Earthquake Environmental Effects,

intensity and seismic hazard assessment:

the ESI intensity scale and the EEE Catalogue

Memorie Descrittive Carta Geologica d’Italia

Vol. xyz

2011
2.2. La scala di intensità sismica ESI 2007 (Italian)

TRADUZIONE A CURA DI: GUERRIERI L. (1), ESPOSITO E. (2), PORFIDO S. (2), MICHETTI A.M. (3) & VITTORI E. (1)

(1) Geological Survey of Italy, ISPRA, Roma, Italy
(2) Istituto per l’ambiente marino costiero, CNR, Napoli, Italy.
(3) Dipartimento di Scienze Chimiche e Ambientali, Università dell’Insubria, Como, Italy.

Introduzione

L’intensità di un terremoto si definisce in base alla classificazione degli effetti prodotti dal sisma sull’uomo, sulle costruzioni (edifici e infrastrutture) e sull’ambiente naturale, (effetti geologici e ambientali). L’intensità così determinata consente di misurare la severità dell’evento sismico tenendo conto sia degli effetti nell’intero intervallo di frequenze del moto vibratorio sia delle deformazioni statiche.

Tutte le scale d’intensità (Rossi-Forel, Mercalli, MCS, MSK, Mercalli-Moore, ecc.) considerano gli effetti sull’ambiente naturale quali elementi diagnostici utili per la valutazione del grado di intensità. Alcune scale moderne (e.g., Espinosa et al., 1976a; 1976b; Ortmann, 1998) considerano invece fondamentalmente gli effetti sull’uomo e sul costiero, riducendo notevolmente il significato diagnostico degli effetti sull’ambiente, tutto ciò sulla base dell’assunzione che essi sono molto più variabili degli altri effetti e quindi potenzialmente alberi di studi recenti (es. Dengler & McPherson, 1993; Serva, 1994, Dowrick, 1996; Esposito et alii, 1997; Hancock et alii., 2002; Michetti et alii, 2004) hanno invece fornito chiare evidenze che gli effetti geologici ed ambientali, dei quali oggi si dispone di un database storico e, soprattutto, paleosismologico, estremamente ricco, sono in grado di fornire informazioni fondamentali per la stima delle dimensioni del terremoto ed in particolare dell’intensità.

Con questo obiettivo è stata realizzata la scala di intensità ESI 2007 (Michetti et alii., 2007) che si basa esclusivamente sugli effetti geologici e ambientali. Il suo utilizzo, da solo o insieme ad altre scale macro sismiche “tradizionali”, fornisce il quadro più completo degli effetti dei terremoti, in quanto solamente gli effetti ambientali sono confrontabili:

- nel tempo: infatti la fine di una tempesta di tempeste recenti, storici e paleo sismici è assai più grande del periodo strumentale (ultimo secolo), e
- in diverse aree geografiche: gli effetti ambientali non dipendono da specifiche condizioni socio-economiche o di diverse pratiche costruttive.

Pertanto, lo scopo è quello di integrare le scale d’intensità sismica tradizionali, ovvero:

- per i terremoti con intensità maggiori o uguale al X grado, in quanto spesso la stima del danneggiamento sul costruito risulta estremamente difficoltosa, mentre gli effetti geologici e ambientali continuano a essere presenti e diagnostici;
- in aree scarsamente abitabili o desertiche, dove gli effetti sulle strutture antropiche sono assenti o comunque radi e la valutazione dell’intensità del terremoto deve necessariamente basarsi sugli effetti sull’ambiente, unici elementi disponibili.

Descrizione
La scala ESI 2007 è strutturata in dodici gradi. Il titolo di ciascun grado riflette la severità del terremoto ed il ruolo degli effetti sull’ambiente. Nella descrizione sono riportate in primo luogo le caratteristiche degli effetti primari ossia la fagliazione superficiale e le altre deformazioni di origine tettonica. Quindi gli effetti secondari sono descritti in termini di area totale di occorrenza (per la valutazione dell’intensità epicentrale), raggruppate nelle diverse categorie e ordinate in senso crescente a seconda del grado in cui essi iniziano a manifestarsi. Il testo in corsivo evidenzia le descrizioni ritenute maggiormente diagnostiche per il dato grado di intensità.

Gli effetti primari direttamente legati all’energia del terremoto e in particolare, alla manifestazione in superficie della faglia sismo genetica, sono espressi in termini di due parametri fondamentali: la lunghezza totale della rotture in superficie (SRL total surface rupture length), e la massima dislocazione ad essa associata (MD maximum displacement). Si osservano generalmente al di sopra di una certa soglia di magnitudo e si manifestano in genere a partire dall’VIII grado ESI, salvo in alcune zone vulcaniche dove eventi sismici molto superficiali possono dare luogo ad effetti primari già al VII grado. Rientrano negli effetti primari anche le deformazioni della superficie topografica di natura tettonica (uplift, subsidenza).

Gli effetti secondari, indotti dallo scuotimento sismico, sono classificati in otto categorie principali:

1) Anomalie idrologiche: in questa categoria sono comprese le variazioni di portata delle sorgenti e dei corsi d’acqua e le modificazioni delle proprietà chimico-fisiche delle acque superficiali e sotterranee (es. temperatura, turbidità). Sono diagnostiche a partire dal IV fino al X grado.

2) Onde anomale/tsunami: questa categoria comprende tutte le onde anomale dalle piccole onde di sisma in specchi lacustri, fino alle onde anomale legate a maremoti. Le altezze variano da pochi centimetri ad alcune decine di metri. Si rilevano a partire dal IV fino al XII grado.

3) Fratture al suolo: le fratture nel terreno sono descritte in termini di lunghezza (da centimetrica fino a qualche centinaio di metri), di ampiezza (da millimetrica a metrica), di densità areale. Sono diagnostiche a partire dal IV fino al X grado.

