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Abstract. Mapping and anticipating risk is a major issue in the fight against malaria, a disease causing an estimated one mil-
lion deaths each year. Approximately half the world’s population is at risk and it is of prime importance to evaluate the bur-
den of malaria at the spatial as well as the temporal level. The role of the environment with regard to the determinants of
transmission and burden of the disease are described followed by a discussion of special issues such as urban malaria, human
population mapping and the detection of changes at the temporal scale. Risk maps at appropriate scales can provide valu-
able information for targeted control and the present review discusses the essentials of principles, methods, advantages and
limitations of remote sensing along with a presentation of ecological, meteorological and climatologic data which rule the
distribution of malaria. The panel of commonly used analytic methods is examined and the methodological limitations are
highlighted. A review of the literature details the increasing interest in the use of remotely sensed data in the study of malar-
ia, by mapping or modeling several malariometric indices such as prevalence, morbidity and mortality, which are discussed
with reference to vector breeding, vector density and entomological inoculation rate, estimates of which constitute the foun-
dation for understanding endemicity and epidemics.
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Introduction

Malaria is an infectious disease caused by parasites
of the genus Plasmodium, transmitted to humans by
the bites of infected female mosquitoes of the genus
Anopheles. With more than 200 million of cases and
about one million of deaths each year, the disease is a
major public health problem (WHO, 2010). Indeed,
although efforts have been made to collect and cen-
tralise existing entomological, parasitological and epi-
demiological data in Africa (MARA/ARMA, 1998;
Coetzee et al., 2000; Hay et al., 2000; Hay and Snow,
2006), a high degree of uncertainty still exists regard-
ing the annual number of malarial cases and their geo-
graphical distribution (Sullivan, 2010). Insufficient

epidemiological or parasitological data are the rule in
many endemic countries, while entomological data are
rarely collected continuously in a given area, and
when field studies are undertaken, they provide only a
snapshot of a continuous phenomenon. 

At the local scale, the concept of transmission units,
focused on the Anopheles breeding sites, can be
described as a system promoting targeted interventions
as more effective than random control measures (Carter
et al., 2000). A focus on the most productive breeding
sites can lead to significant reductions, not only in adult
mosquito productivity but also of the incidence and
prevalence of malaria (Gu and Novak, 2005), and ded-
icated risk maps at appropriate scales can provide valu-
able information for selective malaria control. 

Anticipating future risk and incidence is critical to
success in the fight against malaria. The history of
malaria early warning systems (EWS) goes back to 1921
when the intensity and distribution of epidemics in
India were forecasted based on absence of the disease in
the previous 5 years, rainfall anomalies from July to
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August, and the local price of wheat used as a proxy for
people’s nutritional status (Gill, 1923). In the 1950s, the
introduction of insecticides led some to the false belief
that the launch of the Global Malaria Eradication
Program (WHO, 1955) would eventually be successful
and would make any EWS unnecessary.

Due to the vector-dependent transmission of malar-
ia, the environment plays an important role in deter-
mining vector distribution and malaria biodiversity
(Guthmann et al., 2002; Ernst et al., 2009). Climate
seasonality, rainfall patterns, temperature, humidity
and the presence of vegetation and surface water all
are directly related to the malaria transmission cycle.
In addition, human activities such as agriculture, irri-
gation, deforestation, urbanisation, population move-
ments, dam/road constructions and wars, are also con-
nected to transmission levels and malaria epidemiolo-
gy (Thomson et al., 1996; Beck et al., 2000; Bergquist,
2001; Patz et al., 2004; Ceccato et al., 2005).
Malariometric indices include the presence and per-
sistence of Anopheles breeding sites, larval densities,
aggressiveness or the human biting rate (HBR), the
mosquito prevalence of Plasmodium infection, the
entomological inoculation rate (EIR) as well as malar-
ia prevalence, morbidity and mortality in the human
population.

Remote sensing (RS) refers to the collection of data
by instruments measuring physical and biological
characteristics of some objects without direct contact.
For example, sensors on board satellites record elec-
tromagnetic radiation reflected or emitted by the
Earth surface. Passive sensors record natural radia-
tion, whereas active RS, such as radar, emits signals
and measures the radiation that is reflected or
backscattered from the target. Even if satellite sensors
are not dedicated to recording data regarding infec-
tious diseases, remotely sensed information can pro-
vide useful indirect information, e.g. geo-climatic, eco-
logical and anthropogenic factors related to malaria
transmission levels and patterns. Thus, since the first
studies in the 1970s and 1980s (Cline, 1970; Hayes et
al., 1985), public health has benefited from the grow-
ing availability of remotely sensed data. Forty years
later, we are at a junction when RS has come into its
own and is ready to assist epidemiological research on
malaria at all levels, as well as disease control.

Determinants of malaria burden 

The completion of the malaria life cycle depends
critically on the mosquito developmental cycle that
can only be completed under favourable conditions.

Surface water collections, whose availability is mainly
driven by land use/land cover characteristics and rain-
fall are a must but water bodies can only harbour
Anopheles mosquito larvae if conditions (salinity, tur-
bidity, sunlight, temperature, etc.), are acceptable.
Determinants of presence of larvae and larval density
depend on the mosquito species, e.g. An. gambiae s.l.
usually breeds in small, temporary, clear and shallow
water collections with small amounts of organic mat-
ter and surface vegetation (Gillies and Coetzee, 1987),
but it can also adapt to polluted water (Awolola et al.,
2007). Under laboratory conditions, the rate of devel-
opment of An. gambiae s.s. from one immature stage
to the next increases at higher temperatures to a peak
around 28 °C, after which it declines. The range of
optimum adult emergence is between 22 °C and 26 °C
with complete inhibition below 18 °C or above 34 °C
(Bayoh and Lindsay, 2003). The adult mosquito sur-
vival rate, another key factor in malaria transmission,
is driven by climatic factors, such as temperature and
relative humidity as well as land use and land cover
characteristics. Depending on the conditions, vectors
can survive from a few days to several months.
Dispersal or flight range is also an important determi-
nant of malaria patterns (Killeen et al., 2003). Land
use and land cover characteristics impact dispersal,
which is generally lower (<300 m from the breeding
site) in highly-populated urban settings (Sabatinelli et
al., 1986; Trape et al., 1992; Manga et al., 1993;
Robert et al., 1993) than in open rural areas, where it
can reach several km for some species (Charlwood and
Alecrim, 1989).

