-linear interaction-energy operator (the Hamiltonian, always in an interaction picture): 

H
(INT)

(x) = λ ∫∫(ξp*(x) Ap,q(x) ξq(x)) dμ(p,q)    (23) 

here dμ is a measure on R
6
; Ap,q(x) is a self-adjoint operator (Bose statistics) related to the gauge fields which 

mediate the interaction; the operators ξq(x) describe the interacting particles (Fermi statistics) and they are 

linear combinations of the ap(x), ap*(x), bp(x), bp*(x); λ is a coupling constant. Note that we are only 

considering the particles interactions and not the interactions between the gauge fields. 

When κ=0 the interaction-energy operator (formally) reduces to the standard expression (x = (t, r)): 

H
(INT)

(t) = λ ∫∫(ξp*(t) Ap,q(t) ξq(t)) dμ(p,q)    (24) 

time dependent and needing a regularization. 

 

4.2.  Particles Self-Masses 
If we try to calculate the self-energies (or the self-masses) of our particles considering only the one-loop 

Feynman graphs, we arrive at a r (and g) dependent expression [Weisskopf 1939], see also for a more 

“modern”, but essentially equivalent, presentation [Bogoliubov 1980] or [Weinberg 1995]: 

M
(SELF)

(r) = –M.Λ.log(Fg(r)) + const. + …   (25) 

logarithmic diverging when κ=0 (that is ignoring gravitation). Here M is again the bare mass and Λ a 

numerical, positive parameter, proportional to the squared coupling constant λ. In the weak gravitational 

field approximation (Subsection 2.3): 

Fg(r) = M
(GRAV)

 / r      (26) 

where M
(GRAV)

 is the effective (inertial, gravitational) particle mass. 

  

4.3.  Counter-Terms 
Now we shall assume that the interaction-energy operator contains a mass-like counter-term 

 ∫(ξp*(x) M
(CTERM)

(x) ξp(x)) dμ(p)     (27) 

and that the real function M
(CTERM)

(r) (> 0) is proportional to 

–M.(Δk(r) / k(r))      (28) 

where M is the bare mass, Δ the Laplace, second order, differential operator and k is a scalar, classical field. 

Alternatively we can include the counter-term in the free part of the energy operator so the “bare mass” will 

be a function of x. Presumably the counter-term is of geometrical origin, for example it is the Ricci scalar of 

a (modified) metric tensor g.  

In any case, imposing the constancy of the sum 

M
(SELF)

(r) + M
(CTERM)

(r)      (29) 

(the effective mass cannot depends on r), we arrive at a R
3
 differential equation (note that here the bare mass 

do not appears): 

Δk(r) / k(r) = –Λʹ.log(Fg(r)) + const.     (30) 

For a radial symmetric k, rescaling the dependent variable and using the weak field expression of Fg(r), 

M
(GRAV)

 / r, 

Kʹʹ(r) + (2/r) Kʹ(r) = (log(r) – w) K(r)       (31)  
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We are looking for a K(r)  going to zero when r diverge, hence we are lead to a countable family of solutions 

of the above differential equation; the first self-values of w are: 

1.044; 1.847; 2.290; 2.596; 2.830; 3.020; 3.179    (32) 

Obviously we can only obtain in this way the masses ratios of the first, the second, the third, ...  variety (or 

generations) of particles. 

 

5. Leptons Masses 
Consider now the case of the electro-weak interactions between leptons, mediate by the gauge fields A, Z, W, 

W*; MZ and MW are the Z-particle and W-particle masses. To calculate the self-masses we need the three (one 

loop) Feynman graph (lept stands for a charged lepton): 

lept(lept-photon)lept  +  lept(lept-Zparticle)lept  +  lept(neutrino-Wparticle)lept   (33) 

then in the differential equation of Subsection 4.3 appears a sum of three mass-dependent terms: 

ΛA.log(Mlept) + ΛZ.log(Mlept + MZ) + ΛW.log(Mneutrino + MW)   (34) 

The ΛA, ΛZ and ΛW are three positive parameters proportional to the squared electro-weak coupling 

constants; ΛA + ΛZ + ΛW = 1, as a consequence of the rescaling the dependent variable (Subsection 4.3). 

Apparently the experimental data lead to ΛA/ΛW = 0.231 and to ΛA/ΛZ = 0.769 so: 

ΛA = 0.151,   ΛZ = 0.196,   ΛW = 0.653    (35) 

Finally, assuming that Mneutrino << MW, we arrive at: 

log(Mμ /Melectron) = 5.32,   log(Mτ /Melectron) = 8.22    (36) 

in reasonable accord to the experimental values: 5.332 and 8.154 (we have introduced many 

approximations). But if, for example, we add to the self-masses a (log(r))
2
 term (coming from some two 

loops Feynman graphs), we obtain a quite better accord. It would be also of some interest to consider the not 

radial symmetric solutions of the k-field differential equation. 

Obviously we also obtain other, bigger mass values (corresponding, presumably, to highly instable particles): 

M4 ≈ 11 Gev,    M5 ≈ 34 Gev,    M6 ≈ 72 Gev, …     (37) 

If we try to calculate the neutrinos masses starting from the interaction-energy operator defined at the 

subsection 4.1, we arrive at a quite problematic result: the neutrinos predicted masses are very large, greater 

than the W-particle and Z-particle masses. To cure this problem it is apparently necessary to modify the 

structure of the energy operator.  
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