4) Movimenti di versante: in questa classe sono comprese tutte le tipologie di fenomeni franosi, dai crolli agli scioglimenti, agli scoscellamenti, fino alle colate in terra. A parità di condizioni predisponenti (es. id. di alluvio, litologia), sono considerati elementi utili per la valutazione dell’intensità il volume e l’area totale in frana. Sono diagnostiche a partire dal IV fino al X grado.

7) Nuvole di polvere, sono osservabili nelle zone generalmente aride/secche, a partire dall’VIII grado.

8) Massi saltanti, le dimensioni massime dei massi che dal terreno vengono scagliati verso l’alto e l’impronta lasciata sul suolo sono fattori diagnostiche ai fini dell’attribuzione del grado di intensità. Sono osservabili a partire dal IX grado fino al XII. Queste evidenze mostrano che accelerazioni del suolo superiori a quella di gravità si possono produrre a partire dal IX grado.

Gli effetti ambientali sono pertanto osservabili e di facile identificazione a partire dal IV grado. Dal I al III grado, gli effetti ambientali, pur osservabili in alcune tipologie (soprattutto nel campo delle
variazioni idrologiche), non sono attualmente così ben caratterizzati da poter essere considerati diagnosticì. L’accuratezza della valutazione aumenta verso i gradi più alti della scala, in particolare nell’intervallo di occorrenza degli effetti primari, che tipicamente iniziano a manifestarsi dall’VIII grado con risoluzione crescente fino al XII grado. A partire dal X grado gli effetti sull’uomo e sulle strutture giungono a saturazione, ossia gli edifici sono completamente distrutti e pertanto non consentono di distinguere i diversi gradi di intensità. Gli effetti sull’ambiente divengono allora dominanti in questo range di intensità, rappresentando di fatto lo strumento più efficace per la valutazione dell’intensità.

Come si utilizza la scala ESI 2007

L’utilizzo della ESI 2007 come uno strumento indipendente di valutazione viene raccomandato solamente quando solo gli effetti ambientali sono diagnosticì perché gli effetti sull’uomo o sul costruito sono assenti o troppo scarsi (es. in aree scarsamente abitate o deserte) o perché giungono a saturazione. Ovviamente, quando gli effetti ambientali non sono di portata l’intensità viene valutata solo con le scale macroseismiche tradizionali basate sugli effetti sull’uomo e sul costruito.

Quando sono disponibili sia effetti sull’uomo e sul costruito, che sull’ambiente si è possibile stimare due valori di intensità in maniera indipendente. In generale, il valore finale di intensità è il maggiore tra le due stime. Naturalmente, anche in questo caso è essenziale l’esperienza del rilevatore (corretto giudizio professionale).

L’intensità epicentrale (I₀), ovvero l’intensità dello scuotimento all’epicentro, indica quale intensità si sarebbe registrata se ci fosse stato un centro abitato corrispondente all’epicentro. I parametri di fogliazione superficiale e l’area totale di distribuzione degli effetti secondari (frane e/o liquefazioni) sono due strumenti indipendenti per valutare I₀ sulla base degli effetti ambientali, a partire dal grado di intensità VII in su (Tabella 1).

Particolare attenzione è richiesta quando i parametri di fogliazione superficiale sono al limite tra due gradi. In questo caso è raccomandabile scegliere il grado di intensità più consistente con le caratteristiche e la distribuzione degli effetti secondari.

Inoltre, nella valutazione dell’area totale è raccomandato di non considerare gli effetti isolati che si verificano occasionalmente in zone a notevole distanza dall’epicentro. Tale valutazione richiede evidentemente un giudizio professionale *ad hoc*.

<table>
<thead>
<tr>
<th>I₀</th>
<th>EFFETTI PRIMARI</th>
<th>EFFETTI SECONDARI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LUNGHEZZA DELLA</td>
<td>MASSIMO RIGETTO</td>
</tr>
<tr>
<td></td>
<td>ROTTURA IN SUPERFICIE</td>
<td>SUPERFICIALE</td>
</tr>
<tr>
<td>IV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VI</td>
<td>(*)</td>
<td>(*)</td>
</tr>
<tr>
<td>VII</td>
<td>Diverse centinaia di metri</td>
<td>Qualche cm</td>
</tr>
<tr>
<td>IX</td>
<td>1 - 10 km</td>
<td>5 - 40 cm</td>
</tr>
<tr>
<td>X</td>
<td>10 - 60 km</td>
<td>40 - 300 cm</td>
</tr>
<tr>
<td>XI</td>
<td>60 - 150 km</td>
<td>300 - 700 cm</td>
</tr>
<tr>
<td>XII</td>
<td>> 150 km</td>
<td>> 700 cm</td>
</tr>
</tbody>
</table>

(*) Rotture superficiali dovute a fogliazione limitata, da dieci a centinaia di metri con rigetti centimetrici si possono verificare in aree vulcaniche, associate essenzialmente a terremoti assai superficiali.

Tab. 1 – Per ciascun grado di intensità sono riportati gli intervalli tipici dei parametri di fogliazione superficiale (effetti primari) e la tipica area di estensione totale degli effetti secondari.
L’intensità locale viene essenzialmente stimata attraverso la descrizione degli effetti secondari avvenuti in diversi “Siti” compresi tutti in una determinata Località. Questo tipo di intensità deve essere confrontabile con quella corrispondente ricavabile da un’analisi macrosismica tradizionale. Comunque una “Località” può riferirsi sia a località effettivamente abitate (un paese, una città), sia ad aree naturali prive di insediamenti antropici. Quando sono disponibili solo effetti primari, è anche possibile utilizzare l’espressione locale della fagliazione superficiale, in termini di massimo rigetto.
Definizione dei Gradi di Intensità

Da I a III: Non ci sono effetti sull’ambiente che possono essere usati come diagnostici per la valutazione del grado di intensità

IV AMPIAMENTE AVVERTITI / Primi inevitabili effetti sull’ambiente

Gli effetti primari sono assenti.