The duration of the gonotrophic cycle, i.e. the time
between two ovipositions, is a physiological process
that depends on mosquito species and air temperature.
It usually ranges from 2 to 3 days in tropical regions
(Mouchet et al., 2004). The duration of the
gonotrophic cycle regulates the mosquito population
and, thus, also the HBR. The duration of the sporo-
gonic cycle, the process that produces the Plasmodium
sporozoites which can be inoculated during the mos-
quito bite, depends on the parasite species and the air
temperature. Depending on the Anopheles species, at
25 °C, the duration can be about 10 days for P. vivax,
13 days for P. falciparum and 18-20 days for P. ovale
and P. malariae (Mouchet et al., 2004). Slightly high-
er temperatures lead to shorter cycles. Malaria epi-
demiology is also strongly related to the vector species
which can have various vector competence, i.e. ability
of Anopheles to transmit the parasites.

The relationship between ecological factors and the
malariometric indices is strong but it is weighed by
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several biotic factors. For example, immunity moder-
ates the link between environment and malaria trans-
mission and human-vector contact can be decreased
thanks to insecticide-impregnated bednets, one of the
major tools used in current malaria control. 

Remote sensing

Satellite-based imagery is characterised by spatial
and temporal resolutions. On one hand, various
Earth-observing satellites, e.g. WorldView (http://
www.digitalglobe.com/index.php/88/WorldView-2),
Quickbird (http://www.digitalglobe.com/index.php/
85/QuickBird), Ikonos (http://www.geoeye.com/
CorpSite/products-and-services/imagery-sources/) or
SPOT-5 (http://www.spotimage.com/web/en/172-spot-
images.php), are equipped with instruments providing
high or very high spatial resolution images (down to
<1 m). On the other hand, their temporal resolution
can be low and the revisit time can reach several days
or weeks. The same goes for the radar platforms, such
as TerraSAR-X (http://www.infoterra.de/terrasar-x-
satellite) and RADARSAT-2 (www.radarsat2.info/
about/features_benefits.asp). In contrast, low-resolu-
tion platforms, such as Meteosat (http://www.eumet-
sat.int/Home/Main/Satellites/MeteosatSecondGenerati
on/index.htm?l=en), the Geostationary Operational
Environmental Satellites (GEOS) (http://www.oso.
noaa.gov/goes/), the Moderate Resolution Imaging
Spectroradiometer (MODIS) (http://modis.gsfc.nasa.
gov/), onboard the Terra and Aqua spacecrafts, or the
National Oceanographic and Atmospheric
Administration Advanced Very High Resolution
Radiometer (NOAA AVHRR) (http://noaasis.noaa.
gov/NOAASIS/ml/avhrr.html), can provide images of
the same place once or several times a day. As a con-
sequence, environmental indicators necessitating pre-
cise spatial measurements can be derived from the
high-resolution sensors, while indicators that require
temporal evaluation, such as vegetation or rainfall,
can be derived from the low-spatial resolution satel-
lites. In the latter case, studies would cover a whole
country or even a continent but the spatial resolution
could be insufficient for local applications (Beck et al.,
2000). Images are also characterised by their spectral
resolution, i.e. the range of wavelengths that can be
recorded, which will condition their ability to detect
various objects at the Earth surface. Thus, the choice
of images depends on the study objectives and on the
spectral, temporal and spatial resolution criteria need-
ed. In general, low-spatial resolution imagery is free or
inexpensive, in contrast to high resolution images. A

detailed list of past and present orbiting satellites is
provided by the Geospatial Data Service Centre
(GDSC) at http://gdsc.nlr.nl/gdsc/information/earth_
observation/satellite_database.

In order to produce a thematic representation of an
area on the ground, the images can be subjected to
classification (http://www.ccrs.nrcan.gc.ca/glossary
/index_e.php?id=47). This can either be “supervised”,
meaning that that the user guides the image processing
software to classify certain features by using vector
layer containing training polygons, or “unsupervised”
where the software does most of the processing. The
latter approach generally results in more categories
than needed and the user has to decide which cate-
gories can be grouped together into a single land use
or land cover category. New forms of classification
have been developed based on object-oriented tech-
niques (as opposed to pixel representation) that are
particularly well adapted for very high-spatial resolu-
tion image analysis. This approach allows incorpora-
tion of information of the spatial neighbourhood and
it does not only rely on information from a single pixel
(Corcoran et al., 2010; Zhang et al., 2010). In addi-
tion, some mathematical operations can be undertak-
en on images to combine the values of different spec-
tral bands of the same pixel in order to calculate eco-
logical indices, e.g. vegetation or humidity. Some satel-
lite products already contain processed information
such as rainfall quantities or temperature values.
Other images are delivered in raw format and their
pixels contain radiance data in different spectral bands
in which case, they must be processed with appropri-
ate software such as ENVI (http://www.ittvis.com
/ProductServices/ENVI.aspx) or ERDAS IMAGINE
(http://erdas.com). Geographical information systems
(GIS) represent a general way of integrating spatial
data (satellite-based or not) as layers (overlays) that
can be visualised by a computer. Within the GIS, data
can be comprehensively displayed and a wide range of
analyses, including one or more layers, can be per-
formed to highlight relationships, patterns or trends.
Data can also be extracted from the GIS and processed
by statistical software to fit models that can, for exam-
ple, be used for producing risk maps.

Remotely sensed environmental malaria indicators

Temperature

Temperature is one of the main indicators as it influ-
ences all parts of the malaria transmission cycle. Land
surface temperature (LST) can be estimated from ther-
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mal infrared (IR) sensors. MODIS-Terra (https://
wist.echo.nasa.gov/api/), Meteosat, GEOS and
AVHRR provide both day and night temperatures.
LST correlates well with the prevailing temperature of
the air, but land cover, humidity, atmospheric condi-
tions and the period of the day can introduce aberra-
tions (Connor et al., 1997; Cresswell et al., 1999;
Colombi et al., 2007; Vancutsem et al., 2010).
However, a study comparing remotely sensed LST
with ground data interpolated from meteorological
stations concluded that the annual mean LST corre-
sponds to the air temperature in Africa within a range
of +/- 4 °C (Hay and Lennon, 1999). Another article
reports a significant correlation between the LST and
ground observations both in Africa and Europe, with
root mean square errors of around 2 °C (Green and
Hay, 2002). Thus, the raw LST data are useful but
conclusions should be drawn with care. 

Rainfall

Rainfall has a spatio-temporal influence on breeding
sites and can also improve adult survival by creating a
favourable humid microclimate for the adult mosquito.
It can be directly measured but also evaluated by indi-
rect methods. The cold cloud duration (CCD) can be
derived from Meteosat thermal IR imaging (Dugdale
et al., 1991) and provides rainfall estimates based on
the length of time a cloud top is below a threshold
temperature. The Tropical Rainfall Measuring
Mission (TRMM; http://trmm.gsfc.nasa.gov/) satellite
provides near-real-time direct measurement of rainfall
in tropical areas based on passive microwave and
active radar sensors, which closely matches ground
rain gage observations (Sharma et al., 2007; Han et
al., 2010), even in urban areas (Hand and Shepherd,
2009). Nevertheless, the influence of location, climate,
topography, time period, cloud types and rainfall types
can affect accuracy (Barros et al., 2000). In addition,
TRMM rainfall data can overestimate rainfall during
the pre-monsoon season, and in arid regions, but
underestimate it during the monsoon season, and in
humid regions (Islam and Uyeda, 2007).

Elevation

Elevation generally correlates positively with precipi-
tation and negatively with temperature and can be used
as surrogate indicator. Several digital elevation models
(DEMs) give information at different resolutions, e.g.
gtopo30 provides a worldwide, 30 arc-second (about 1
km) DEM (http://eros.usgs.gov/#/Find_Data/Products_

and_Data_Available/gtopo30_info), while the Shuttle
Radar Topography Mission (SRTM) supplies maps at
90 m resolution (http://www2.jpl.nasa.gov/srtm/). In
addition to elevation, other information, e.g. wetness
index (soil moisture), curvature and heat load index
(solar radiation) can be extracted from DEMs (Li et al.,
2006). Curvature measures the convexity or concavity
of the land surface and is an indicator for the possible
accumulation of water.

Land use and land cover (LULC)

The LULC is related to the natural environment and
to the impact of human activities on the landscape.
Despite their differences, land cover and land use are
often mapped together. Land cover refers to character-
istics of the biophysical Earth surface (e.g. water, veg-
etation, bare soil, artificial structures) (Sarma et al.,
2008), while land use reflects human activities such as
agriculture, forestry and urban development. The
LULC is directly related to the malaria burden
through its impact on breeding sites and on the adult
mosquito survival rate and dispersal. LULC maps can
result from any classification process of images and
some are directly available thanks to various global
mapping projects, such as the Corine Land Cover
(http://www.eea.europa.eu/themes/landuse/interac-
tive/clc-download).

Surface water and soil moisture

Surface water and humidity appears on optical
images but microwave sensors have a high potential
for detection. The breeding sites can be described as
specific objects based on their ecological characteris-
tics after the water bodies have been detected (Lacaux
et al., 2006; Vignolles et al., 2009). Soil moisture
measurements can be used as surrogate values if direct
detection of breeding sites is impossible when they are
too small or covered by surface vegetation. The near
infrared (NIR) and short wave infrared (SWIR) bands
are of particular interest for water and moisture map-
ping as they are very sensitive to the humidity con-
tained in vegetation and soils. Several satellites, such
as SPOT-5 or Landsat (http://www.landsat.gsfc.nasa.
gov/), contain spectral information in these wave-
lengths that can be used independently, or in combi-
nation with other bands to calculate indices such as
the normalized difference water index (NDWI) for
which different versions exist: NDWI Gao (Gao,
1996), NDWI McFeeters (McFeeters, 1996) and
NDWI modified (Xu, 2006).
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Humidity

The relative air humidity has a primary impact on
the presence and persistence of breeding sites and on
adult mosquito survival rate. This indicator can be
extracted from other meteorological factors as
detailed in Beugnet et al. (2009), but it should be used
with care. Indeed, air humidity is a function of air
temperature, so it can change significantly over the
course of the day. It also strongly depends on eleva-
tion.

Vegetation

Vegetation plays an important role for vector larval
development and improves adult mosquito survival by
providing resting sites. The normalized difference veg-
etation index (NDVI), defined in 1970 (Rouse et al.,
1973; Tucker, 1979), is the most commonly used index
for human health applications. It integrates the effects
of temperature, humidity, rainfall, sunshine, altitude
and LULC (Britch et al., 2008). It can be used as sur-
rogate for precipitation in certain periods and areas
(Justice et al., 1991). The NDVI varies from -1 to +1
based on the vegetation optimum absorbance in the
red wavelengths (R) and maximum reflection       of
near infrared radiation (NIR), i.e. NDVI =
(NIR -R)/(NIR + R). Since NDVI not only depends on
land cover but also on atmospheric conditions, there is
no strict threshold for vegetation detection.
Nevertheless, a value superior to 0.2 usually corre-
sponds to an area covered by vegetation and negative
values correspond to water, general infrastructures or
asphalt. Several low-resolution instruments, e.g.
MODIS and AVHRR, provide NDVI values but it can
also be calculated by combining the appropriate spec-
tral bands of any high-resolution image.