Effetti secondari

f) In rari casi si osservano modeste variazioni locali del livello idrico nei pozzi e/o della portata delle sorgenti, nonché assai rare e modeste variazioni delle proprietà chimico-fisiche delle acque e della torbidità nelle sorgenti dei pozzi, con particolare riferimento alle sorgenti dei sistemi carsici, che risultano più soggette a questi fenomeni.

g) In bacini chiusi (laghi, talvolta anche mari), si possono produrre sesse di altezza non superiore ad alcuni centimetri, registrabili unicamente dai mareografi e solo eccezionalmente ad occhio nudo. Tipicamente si verificano nell’area di far field di forti terremoti. Onde anomale sono avvistate da tutti coloro che si trovano su piccole imbarcazioni, solamente da alcuni che si trovano su battelli di maggiori dimensioni, e dalla maggior parte di chi si trova sulla riva. L’acqua nelle piscine oscillà e in alcuni casi fuoriesce.

h) Fratture molto sottili (ampiezza millimetrica) possono occasionalmente prodursi laddove la litologia (cfr. depositi alluvionali sciolti, terreni satui) e/o la morfologia (cfr. versanti o creste) sono particolarmente favorevoli a questo fenomeno.

i) Eccezionalmente possono verificarsi crolli e (ri) attivarsi piccoli movimenti frangenti, lungo versanti che si trovano in condizioni di equilibrio limite (cfr. versanti molto ripidi, tagli stratigraphici, terreni sciolti e generalmente satui).

j) I rami degli alberi si scuotono debolmente.

V FORTE / Effetti ambientali marginali

Gli effetti primari sono assenti.

Effetti secondari

k) Raramente si registrano variazioni locali del livello idrico nei pozzi e/o di portata delle sorgenti nonché modeste variazioni delle proprietà chimico-fisiche delle acque, della torbidità in laghi, sorgenti e pozzi.

l) Nei bacini chiusi (laghi, talvolta anche mari), si possono produrre sesse di altezza decimetrica, talvolta visibili ad occhio nudo; tipicamente si verificano nell’area di far field di forti terremoti. Onde anomale di altezza anche pari a diverse decine di centimetri sono percepite da tutti coloro che si trovano in barca o sulla riva. L’acqua nelle piscine trabocca.

m) Fratture sottili (ampiezza millimetrica e lunghezza centimetrica fino ad un metro) si producono laddove la litologia (cfr. depositi alluvionali sciolti, terreni satui) e/o la morfologia (versanti e creste) sono particolarmente favorevoli a questo fenomeno.

n) Raramente si possono verificare piccoli crolli, scorrimenti rotazionali e colate di terra, su versanti in condizioni di equilibrio limite, spesso ma non necessariamente molto ripidi, su terreni generalmente sciolti e satui. Possono attivarsi frane sottomarine in grado di indurre piccole onde anomale sulle coste di mari e laghi.

o) I rami degli alberi e i cespugli si scuotono leggermente e, molto raramente, cadono rami secchi e frutti maturi.

p) Si osservano assai rari casi di liquefazione (vulcanelli di sabbia – sand boils) di piccole dimensioni e nelle aree maggiormente favorevoli a questo fenomeno (depositi recenti, alluvionali e costieri, altamente suscettibili, con falda prossima al piano campagna).

VI LIEVEMENTE DANNOSONO / Effetti ambientali modesti

Gli effetti primari sono assenti.
Effetti secondari

g) Variazioni significative del livello idrico nei pozzi e/o della portata delle sorgenti si registrano localmente, nonché modifiche delle proprietà chimico-fisiche dell'acqua e della turbidità in laghi, sorgenti e pozzi.

h) Onde anomale alte fino a diverse decine di centimetri possono allagare un'area molto limitata prossima alla linea di costa. L'acqua fuoriesce dalle piscine e da piccoli stagni e specchi d'acqua.

i) Occasionalmente, si osservano fratture di ampiezza millimetrico-centimetrica e di lunghezza anche di parecchi metri in depositi alluvionali sciolti e/o in terreni sature; lungo versanti ripidi o argini di corsi d'acqua possono essere ampie 1-2 cm. Fratture minori si formano nella pavimentazione stradale (sia in asfalto che in pietra).

j) Possono verificarsi crolli e fenomeni franosi con volumi fino all'ordine di grandezza dei 1000 m³, specialmente in condizioni di equilibrio limite (cfr. versanti ripidi e tagli, terreni sciolti svariati o rocce profondamente alterate e/o fratturate). Franze sottomarine si possono occasionalmente attivare causando piccole onde anomale nonostante costiere di mari e laghi, di solito registrate strumentalmente.

k) Alberi e cespugli oscillano da moderatamente a fortemente; a seconda della specie, del carico di frutti e dello stato di salute della pianta, poche cime di alberi e rami instabili o secchi possono rompersi e cadere.

l) Rari casi di liquefazione (sand boils), di piccole dimensioni, sono riportati nelle aree maggiormente favorevoli a questo fenomeno (depositi recenti, alluvionali e costieri, altamente suscettibili, con falda prossima al piano campagna).

VII DANNOSO / Significativi effetti sull'ambiente

Effetti primari: si osservano assai raramente, e quasi esclusivamente in aree vulcaniche. Limitata flagliazione superficiale, da decine a centinaia di metri di lunghezza e rigorosamente centimetrici, può prodursi, associata fondamentalmente a terremoti molto superficiali.

Effetti secondari; l'area totale interessata da effetti secondari è nell'ordine dei 10 km².