“Inventive use” of satellite indicators

As mentioned above, satellite imagery can serve as
proxy for environmental factors when direct detection
is not possible. It can also be used as proxy for other
types of characteristics, e.g. socio-economic factors,
housing type or quality, which can indirectly relate to
the level of access to antivectorial protective devices or
to health care. For example, the brightness of remote-
ly sensed night time lights data has been showed to be
a robust proxy for assessing poverty in Africa, which
in turn relates closely to health status (Noor et al.,
2008). With respect to malaria, a study in South
Africa, used the distance to the Mozambique border as

proxy for migration from that country, i.e. importa-
tion of malaria cases (Kleinschmidt et al., 2001).

Analytical techniques

Once all relevant spatial information has been
extracted into a GIS, analyses can be carried out to
evaluate the associations between various environ-
mental factors and malariometric indices. For exam-
ple, principal component analysis (PCA) (Jolliffe,
1986) is a useful approach for transforming a large
number of possibly-correlated variables into a reduced
number. As environmental variables are often correlat-
ed, PCA includes all variables thereby avoiding the
risk of losing part of the information (Lawpoolsri et
al., 2010). Then, algorithms such as hierarchical clas-
sification or “K-means clustering” can generate envi-
ronmental classes based on those principal compo-
nents (Chamaille et al., 2010). Because the principal
components are linear combinations of initial vari-
ables, the interpretation of groups is easy and intu-
itive.

Discriminant analysis is effective in the field of spa-
tial epidemiology (Beck et al., 1994, 1997). It relates
closely to PCA but has the advantage of permitting the
prediction of new observations. Partial least square
(PLS) regression (Wold et al., 1984) can also be con-
sidered when using collinear variables. Ecological
niche factor analysis (ENFA), which introduces habi-
tat suitability (Hirzel et al., 2002), can be calculated
with Biomapper (http://www2.unil.ch/biomapper
/index.html) and is a “presenceonly” model to be used
when no “absence data” are available. Also other
“presence-only” models exist, such as maximum
entropy or genetic algorithms (De Meyer et al., 2010),
and these are of interest since they do not require inde-
pendence of covariates.

Statistical models such as linear, logistic, Poisson or
negative binomial regressions model the relationships
between environmental factors and malariometric
indices. The choice of regression depends on the type
of data to model (dichotomous or continuous out-
come, proportion or rate), each implying different
mathematical formulas to link the environmental fac-
tors and malariometric indicators. The advantage of
these analyses lies in their prediction possibilities.
Indeed, once a model is fitted, the results can be
extrapolated to predict the outcome for unsampled
observations by inversion of the regression formula
within the range of the values of the fitted data.

The basic requirement for using classical statistics is
the independence of observations. In a spatial context,



V. Machault et al. - Geospatial Health 5(2), 2011, pp. 151-168156

this prerequisite is not always fulfilled because the
observations that are close in space can be more simi-
lar than those that are distant. Neglecting this spatial
autocorrelation in the analysis may produce underesti-
mation of the standard deviations resulting in overes-
timation of the strength of the associations that may
lead to spurious correlations (Thomson and Connor,
2000). Indeed, there are actually fewer independent
observations in real life than might be assumed. For
example, 87% of the variability in tsetse densities
studies in Kenya was explained by RS but, after
accounting for the spatial autocorrelation, these
results were no longer significant (Kitron et al., 1996).

Spatial autocorrelation among outcomes means
presence of a systematic pattern in the spatial distri-
bution of the variable, something that can be assessed
using Moran’s I (Moran, 1950) or Geary’s C statistics
(Geary, 1954). Moran’s I is a global indicator, where-
as the Geary coefficient is more sensitive to differences
in small neighbourhoods. The spatial variations can
also be investigated by nonparametric D statistics
(point pattern analysis), which is defined as the aver-
age absolute difference in data ranks over all possible
pairs of adjacent spatial units. Because weighting
favours pairs of areas in close proximity, a low
D value implies the presence of spatial correlation
(Walter, 1994). 

A number of modeling approaches can be used
when taking spatial dependence into account and
location-specific covariates and error terms (random
effects) can be introduced to describe geographical dif-
ferences in the mean of the outcome. On the one hand,
multilevel models can be employed to analyse correla-
tion in malariometric indices nested within larger
units, e.g. persons within a household or households
within a village (Matthys et al., 2006b; Vanwambeke
et al., 2006; Baragatti et al., 2009), while, on the other,
geostatistical spatial models (Diggle and Tawn, 1998),
or conditional and simultaneously autoregressive
models (Cressie, 1993), incorporate explicitly spatial
correlation as a function of distance or neighbour
structure of data. They allow assessment of disease
determinants in the presence of spatial correlation, as
well as smoothing and prediction. Spatial models can
be formulated within the framework of generalised
linear mixed models (GLMM) (Kleinschmidt et al.,
2001) but the model fit is complicated when the num-
ber of parameters is large (Gemperli and Vounatsou,
2004; Gosoniu et al., 2006). However, GLMM spatial
models have been applied in malaria mapping using
Bayesian formulations to overcome parameter estima-
tion through Markov chain Monte Carlo (MCMC)

simulation. Predictions at unsampled locations are
enabled by Bayesian kriging based on geostatistical
regression models. Indeed, Bayesian models are
increasingly used for mapping of malaria and tropical
diseases in general (Steinmann et al., 2007; Silué et al.,
2008; Raso et al., 2009; Haque et al., 2010; Riedel et
al., 2010). Appropriate software, such as OpenBUGS
(http://www.openbugs.info/w/) is available for fitting
spatial Bayesian regressions. Several techniques have
been used, such as Fourier analysis to assess seasonal-
ity (Hay et al., 2006), autoregressive integrated mov-
ing average (ARIMA) (Abeku et al., 2002), or deriva-
tives of the former (ARIMAX) (Wangdi et al., 2010),
can be applied to estimate temporal patterns and
obtain short-term forecasts. It should be noted that
some results can be produced using methods such as
fuzzy logic (Snow et al., 1998) or neural networks
(Kiang et al., 2006).

In classical statistics, accuracy can be measured in
several ways. The model assessment refers to estima-
tion of the precision of the model, and it expresses
how well the model fits the data. In classical statistics,
this precision is provided by the standard error
(Atkinson and Graham, 2006). In this context,
Bayesian modeling has the great advantage of being
capable to estimate the parameters and the predictions
as posterior distributions rather than as single values
(Brooker, 2007). Hence, for each predicted observa-
tion, the upper and lower Bayesian credible limits are
known, permitting the creation of maps with the pre-
diction error. To compare model-based predictions
with the “real” values, measurements of the agree-
ment can be given by overall accuracy, sensitivity and
specificity, positive and negative predictive values,
area under the receiver operating characteristics
(ROC) curve or the correlation coefficient. When
there is no “gold standard” but only two sets of val-
ues, Kappa statistics can estimate the level of agree-
ment, taking into account agreement obtained by
chance only. In Bayesian statistics, the predictive abil-
ity of models can be assessed using a Bayesian “p-
value” analogue calculated from the predictive, poste-
rior distribution (Gosoniu et al., 2006). A list of accu-
racy metrics has been provided by Rogers (2006).

RS and malaria

The growing availability and precision of remotely
sensed data has encouraged their use in the study of
several infectious diseases (Thomson et al., 1997; Hay
et al., 1998; Kitron, 2000; Randolph and Rogers,
2000). With regard to malaria, remotely sensed envi-
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ronmental data can be linked to a wide range of malar-
iometric indices, i.e. larval and vector densities, aggres-
siveness, EIR, parasite prevalence and malaria inci-
dence as it will be showed in the following examples.

Breeding sites  

The launch of the Landsat-1 satellite in 1972
marked the start of malaria risk mapping. The data
are increasingly accurate as shown in Thailand where
remotely sensed data delivered environmental data as
reliable as those collected on the ground
(Vanwambeke et al., 2007). Sometimes, the mapping
of breeding sites relies on prior knowledge of the envi-
ronments favourable for the larval development and
the risk is deducted from the mapping of those ecosys-
tems. For example, in Burkina Faso, potential high-
risk and low-risk malaria areas at the village level were
predicted using 2.5 m resolution SPOT-5 imagery. The
potential breeding sites were mapped following a
supervised classification and malaria risk levels were
deducted from the presence of breeding sites in the
surroundings of each village (Dambach et al., 2009).
Mapping can also be attempted on the basis of col-
lected entomological field data, and associations have
been found between the presence of larval habitats and
the results of image classifications at a range of differ-
ent spatial resolutions (Rejmankova et al., 1998;
Sithiprasasna et al., 2005a; Mushinzimana et al.,
2006; Stoops et al., 2008; Mutuku et al., 2009).  In
addition, RS can also bring knowledge about breeding
habitats, e.g. in Thailand, where differences in habitat
preferences of An. minimus A and C were charac-
terised using remotely sensed ecological data
(Rongnoparut et al., 2005).

An interesting application of the mapping of larval
habitats was undertaken in South Korea around two
military camps, using a decision support system
(Claborn et al., 2002). Retrieval of larval habitats in
need of pesticide treatment was achieved by the pro-
cessing of Landsat images, the derived cost was calcu-
lated and compared with the cost of providing anti-
malarial chemoprophylaxis to the individuals allowing
the choice between the two control methods. 

Another methodology, also applied in South Korea,
relied on photo-interpretation of Landsat and Ikonos
images for the mapping of rice fields and other poten-
tial breeding sites for An. sinseni around two military
camps. In this case, some pools were better detected
with high-resolution Ikonos images (1 m resolution),
even if no SWIR band was available (Masuoka et al.,
2003). An example from the Kenyan highlands, which

represents a very heterogenic ecosystem, is of interest
in this connection, since the photo-interpretation of
Ikonos images allowed the detection of 41% of the
water collections, whereas the Landsat images (30 m
resolution) did not provide any useful information
(Mushinzimana et al., 2006). Indeed, the authors of
this study stated that object detection is feasible only
when the object size is at least 1.5 times larger than the
pixel size. In this work, visual detection results could
have been coupled with statistical results to improve
the detection rate. Sometimes, classification methods
provide better results than photo-interpretation
(Mutuku et al., 2009).

In addition to optical satellite images, radar imagery
has also been exploited for the mapping of breeding
sites, taking advantage of radar superior capacity to
detect water and humidity, overcoming acquisition
problems caused by cloud cover. In Mali, temporal
profiles of rice fields, provided by eight ERS-2 SAR
images (12.5 m resolution), highlighted the relation-
ship between radar images and the development of rice
plants, which in turn is coupled with Anopheles larval
density (Diuk-Wasser et al., 2006). Other studies have
focused on temporal predictions. One of the first
papers published in the field of vector diseases and
remote sensing was a study done in California, USA,
where the most productive An. freeboni rice fields
were mapped 2 months before larval density peaked
(Wood et al., 1991). Predictors included extensive veg-
etation at the beginning of the season (measured by a
Landsat image) and livestock proximity, measured by
mapping the pastures using IR aerial photography. 

Vector density 

The densities of larvae and adult mosquitoes are
closely related. Indeed maps of larval habitats can be
exploited for the prediction of vector densities as in
Belize, where An. albimanus larval habitats are often
located where water and sparse vegetation meet, and
where these habitats have been mapped using the clas-
sification of a 20 m resolution SPOT image
(Rejmankova et al., 1995). In the same country, the
indoor presence of   An. pseudopunctipennis was pre-
dicted by processing the SPOT image together with
topographic maps from which the presence of rice
fields, their distance from houses, the difference of ele-
vation, and the presence of forest between fields and
houses were extracted (Roberts et al., 1996). In both
these studies, the predictions were validated thanks to
mosquito ground collections. In Camargue, a marshy
area in the south of France, larval- and adult-stage
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An. hyrcanus were mapped using a Landsat image.
Each pixel of the resulting map contained the proba-
bility of the presence of larvae depending on biotope,
distance to the first rice field and larvicide intervention
(Tran et al., 2008). Here, the flight range was not pre-
defined but rather deducted from research on the best
correlation between ground-measured adult densities
and larval probabilities in a range of buffers of differ-
ent sizes. The vector density mapping can lead to
applications such as the definition of areas that require
indoor insecticide spraying (Rakotomanana et al.,
2007). A reverse approach consists of measuring adult
mosquito densities to define the ecosystems most
favourable for larval development. In Mexico, a
Landsat image allowed identification of ecosystems
associated with adult An. albimanus densities around
40 villages (Beck et al., 1994).