Si registratorono localmente significative variazioni temporanee del livello idrico nei pozzi e/o della portata delle sorgenti. Di rado, piccole sorgenti possono temporaneamente essicinarsi o essersi affiorare di nuove. Localmente si osservano modeste variazioni delle proprietà chimico-fisiche delle acque e della turbidità in laghi, sorgenti e pozzi.

h) Onde anomale alte anche più di un metro possono allagare aree prossime alla linea di riva e danneggiare o rimuovere oggetti di varie dimensioni. L'acqua fuoriesce da piccoli stagni e corsi d'acqua.

i) Fratture ampie fino a 5-10 cm e di lunghezza superiore al centinaio di metri si osservano comunemente nei depositi alluvionali sciolti e/o nelle terreni sature, raramente si producono. Fratture di ampiezza fino ad un cm in terreni sabbiosi asciutti, sabbioso-argillosi ed argillosi. Fratture di ampiezza centimetriche sono comuni nella pavimentazione stradale (asfalto o pietra).

j) Diffusi fenomeni franosi si verificano solo in zone in equilibrio instabile (versanti ripidi di terreni sciolti / sature), mentre crolli di modesta entità sono comuni sulle pietre di sole e scogliere. La loro dimensione è talvolta significativa (10³ - 10⁴ m³); in terreni sabbiosi asciutti, sabbioso-argillosi e argillosi i volumi sono generalmente inferiori a 100 m³. Rotture, scioglimenti e crolli possono interessare gli argili di depositi d'acqua, e gli scavi artificiali (cfr. tagli stradali, cave) in sedimenti sciolti o in rocce alterate / fratturate. Si possono verificare frane sottomarine di una certa entità che determinano onde anomale nelle zone costiere di mari e laghi, percepite direttamente dalla gente sulle barche e nei porti.

k) Alberi e cespugli oscillano vigorosamente; specialmente nelle zone a bosco fitto molti rami e cime degli alberi si spezzano e cadono.

f) Rari casi di liquefazione sono documentati, con vulcanici di sabbia (sand boils) che possono raggiungere i 50 cm di diametro, nelle zone maggiormente favorevoli a questo fenomeno (depositi recenti, alluvionali e costieri, altamente suscettibili, con falda prossima al piano campagna).

VIII ASSAI DANNOSO / Estesi effetti sull'ambiente

Effetti primari: si osservano raramente. Si possono produrre rotture del terreno (flagliazione superficiale) fino a diverse centinaia di metri, con rigetti fino a pochi centimetri, soprattutto per terremoti il cui ipocentro è molto superficiale quali quelli che comunemente interessano le aree vulcaniche. Si possono anche verificare abbastramenti o sollevamenti tettonici della superficie topografica, con valori massimi dell'ordine di pochi centimetri.
Effetti secondari: L’area totale interessata è dell’ordine di 100 km2.

j) Onde anomale di altezza superiore a 1-2 metri allagano le zone prossime alla linea di riva e sono in grado di danneggiare o rimuovere oggetti di varie dimensioni. Si osserva sulle spiagge la rimozione e rideposizione di rifiuti, alcuni cespugli e persino piccoli alberi debolmente radicati possono venire radicati e rimossi. L’acqua traccia con forza da piccoli bacini e corsi d’acqua.

k) Fratture di ampiezza fino a 50 cm e lunghezza anche di centinaia di metri si producono in depositi alluvionali sciolti e/o in terreni saturi; in rari casi è possibile osservare fratture fino a 1 cm in rocce ascitate comprese. Fratture decimetriche sono comuni nella pavimentazione stradale (asfalto e pietra), come anche piccole onde di tensione (pressure undulations).

d) Fenomeni franosi di dimensioni da piccole a moderate (103 - 105 m3) sono amplamente diffusi, nelle zone più favorevoli al loro innesco; raramente, possono verificarsi anche su versanti poco pendenti, in condizioni di equilibrio instabile (versanti ripidi di terreni scolti / saturi; crolli su pareti di gole e scogliere), la loro dimensione è talvolta superiore (105 - 106 m3). Tali fenomeni franosi possono occasionalmente strappare le vie d’accesso, determinando la formazione temporanee, o persino permanente, di un lago. Rotture, scivolamenti e crolli interessano gli argini dei corsi d’acqua e gli abbandonamenti artificiali (cfr. tagli stradali, cave) in sedimenti scolti o in aree alterate / fratturate. Nelle zone costiere sono frequenti le frane sottomarine.

e) Gli alberi oscillano vigorosamente; i rami si possono rompere e cadere; persino gli alberi radicarsi, specialmente su versanti assai pendenti.

f) Nell’area epicentrale, in funzione delle condizioni locali, i fenomeni di liquefazione possono risultare frequenti; i vulcanelli di sabbia possono arrivare anche ad 1 metro di diametro, fontane d’acqua appaiono in acqua calme; si osservano localizzate espansioni laterali (lateral spreading) di abbassamenti (subsidenza pari anche a 30 cm), con fenditure parallele alle rive di corsi e specchi d’acqua (es., argini fluviali, laghi, canali, linee di costa).

g) In area epicentrale si può osservare il sollevamento di nuvole di polvere dal terreno in condizioni particolarmente secche.

h) Pietre e anche piccoli blocchi e tronchi possono essere scagliati in aria, lasciando tipiche impronte nel terreno soffice.

IX DISTRUTTIVI: Alcuni effetti sull’ambiente costituiscono una diffusa causa di elevata pericolosità e divengono importanti per la valutazione dell’intensità

Effetti primari: comunemente osservati.

Si producono rotture nell’arco (fagliazione superficiale) di lunghezza fino a pochi km, con rigetti generalmente nell’ordine di alcuni cm. Si possono verificare abbassamenti o sollevamenti della superficie topografica di natura tectonica fino al massimo a pochi decimetri.

Effetti secondari: L’area totale interessata è nell’ordine di 1000 km2.

a) La portata e/o l’ubicazione delle sorgenti possono variare, generalmente temporaneamente, anche in maniera considerevole. Alcune sorgenti possono anche essiccare. Si osservano comunemente anche oscillazioni temporanee del livello idrico nei pozzi, nonché frequenti variazioni delle proprietà chimico-fisiche dell’acqua, soprattutto la temperatura, nelle sorgenti e/o nei pozzi. L’acqua torbida è un fenomeno comune nei bacini chiusi, nei corsi d’acqua, nei pozzi e nelle sorgenti. Si registrano emissioni di gas, in genere sulfurei: i cespugli e l’erba vicino alle zone di emissione possono prendere fuoco.

b) Onde di altezza di alcuni metri si sviluppano nelle acque di scorrimento superficiale (corsi d’acqua) nonché in acque tranquille. Nelle piane alluvionali i corsi d’acqua possono anche modificare il proprio tracciato, anche a causa della subsidenza del terreno. Piccoli specchi d’acqua possono formarsi o sparire. A seconda della morfologia del fondale e della linea di costa, pericolosi tsunami possono raggiungere le coste con rimpvio fino a parecchi metri, inondando aree estese.

Sulle spiagge si osserva la rimozione e rideposizione dei rifiuti; alberi e cespugli possono essere radicati e spazzati via.
c) Fratture ampie fino a 100 cm e lunghe diverse centinaia di metri si osservano comunemente nei depositi alluvionali sciolto e/o nei terreni salfuri; in rocce competenti l’ampiezza delle fratture arriva fino a 10 cm. La pavimentazione stradale (asfalto o pietra) è frequentemente interrotta da rilevanti fratture e da onde di pressione (pressure undulations).

d) Fenomeni franosi sono diffusi nelle zone più favorevoli, anche su versanti poco pendenti; in condizioni di equilibrio instabile (versanti ripidi di terreni sciolti/salzuri; crolli su pareti di gole e scogliere) sono spesso di dimensioni grandi (10^5 m^3): talvolta molto grandi (10^6 m^3). Le frane possono sbarrare le valli strettamente favorendo la formazione di laghi temporanei (o talvolta permanenti). Gli argini fluviali e le pareti di scavi artificiali (cfr. tagli stradali, cave) spesso collassano. Nelle zone costiere sono frequenti le frane sottomarine.

l) Gli alberi oscillano molto forte; è frequente che i rami e i tronchi meno spessi si rompano e cadano. Alcuni alberi possono radicarsi e cadere, specialmente sui versanti ripidi.

j) Sono frequenti le liquefazioni e le fuoriuscite di acqua in pressione (water upsurge); vulcanelli di sabbia possono raggiungere i 3 metri di diametro; fontane d’acqua possono manifestarsi in acque calme; sono frequenti anche le espansioni laterali (lateral spreading) e i fenomeni di subsidenza (anche oltre i 30 cm), con fenditure parallele alle rive di corsi d’acqua (es., argini fluviali, laghi, canali, linee di costa).

g) In condizioni particolarmente secche è comune osservare il sollevamento di nuvole di polvere al terreno.

h) Piccoli blocchi e tronchi possono essere scagliati in aria e spostati anche di alcuni metri a seguito dell’acclività e rugosità del versante, lasciando tipiche impronte su terreno soffice.
X MOLTO DISTRUTTIVO / Gli effetti sull’ambiente rappresentano una causa sostanziale di pericolosità e divengono basilari per la valutazione dell’intensità.

Effetti primari diventano dominanti.

La flagellazione superficiale si sviluppa per alcune decine di km con rigetti da decine di cm fino a pochi metri. Si producono gravity graben e depressioni allungate; per terremoti molto superficiali in aree vulcaniche le lunghezza complessiva della rottura può essere assai minore. Possono verificarsi sollevamenti e abbassamenti della superficie topografica di natura tettonica dell’ordine di alcuni metri.

Effetti secondari. L’area totale interessata è dell’ordine di 5000 km².

b) Onde di altezza metrica si formano in laghi e fiumi anche di ampie dimensioni, che esondano dagli stessi. Nelle pianure alluvionali i fiumi possono modificare il loro tracciato temporaneamente o in via definitiva, anche a causa della diffusa subsidenza del terreno. Specchi d’acqua possono formarsi o scomparire. A seconda della morfologia dei relitti della linea di costa, gli tsunami possono raggiungere le coste con runup superiore a 5 metri, inondando estesamente aree pianeggianti fino ad alcune migliaia di metri nell’entroterra. Blocchi di piccole dimensioni possono essere trasportati per diversi metri. Lungo le coste si osservano diffusamente fenomeni di intensa erosione che modificano notevolmente il profilo della linea di costa. Gli alberi sulla riva sono radicati e trascinati via.

c) Sono frequenti le fratture beanti fino ad oltre un metro e lunghe alcune centinaia di metri, soprattutto nei terreni alluvionali scoli e/o nei terreni satui; in rocce competenti l’apertura delle fratture può raggiungere diversi decimetri. La pavimentazione stradale (asfalto o pietra) è interessata da ampie fratture, nonché da ondate di pressione (pressure undulations).

d) Sono frequenti fenomeni franosi e crolli di grandi dimensioni (~ 1 m² - 10⁹ m⁴), indipendentemente dallo stato di equilibrio dei versanti, che favoriscono la formazione di laghi di sbalzo temporanei o permanenti. Gli argini fluviali e le pareti di scavo tipicamente collassano. Argini e dighe in terra possono verificare gravemente danneggiamenti. Nelle aree costiere sono frequenti le frane sottomarine.

e) Gli alberi oscillano vigorosamente; molti alberi e tronchi d’albero si spezzano e cadono. Alcuni alberi possono radicarisi e cadono.

f) I fenomeni di liquefazione, unitamente ai fenomeni di compattazione del terreno e di fuoriuscite di acqua in pressione (water upsurge), possono modificare l’aspetto di vaste zone; i vulcani di sabbia possono superare i 10 metri di diametro; la subsidenza verticale può superare il metri con composti grandi e lunghe fentiture dovute ai fenomeni di espansione laterale (lateral spreading).

g) In condizioni particolarmente secche, si comincia a osservare il sollevamento di nuvole di polvere dal terreno.

h) Blocchi di diametro anche superiore a 2-3 metri possono venire scagliati in aria e trascinati per centinaia di metri anche su versanti poco pendenti, lasciando tracce impronte sul terreno.

XI DEVASTATIVI. Gli effetti sull’ambiente divengono decisivi per la valutazione dell’intensità poiché i danni alle strutture giungono a saturazione

Gli effetti primari sono dominanti.