RS also produce information on the distribution of
Anopheles species or molecular forms such as in Mali
where the presence of the Mopti form of An. gambiae
s.s. has been correlated with low rainfall either in the
study month, or in the previous month (Tourre et al.,
1994), or with low NDVI values (Thomson et al.,
1997). Also in Mali, Bayesian modeling made it possi-
ble to produce maps of the spatial distribution of
An. gambiae s.s. and An. arabiensis (Sogoba et al.,
2007) or of chromosomal forms of An. gambiae
(Sogoba et al., 2008), based on climatic and environ-
mental factors (rainfall, minimum and maximum tem-
perature, NDVI, soil, water storage index, distance to
water bodies and suitability to transmission). On a
larger scale, satellite imaging has been used to predict
the distribution of five of the six An. gambiae complex
species that are responsible for much of the malaria
transmission in Africa (Rogers et al., 2002).

EIR and parasite prevalence

Scientists have investigated the associations between
ecosystems and Plasmodium EIR. In Kenya, An. gam-
biae and An. funestus aggressiveness and EIR have
been predicted using a model based on land cover, soil
type, soil moisture, surface-water availability and a
combination of multiple weather parameters (Patz et
al., 1998). In The Gambia, An. gambiae s.l. EIR was
estimated in villages using breeding site areas and dis-
tances mapped using Landsat images (Bogh et al.,
2007). In the same country, a model was fitted using
the EIR in villages and a map of breeding sites issued
from a classification of a SPOT image (20 m resolu-
tion). Extrapolation of the model allowed the predic-
tion of transmission levels in other villages (Thomas

and Lindsay, 2000). Here, parasite prevalence in the
villages correlated with the EIR. Nevertheless, where-
as EIR can be linearly linked to larval and adult den-
sities, the relationship between vector populations and
the incidence or prevalence of malaria depends not
only on transmission levels but also on other factors
such as the use of anti-vectorial devices, the acquired
immunity or access to antimalarial drugs (Rogers et
al., 2002).

Despite this non-linear relationship, some studies
aimed to define parasite prevalence levels from the
presence of breeding sites or vector densities, or to
define malaria cases from geo-climatic indicators. In
Thailand, in a study based on Ikonos data, no associ-
ation was found between the presence of malaria in
houses and the distance to streams  (Sithiprasasna et
al., 2005b), while in another study based on aerial and
satellite photographs in a Cambodian village
(Cambodia Reconnaissance Survey Digital Data,
Ministry of Public Works and Transportation,
Kingdom of Cambodia), increased distance to the for-
est was clearly protective (Incardona et al., 2007). In
The Gambia, children parasite prevalence was predict-
ed in 65 villages using a set of explanatory variables,
i.e. age, impregnated bednets and NDVI included as
proxy for the length of the transmission season. The
fitted model allowed a prediction of the effects of
changes in bednet use on transmission (Thomson et
al., 1999). The MARA/ARMA project materialised
out of the need for malaria risk maps on the scale of
the entire continent (Snow et al., 1996). More recent-
ly, the mapping malaria project (MAP) was born with
the objective of gathering worldwide parasite preva-
lence data and making them freely available on the
Internet (http://www.map.ox.ac.uk/) (Guerra et al.,
2007). A model of the spatial limits and endemicity
levels of P. falciparum and P. vivax was constructed
from available data linked with temperature and
humidity information (Guerra et al., 2008). In West
and Central Africa, P. falciparum prevalence maps
have been completed based on MARA/ARMA field
data and a seasonality model based on the NDVI, tem-
perature and rainfall (Gemperli et al., 2006a). In Mali,
a prevalence risk map was based on the distance to
water, mean NDVI during the rainy season, the lowest
temperature during the 3 months preceding the rainy
season, and the number of months with rainfall
exceeding 60 mm (Kleinschmidt et al., 2000). In
Kenya, Uganda and Tanzania, predictions of the para-
site prevalence were based on temperature, rainfall,
humidity, NDVI, altitude and corroborated historical
maps (Omumbo et al., 2002). Later, these maps were



V. Machault et al. - Geospatial Health 5(2), 2011, pp. 151-168 159

further improved by adding human density, urbaniza-
tion data, presence of water collections and ecological,
environmental data (Omumbo et al., 2005). In
Afghanistan, a 8-km resolution P. vivax prevalence
map was created using NDVI and LST (Brooker et al.,
2006).

Another application of risk maps is to evaluate the
risk of re-emergence of malaria in countries where it
has been eliminated. In a rice field region of Spain,
remotely sensed ecological and climatic features,
together with other malariometric variables, were
found to be associated with the possible risk of trans-
mission (Sainz-Elipe et al., 2010) and a similar situa-
tion has been reported in Portugal (Capinha et al.,
2009). In the south of France, An. hyrcanus larval and
adult stages were mapped using remote sensing
imagery as part of a research project on the risk of
malaria re-emergence (Tran et al., 2008).

Mathematical epidemiological models overcome dif-
ficulties in the comparability of non-standardised and
non-overlapping surveys in the field of malaria map-
ping (Gemperli et al., 2006b). In those models,
remotely sensed data can be included as it has been
done in Mali where the NDVI was included in a tem-
poral model of transmission to forecast the evolution
of a malaria epidemic (Gaudart et al., 2009).