La flagellazione superficiale si estende per molte decine fino ad oltre un centinaio di km, con rigetti che possono raggiungere parecchi metri. Si formano depressioni allungate, gravity graben e pressure ridges. Le linee di drenaggio possono venire significativamente dislocate. Si possono verificare abbassamenti o sollevamenti della superficie topografica di natura tettonica con valori massimi di diversi metri.

Effetti secondari: l’area totale interessata è dell’ordine di 10.000 km².

b) Notevoli onde si formano in grandi laghi e nei corsi d’acqua, i quali esondano dal loro alveo. Nelle piane alluvionali i fiumi possono modificare il loro tracciato, in via temporanea ma anche permanente, anche a causa dei diffusi fenomeni franosi e di subsidenza del terreno. Specchi d’acqua possono formarsi o scomparire. A seconda della morfologia del fondale e della linea di costa, gli tsunami possono raggiungere le coste con runup fino a 15 metri e più, inondando estesamente aree pianeggianti per km nell’entroterra. Blocchi di dimensioni anche metriche possono venire trasportati per lunghe distanze. Lungo le coste si osservano diffusamente fenomeni di intensa erosione che modificano notevolmente la morfologia costiera. Gli alberi sulla riva sono radicati e trascinati via.

c) Fratture di ampiezza anche di diversi metri sono assai comuni, soprattutto nei depositi alluvionali e/o nei terreni saturas. Nelle rocce competenti esse raggiungono il metro di larghezza. La pavimentazione stradale (asfalto o pietra) è interessata da fratture molto ampie e da onde di pressione (pressure undulations).

d) Sono frequenti grandi fenomeni franosi e crolli (> 10^5 - 10^6 m^3), indipendentemente dallo stato di equilibrio dei versanti, che favoriscono la formazione di laghi di sbarramento temporanei o permanenti. Gli argini fluviali, gli sbancamenti artificiali e le pareti di scavo tipicamente collasano. Argini e dighe in terra possono risultare gravemente danneggiate. Frane significative possono verificarsi a distanza anche di 200 – 300 km dall’epicentro. Nelle zone costiere sono frequenti anche frane sottomarine.

e) Gli alberi oscillano vigorosamente; molti rami e tronchi si spezzano e cadono. Molti alberi vengono radicati e cadono.

f) I fenomeni di liquefazione modificano l’aspetto di estese aree di pianura, causando abissamenti verticali anche superiori a diversi metri, parecchi vulcani di sabbia e considerevoli fenomeni di espansione laterale.

g) In condizioni particolarmente secche è comune osservare il sollevamento di nuvole di polvere dal terreno.

h) Grossi blocchi (diametro anche di parecchi metri) possono essere scagliati in aria e trasportati via per lunghe distanze anche su recenti poco pendenti, lasciando tipiche impronte nel terreno.

XII TOTALMENTE DEVASTANTE / Gli effetti sull’ambiente e sono l’unico strumento per valutare l’intensità

Effetti primari: sono dominanti.

La fissazione superficiale si estende per centinaia di km, con righe che possono raggiungere decine di metri. Si formano depressioni allungate, gravity graben e pressure ridge. Le onde di drenaggio possono venire significativamente dislocate. Le trasformazioni geomorfologiche e del paesaggio indotte da questi effetti possono risultare eccezionalmente intense ed estese (tipici esempi sono il sollevamento o l’abbassamento di parecchi metri delle linee di costa, la formazione o la scomparsa dalla vista di elementi significativi del paesaggio, variazioni del tracciato di corsi d’acqua, sviluppo di cascate, formazione o scomparsa di laghi).

Effetti secondari: L’area totale interessata è nell’ordine di 50000 km^2 o superiore.

i) Si osservano variazioni del potere consistenti di molte sorgenti e/o della loro quota di affioramento. Temporanei oscillazioni del livello idrico nei laghi. Molte sorgenti possono sgorgare o essiccare in via temporanea o talvolta in maniera definitiva. Si osservano consistenti variazioni delle proprietà chimico-fisiche delle acque di sorgenti e/o pozzi, soprattutto della temperatura. L’acqua diviene molto fangosa anche in bacini molto grandi, nonché in fiumi, pozzi e sorgenti. Si registra scarica di emissioni gassose, generalmente sulfuree, e nelle aree ad esse limitrofe i cespugli e l’erba prendono un aspetto estremamente variato.

j) Onde gravitazionali si formano in grandi laghi e fiumi, che esondano dal proprio alveo. Nelle piane alluvionali i fiumi possono modificare il loro tracciato e persino la direzione del deflusso in via temporanea o anche permanente, anche a causa dei diffusi fenomeni franosi e di subsidenza del terreno. Estesi specchi d’acqua possono formarsi o scomparire. A seconda della morfologia del fondale e della linea di costa, gli tsunami possono raggiungere le coste con runup fino a diverse decine di metri, recando devastazione nelle aree pianeggianti per vari km nell’entroterra. Grossi blocchi possono venire trasportati per lunghe distanze. Lungo le coste si osservano diffusi fenomeni di intensa erosione che modificano notevolmente la morfologia costiera. Molti alberi sulla riva sono radicati e trascinati via. Tutte le barche sono state al loro ormeggio e spazzate via o trasportate sulla terraferma anche per lunghe distanze. Tutte le persone all’esterno vengono travolte.

c) Fratture nel terreno sono molto frequenti, ben più di un metro nel bedrock, fino anche a 10 metri in depositi alluvionali soffici e/o in terreni saturas. Si estendono per diversi chilometri in lunghezza.

d) Grandi fenomeni franosi e crolli (> 10^5 - 10^6 m^3) sono frequenti, indipendentemente dallo stato di equilibrio dei versanti, che favoriscono la formazione di laghi di sbarramento temporanei o permanenti. Gli argini fluviali, gli sbancamenti artificiali e le pareti di scavo tipicamente collassano. Argini e dighe in terra risultano gravemente danneggiate. Frane significative possono verificarsi ad oltre 200-300 km dall’epicentro. Nelle zone costiere sono frequenti notevoli frane sottomarine.
e) Gli alberi oscillano vigorosamente; molti rami e tronchi si spezzano e cadono. Molti alberi vengono radicati e cadono.