Morbidity and mortality

Environmental and climatic indicators have been
used in models explaining malaria morbidity and mor-
tality or in models attempting to predict outbreaks.
For example, remotely sensed temperature and vegeta-
tion indexes, were shown to be correlated with the
number of malaria cases admitted to hospitals in
Bangladesh by calculating NDVI and surface tempera-
ture as deviations from their minimum and maximum
values to take into account meteorological fluctua-
tions rather than long-term climatic variables
(Rahman et al., 2006). A French military mission to
sub-Saharan Africa, representing a short-term expo-
sure for non-immune individuals, showed that a NDVI
higher than 0.35 was a major risk factor for clinical
malaria and the relative weight of this indicator sur-
passed that of age and chemoprophylaxis compliance
(Machault et al., 2008). In Afghanistan, an autore-
gressive model accounting for malariometric indices
(i.e. infection during 1 month depending on the infec-
tions during the previous month), showed that NDVI
and LST are capable of predicting the average total
number of cases for the following 6 months. As it
turned out, the prediction exceeded the actual num-

bers by only 8.9% (Adimi et al., 2010). In Kenya, a
NDVI higher than 0.35-0.40 in a given month result-
ed in hospital admissions due to severe malaria in the
following month that surpassed 5% of the total annu-
al number of admissions (Hay et al., 1998). In
Burundi, a model including NDVI, ground tempera-
ture, amount of rainfall and number of malaria cases
in a given month accurately predicted the malaria inci-
dence for the following month (Gomez-Elipe et al.,
2007). An EWS in Eritrea, based on rainfall forecasts,
could predict the monthly clinical malaria inci-
dence with a lead time of 2-3 months (Ceccato et al.,
2007). On the scale of the African continent, an EWS,
relying on the association between epidemics and
decade-level rainfall anomalies for malaria epidemics
has been developed and is available on the Internet
(http://iridl.ldeo.columbia.edu/maproom/.Health/.Reg
ional/.Africa/.Malaria/.MEWS/) (Grover-Kopec et al.,
2005). Thus, weather should be considered in the
development of malaria EWS (Teklehaimanot et al.,
2004). Nevertheless, morbidity and mortality models
should be interpreted with care because of the difficul-
ty of modeling the acquired immunity among human
population, which moderates the link between envi-
ronment and malaria transmission.

Detection of changes

Image processing allows the detection of environ-
mental changes over time that can be associated with
a new, increased or decreased malaria risk. Such an
association between ecological changes and the pres-
ence of An. arabiensis larval habitats has been shown
in a Kenyan village (Jacob et al., 2007). Indeed, the
proportion of water collections was higher in areas
that had undergone environmental changes between
1988 and 2005, especially in lands that became fallow.
In urban settings, land cover changes have also been
associated with breeding sites. In two Kenyan cities,
multi-spectral thermal imager (MTI; http://www.glob-
alsecurity.org/space/systems/mti.htm) images recorded
at 14-years interval showed that presence, abundance
and spatial distribution of larval habitats were related
to urbanization (Jacob et al., 2003). An. arabiensis
aggressiveness, explored over a decade-long time scale
in Dakar, and built-up areas predicted and mapped
using the classification of two SPOT images of 2.5 m
and 20 m resolution, highlighted the benefits of urban-
ization as the proportion of the population at higher
risk for malaria transmission greatly decreased
(Machault et al., 2010). In Paraguay, mapping of land
cover changes, particularly from forest to non-forest
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areas, were evaluated using time series of the NDVI
derived from the Global Inventory Modeling and
Mapping Studies (GIMMS) (http://gcmd.nasa.gov/
records/GCMD_GLCF_GIMMS.html) and showed an
association with malaria case rates (Wayant et al.,
2010).

Urban malaria mapping

Urbanization, currently increasing so fast that near
60% of the world’s population will live in cities by
2030 (Nations, 2003), has a considerable impact on
the composition of the vector system and malaria
transmission dynamics (Antonio-Nkondjio et al.,
2005). Many studies have reported the existence of
malaria transmission in urban areas, even if levels are
usually lower than those in peri-urban and rural
places (Robert et al., 2003; Keiser et al., 2004). The
epidemiology of malaria in cities is specific, and
urban malaria is considered an emerging health prob-
lem of major importance in Africa (Donnelly et al.,
2005). The urban disease burden, as well as its spa-
tiotemporal distribution, is closely related to the
degree and type of urbanization, the density of the
human population, vector control measures, access to
health care (Robert et al., 2003; Wang et al., 2005a)
and adaptation of the vector to new or polluted
breeding sites (Chinery, 1984; Sattler et al., 2005;
Awolola et al., 2007; Omlin et al., 2007). Blood meal
sources are abundant in cities so the dispersion of the
vectors is low resulting in urban transmission dynam-
ics being primarily driven by proximity of breeding
sites (Trape et al., 1992; Staedke et al., 2003). The
malaria risk is heterogeneous over small distances,
and transmission can vary among different districts of
the same city, as shown in Brazzaville (Trape and
Zoulani, 1987) and Dakar (Machault et al., 2009).
The consequence of this situation is that effective con-
trol can be expected from environmental manage-
ment, including vegetation clearance, modification of
river boundaries, draining swamps and insecticide
treatment of open water bodies.

Urban breeding sites are usually small and difficult
to locate but direct identification of breeding sites in
Dar es Salaam, Tanzania, using aerial photos facilitat-
ed larval control (Castro et al., 2004). Other work has
not been as successful, e.g. in Malindi and Kisumu,
Kenya, photo-interpretation based on 5 m and 20 m
resolution images from MTI, even when undertaken
by an experienced operator, could only detect 6% of
the breeding habitats (Jacob et al., 2005). The grow-
ing availability of higher resolution images will likely

improve outcomes. On the other hand, environmental
proxies can also be of interest for malaria mapping in
urban settings as shown by a re-sampling of the NDVI
at 270 x 270 m in the same Kenyan cities, that could
be correlated with a low density of dwellings and a
high presence of Anopheles breeding sites (Eisele et al.,
2003). In Ouagadougou, Burkina Faso, a high preva-
lence of malaria antibodies and a high prevalence of
infection among children were associated with urban
environmental data indicating unplanned and sparsely
built-up areas (Baragatti et al., 2009).