f) Le liquefazioni si verificano in aree assai estese e vanno a modificare la morfologia di vaste zone pianeggianti, determinando abbassamenti verticali anche superiori a parecchi metri. Sono diffusi vulcani di sabbia di grand dimensioni ed estesi e considerevoli fenomeni di espansione laterale (lateral spreading).

g) In condizioni particolarmente secche è comune osservare il sollevamento di nuvole di polvere dal terreno.

h) Blocchi anche molto grandi possono essere scagliati in aria e trascinati via per lunghe distanze anche su versanti poco pendenti, lasciando tipiche impronte nel terreno.
4. EEE data collection and ESI intensity assessment: list of references

ESPOSITO E. (1), PORFIDO S. (1), GUERRIERI L. (2), MICHETTI (3) & THE INQUA #0418 WORKING GROUP

(1) Istituto per l'ambiente marino costiero, CNR, Napoli, Italy.
(2) Geological Survey of Italy, ISPRA, Roma, Italy.
(3) Dipartimento di Scienze Chimiche e Ambientali, Università dell’Insubria, Como, Italy.

In the last decade numerous scientific papers and reports have been focused on Earthquake Environmental Effects data collection from recent, historical and extra earthquakes, and seismic intensity evaluations based on EEE data through the ESI 2007 scale. These works have been mostly but not exclusively conducted in the frame of the INQUA TERPRO SubCommission on Paleoseismicity activities and projects.
Below is reported a list of references of papers published on peer reviewed journals or in the proceedings of scientific conferences, and reports focused on the field collection of EEEs induced by recent earthquakes. A not exhaustive record of abstract submitted in the period 2008 - 2011 to scientific conferences, including sessions sponsored by INQUA TERPRO SubCommission on Paleoseismicity, will complete the list of references.

Scientific papers published on peer reviewed journals or in the proceedings of conferences

94

Lekkas E.L., I. D. Papanikolaou, D.I. Papanikolaouand Daamou G,(2008) Correlating the damage pattern and the geological structure. Local site effects from the 2006 MW=6.7 KTYHIRA island intermediate depth event, SW Greece. The 14th World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China

ground effects of the 1805, 1930 and 1980 earthquakes in the Southern Apennines (Italy).

Reports related to the collection of EEEs induced by recent earthquakes (2008 – 2011)

Selection of abstracts (2008 – 2011)

33rd IGC Session STP-02 (co-sponsored by INQUA) “Deducing nature and magnitude of paleoearthquakes: Finding paleoevents and quantifying them”, Oslo, July 2008

Godoy A., Michetti A.M. Paleoseismological investigations for Nuclear Power Plant siting: Lessons learned from the Kashiwazaki-Kariwa accident

Mörner, N.A. Paleoseismicity in Sweden: Characteristics, means of magnitude estimates and implications for hazard assessments

Minaya E., Ramirez V. I., Hermanns R. L., Clague J., Gonzalez M., Valencia J., Cerriots . Paleoseismologic investigations of the El Alto fault system on the Altiplano plateau in the outskirts of La Paz, Bolivia

Guerrieri L., Blumetti A.M., Di Manna P.; Serva L.; Vittori E. Surface faulting hazard in Italy: Input for land management

Reichert K., Silva Barroso P., Gruetznz C. Archeoseismological, paleoseismological and geophysical investigations in the Roman Ruins of Baelo Claudia (southern Spain)

Okumura K. Active tectonics of the 16 July 2007 earthquake near Kashiwazaki, central Japan. A key for seismic risk assessment of nuclear power plants

Michetti A.M., Berlinsoni A., Livio F., Sileo G., Zerboni A., Cremaschi M., Trombino F., Mueller C., Vittori E., Carcano C., Rogledi S. - Paleoearthquakes at Monte Netto, Brescia, Italy: Assessing the seismic potential of the Po Plain from the analysis of coseismic environmental effects.

Sintubin, M., Stewart J. Can a logic-tree approach make sense of archaeological evidence for Palaeoseismic events? Testing the logic tree approach at Sagalassos (SW Turkey)

The geology effects of the 1908 Southern Calabria - Messina earthquake (Southern Italy)

Reichert K., Schaub, Gruetzner C., Fernandez-Steger T., Koehler K. terra mutus factus est: Evidence for historical earthquake damage in the Aachen Cathedral (Germany)

Diederix H., Osorio J. A., Montes N. Cyclicity in the sedimentary record of a small pull-apart basin as paleoearthquake evidence of surface faulting during the holocene along the Ibagu fault, Colombia

Michetti A.M., Comerci V., Esposito E., Guerrieri L., Porfido S., Silva P., Vittori E. - Towards a catalogue of earthqaurk environmental effects.

Lafuente P., Arlegui L. E., Llies C. L., Simón J. L. - Paleoseismological analysis at a railway trench across an intraplate extensional structure: the Gondal fault

Bouhadad Y. Deducing the source and magnitude of paleoearthquakes from paleoquakefication features: Example of the Bournedres (Algeria)

Jin K., Kim Y.-S. - Paleoseismic Indicators in the Ganjeolgot area, SE Korea

Zamudio Y. New scale of microseismic intensity-ESI 2007 applied to peruvian earthquakes

CHOLLET J.-L., ONG DUKG., CHWAE UEE C., Shim T., SONG YU. - Redetekofemation of a Quaternary fault, Surya Is. fault at the southeastern coast of Korean peninsula.

Stewart L., Sintubin M. - A standardised procedure for earthquake archaeology: The archaeoseismological logic tree.

Al-Shukri H., Mahdi H.; Alkadi O.; Tuftle M. - Geophysical investigation of earthquake induced paleoseismological features.

Field Trip Workshop "The Dead Sea Rift as natural laboratory for earthquake behaviour: prehistorical, historical and recent seismicity" (15th-23rd February, 2009)

Z. Garfunkel - The Dead Sea Transform: a geological perspective
Z. Ben Avraham - The Dead Sea Transform: a geophysical perspective
A. Shapira - On the rate of seismic activity along the Dead Sea Transform
G. Baer - Recent crustal movements along the Dead Sea fault

99
A.M. Michetti - The ESI 2007 scale and new catalogue of earthquake environmental effects
Y. Hatzor - Constraining paleoseismic PGA using numerical analysis of structural failures in old masonry structures
G. King - Slip Partitioning by Elastoplastic Propagation of Oblique Slip at Depth
K. Okumura - Segmentation model of a long fault zone based on the size and temporal stability of the segment boundaries
S. Wesnousky - Neotectonics, geodesy, and seismic hazard in the northern Walker Lane
Y. Ota - Active Touhuangping Fault and its tectonic significance in the northwestern Taiwan
S.E. Hough - Earthquakes in the Dead Sea rift zone: past, present, future
S. Leroy - Impact of earthquakes on agriculture in the Dead Sea region during the Roman-Byzantine period
A. Salamon - Patterns of Seismic Sequences in the Levant - Interpretation of Historical Seismicity
Y. Klinger - Earthquake history of the Lebanese fault bend and the Levant fault behaviour.

1st INQUA - IGCP 567 - International Workshop on Earthquake Archaeology and Paleoseismology, Isola Claudia, Spain, 9th September 2009

Sintunin M. - Key note on Archaeoseismology
Guerrieri, L. and Porfido, S. - Cataloguing earthquake environmental effects: a tool for the comparison of recent, historical and paleo-earthquakes.
Papankikoaulou, I.D. - The ESI 2007, the intensity attenuation relationships and possible gains for seismic hazard maps
Tatevossian, R.E. - Geological and macroseismic effects of Muya, 1957, earthquake and paleoearthquakes in Baikal region
Vött, A. - Palaeotsunami signatures in Holocene coastal geoarchives of the western Ionian Sea region, Greece
Mörner, N.A. - Liquefaction as evidence of paleoseismics
Rockwell, T.K. - Trenching paleoseismology
Papathanassiou, G. and Pavlidis, S. Gis-Based database of earthquake-induced liquefaction manifestations in Broader Aegean Region.
Moreno, X., Gracia, E., Masana, E., Rodés, Á., Bartolomé, R. and Palles, R. - Paleoseismology along the Carboneras Fault: integrated onshore-offshore evidence of seismogenic activity
Gath, E.M. and Rockwell, T.K. - Coseismic offset on the Camino de Cruces confirms the Pedro Miguel fault as the cause of the ad 1621 Panamá Viejo Earthquake.
Kostov, K., Shanov, S. and Surányi, G. - Paleoseismological investigations using speleothems: Case Study of two caves in Rhodopes Mountains, Southern Bulgaria
Yerli, B., Schreiber, S., Hinzen, K.G. and ten Veen, H.L. - Testing the hypothesis of earthquake-related damage in structures in the Iyian ancient city of Pinara, SW Turkey.
Sánchez-Gómez, M., Martínez-Sánchez, C., García-García, F., Paláez, J.A., Pérez-Valera, F. and Martínez-Andreu, M.
Evidence for a holocene earthquake recorded in a fluvialarchaeological sequence of the Segura river, SE Spain.
Kamai, T. and Sangawa, A. Landslides on ancient fill structures induced by the 16th century earthquake in the Kinki district, Japan.
Silva, P.G. Rodríguez-Pascua, M.A., Pérez López, R., Giner, J.J., Lario, j; Bardají, T., Goy, J.L. and Zazo, C. - Geological and palaeontological record of the 1504 AD Carmona earthquake (Guadalquivir Basin, South Spain): a review after Bonell, 1918.
Koster, A., Vonberg, D. and Reichert, K. - Tsunamigenetic deposits along the southern Gulf of Cádiz (southern Spain) caused by tsunami in 1755?
Rodríguez-Peaces, M.J., Garcia-Mayordomo, J., Azañón, J.M., Insua-Arévalo, J.M. and Jiménez Pintor, J. - Preliminary results of static and dynamic reconstruction of Güevéjar landslide (Granada, Spain) during 1775 Lisbon and 1884 Andalusian earthquakes.
Rodríguez-Vidal, J., Cáceres, L.M., Ruiz, F., Abad, M., Fa, D., Finlaysen, G., Finlaysen, J.C. and Bailey, G. - Geomarkers of AD 1755 Tsunami on Gibraltar.
Da-Quan, Y., Zhi, S., Xiao-Gi, S., Jie-Ping, T. and An-Guo, C. - Discovery of natural deformation relics in Anhui Archaeological Scene and its significance.
Schaub, A., Reicherter, K., Grützner, C. and Fernández-Steger, T. - Evidence for a medieval earthquake in the Aachen area (Germany), revealed by structural damage in the cathedral.
Štěpanělíková, P., Hók, J. and Nývtl, D. - Trenching survey on the south-eastern section of the Sudetic Marginal Fault (NE Bohemian massif), intraplate region of Central Europe.
Tahir Mian, M. Geomorphology, paleoseismology and geological analysis for seismic hazard estimations.
Höbig, N., Brau, A., Grützner, C., Fernández-Steger, T. and Reicherter, K. - Rock fall hazard mapping and run out simulation: a case study from Bolonia Bay, southern Spain.
Villa Valdés, A. - Geoarchaeological context of the destruction and abandonment of a fortified village in Asturias in the 2nd century AD: Chao Samarín (Grandas de Salime).
Vollmert, A., Reicherter, K. and Grützner, C. - The origin of rockfalls and the formation of hanging valleys along the La Laja range front (Tarija, S.Spain).
Wiatr, T., Reicherter, K. and Papanikolaou, I. - Terrestrial laser scanning of a late fault in Greece: Kaparelli Fault

Other abstracts