The importance of urban agricultural activity on
malaria has been reported in several African countries
where irrigation has led to the emergence of larval
habitats (Afrane et al., 2004; Matthys et al., 2006a)
and higher malaria prevalence (Klinkenberg et al.,
2005; Wang et al., 2005b). Irrigated vegetable fields
near a French military camp in Abidjan have been sug-
gested as the source of the unexpected high number of
adult Anopheles found there (Girod et al., 2006). In
Antananarivo, the capital city of Madagascar, the rice
field surface area, together with altitude, temperature,
rainfall and population density, were investigated as
potential risk factors for confirmed malaria cases
(Rakotomanana et al., 2010). In other cities, such as
Malindi in Kenya, no relationship was found between
household-level urban agriculture practices and the
distribution of water bodies (Keating et al., 2004).
Indeed, market gardens likely provide resting sites to
Anopheles rather than increase the number of breed-
ing sites, as was previously demonstrated in Ghana
(Klinkenberg et al., 2008). Mapping of urban agricul-
tural areas is one of the key elements in malaria risk
mapping in cities. 

Malaria mapping and risk

Risk, hazard and vulnerability

RS has been exploited to generate population grids,
a key tool for providing information on populations at
risk for the disease. Indeed, malaria occurs only where
and when an infected competent vector meets a
human sensitive population. A recent review has
focused on the use of global population distribution
data for estimating malaria morbidity and mortality
(Balk et al., 2006). 

Clear identification, characterisation and classifica-
tion of urban ecotypes is sometimes weak, impeding
the evaluation of actual malaria burden (Siri et al.,
2008) but work is being done to map and model
human urban populations using RS (Tatem and Hay,
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2004). The definition of an urban area is not stan-
dardised and finding accurate global maps of urban
settings can be problematic. Radar, optical or the US
Air Force Defense Meteorological Satellite Program
(DMSP) night-light imagery has been exploited,
including complex geo-statistical analysis (Tatem and
Hay, 2004). Even if quantitative interpretations may
be open to criticism due to the diffusion of light into
neighbouring pixels (Hay, 2005), it has been used in
the Global Rural Urban Mapping Project (GRUMP), a
large population mapping initiative, which has been
shown to match up with descriptions of urban settings
all over the world (Tatem et al., 2008). On a national
scale (in Kenya), semi-automated mapping of urban
areas with images at middle spatial resolution have
been shown to provide satisfactory results (Tatem et
al., 2005). However, this type of global source could
fail to be linked to malariometric indicators, especial-
ly where population densities are low (Tatem et al.,
2008). On the local scale, an operational tool for rapid
urban mapping based on the joint use of radar and
optical sensors has shown to delineate urban zones
better than isolated radar or optical images (Corbane
et al., 2008). Unsupervised and supervised pixel-based
classifications of a Landsat 7 image have provided
accurate estimates of population density in census
areas of Besançon, France (Viel and Tran, 2009).
Finally, the detection of changes and quantification of
urbanization growth have also been undertaken using
radar and optical images in Douala, Cameroon
(Onana et al., 2005). 

The risk areas should be defined as the areas where
hazard and vulnerability overlap. Hazard represents
the “potential risk”, e.g., the vector distribution, and
vulnerability relates to the distribution, sensitivity and
exposure of human populations. Some studies have
taken into account the superimposition of potential
risk and vulnerability to estimate risk. In Kenya,
RADARSAT-1 (25 m resolution) images allowed map-
ping of the areas favourable to the presence of anophe-
line vector breeding sites that also intersected with
human populated areas. Risk zones were defined as
the overlapping surface of those two areas (Kaya et al.,
2002). In Dakar, the non-populated areas, mapped
using SPOT images (2.5 m and 20 m resolution) were
masked when predicting malaria risk (Machault et al.,
2010). Indeed, as it is known that the peak of anophe-
line aggressiveness occurs in the middle of the night in
Dakar (Machault et al., 2009) and because evening
and night activities are expected to take place mainly
in or around dwellings, areas without infrastructure
were excluded from predictions. On a worldwide

scale, a recent study provided a map of the global spa-
tial extent of P. vivax malaria, together with estimates
of the human population at risk of any level of trans-
mission (Guerra et al., 2010). 

Limitations

In the field of spatial modeling and risk mapping,
care must be taken to ensure the validity of the results.
In addition to the usual requirement to validate any
model and to take care in extrapolating the models,
which should not exceed their intrinsic possibilities,
specific issues need to be addressed with geospatial
modeling. The basic requirement is to attain the objec-
tive of collecting appropriate field data but it is
adamant that the mechanisms of the associations
between environmental data and each step of the
transmission cycle are fully understood. The choice of
satellite images must not only be driven by logistical
constraints. Images have to be specifically selected
depending on the scales of the biological phenomenon
under study. As reported in some studies, an analysis
of scale and spatial resolution needs to be undertaken
(Atkinson and Graham, 2006). Very high resolution
images could be considered as the best choice, but
depending on the topic, other types of images may
lead to identical or even better results (Hay, 2005). In
addition, images that are contemporary to the field
work undertaken are not always available. The conse-
quences of any distortion between the times of collec-
tion of remotely sensed data and ground data must be
analysed and discussed. Remotely sensed environmen-
tal indicators can be proxies for ground conditions.
Nevertheless, their capability of approximating field
data must always be discussed, depending on the loca-
tion, climate or topography. Finally, malaria interven-
tions have to be known and taken into account as they
can confound the relationship between environment
and disease, as in the recent malaria indicator survey
data for Zambia or Angola (Gosoniu et al., 2010;
Riedel et al., 2010), where it was found that no rela-
tionship was observed between remotely sensed data
and malaria risk.

Conclusions

RS has become an all-important tool for evaluating
malaria burden, modeling malaria spatiotemporal dis-
tribution, and planning malaria control. The key issue
is to implement operational systems that facilitate real-
time monitoring of human health. Risk maps could
become dynamic if the temporal association between
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the determinants of malaria transmission and the envi-
ronmental and climatic factors is clearly understood
and if continuous remotely sensed data or meteoro-
logical forecasting is available. In this case, EWS can
be set up to anticipate epidemics. Of course, this
process can be completed only if the biology of the
vectors and the epidemiology of the disease in the
studied area are very well known.
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