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FOREWORD

Stochastic Dynamical Sysiems is the field where one studies complex sy-
stems such as polymeric fluids or the atmosphere with the concepts of
mathematical stochastics and probability theory. Because experimental
data, with their corresponding errors, can be interpreted as realizations of
stochastic variables, typical problems of data analysis can be studied and
developed within this approach.

Furthermore, the equations of motion are formulated as stochastic equa-
tions in this field. This takes into account that a complex system can never
be completely isolated. It is always disturbed by external influences which
may be modelled simply as a fluctuating quantity known as noise.

Given such models, the extraction of experimentally accessible quanti-
ties and the identification of the model from experimental data must be
accomplished. In the first of this series of lectures some basic notions are
introduced and prominent problems of stochastic dynamical systems are
presented such as: ill-posed problems in data analysis, time series analysis
formulation, and simulations of stochastic differential equations. In the
following lectures these topics are discussed more deeply. In data analysis
the limits of the simple least-square method are explained and the mo-
dern techniques of treating inverse problems are outlined. The stochastic
differential equations, their formulation, and the various aspects of their
simulation are discussed within the field of rheology.

The lectures on Stochastic Dynamical Systems, which are reproduced here,
were held in Naples at Palazzo Serra di Cassano, the site of the Istituto
Ttaliano per gli Studi Filosofici, in October 1990.

Finally, we offer our deepest personal thanks to Avv. G. Marotta, the
President of the Istituto Italiano per gli Studi Filosofici, for inviting us to
his prestigious institute, and for his generous hospitality. We also express
our gratitude to Prof. A. Gargano and Prof. G. Marrucci for the friendly
local organization.

Freiburg, November 1990 P. BILLER
J. HONERKAMP
F. PETRUCCIONE






Contents

[}

Stochastic Dynamical Systems: An Introduction

1.1 Random variables . ... .. ... .. .. ... .. . ...
1.2 Inverse problems. ... .. ... .. ... ... .. . . .. .
1.3 Stochastic processes and time series . . . . . ... ... .. .
1.4 Continuous time stochastic processes . . ... ... . . ... ..
1.5 Conclusions . ......... . ... ... ... ...

Stochastic Concepts for Analyzing Experimental Data

2.1 The relaxation spectrum . . ... ... .. ... .. ...
2.2 Measuring the dynamicmoduli . ... ... ... . .. ..
2.3 The least-square estimation of the spectrum. . . . ... . .
2.4 Material functions and the relaxation spectrum . . . . . . . .
2.5 Conversion with the least-square estimator .. . . . ... ..
2.6 Scaling behaviour of material functions . . . . . . . . .. . .

Inverse Problems: From Experimental Data to a Theoretical Model
3.1 The regularization method = . . .. ... ... .. . . . . . .
3.2 The maximum-entropy method . . ... .. ... . .. . .. .
3.3 Test of the methods with synthetic data
3.4  Error models

Stochastic Processes in Rheology
4.1 Stochastic processes. . . . ... ... ... . ...
4.1.1  Markov processes .. .. ... ... ... ...
4.1.2 The Master equation . . . ... ... ... . . .
4.1.3  Stochastic differential equations

(<IN



4.2 Stochastic differential equations in rheology
421 TheRousemodel . .......... ... ... ... ..
4.2.2 The Doi-Edwards model . . . . ... ........ ... .
4.2.3 A dumbbell model with anisotropic friction
4.2.4 A chain model with anisotropic mobility

4.3 Master equations in rheology

4.3.1 Transient network theories . ... ... ... .....
4.3.2 The Orwoll-Stockmayer model . . ... ... ... .. ..
4.4 Semi-Markov processes

4.5 Summary

Simulation of Stochastic Processes
5.1 The generation of random numbers .. ... ... ... .. ..
5.2 The simulation of Langevin equations . . . . ... ... .. ...
5.2.1 The algorithm for the Hookean dumbbell model . . .
5.2.2 The algorithm for the Rouse model . . . .. .. .. ...
5.2.3 The algorithm for the dumbbell model with ani-
sotropic mobility . . . . ... ... L
5.2.4 The algorithm for the chain model with anisotropic
mobilify .. ... ...
5.3 The simulation of Master equations . ... ......... ...
5.3.1 The general algorithm for network models . . . . . ..
5.3.2 The continuous time algorithm for network models
5.3.3 The continuous time algorithm for the Doi-Edwards
model . .. ... ...
5.4 The simulation of semi-Markov processes
5.5 Conclusions

1l

79
80
81
82

87

87
88
88
90



Chapter 1

Stochastic Dynamical

Systems: An Introduction

J. Honerkamp ¥

Most people associate science with precise predictions. We know this
e.g. from astronomy which is also the field where modern science was born.
On the other hand, real life is unpredictable and full of irregularities. This
is most clearly expressed in a game of chance. However, we have learned
to introduce concepts of probability to tell something about the outcome
of some event in a game of chance. If we throw a coin many times we
expect that the fraction of heads is near 0.5, we say the probability for
getting heads with one throw is 1/2. If a die is rolled the probability of
e.g. 'five’ is 1/6, if the die is fair. If we roll the die 6000 times we expect
nearly 1000 times the outcome five’, but the outcome of every single throw
1s completely uncertain.

What does this have to do with science? Are probability concepts only
relevant for games, for statistical aspects in description of real life pheno-
mena? We will show in this and the following lectures that this is not true.
We will try to demonstrate that probabilistic concepts and methods are
cornerstones for treating complex systems like polymeric fluids, the climate
on earth or the human body as quantitatively as possible. So if we would
like to extend our scientific attitude — which means building mathemati-

' This introductory lecture was given in Italian by F.Petruccione



cal models for the systems to be analyzed — to such complex systems we
must necessarily introduce probabilistic notions and a good background
in such ideas will be very helpful in understanding the behaviour of such
systems.

1.1 Random variables

The basic notion of probability theory is the random variable, sometimes
also called a stochastic variable. This must be distinguished from a random
or stochastic number. We observe random numbers in throwing a die many
times, namely the numbers from 1 to 6 in a random sequence. We say
the random number is a realization of a random variable. The variable
is a mathematical, abstract object, defined by the possible outcomes in
realizations and by the probabilities associated to each of these outcomes.
Hence the number (in German called "Augenzahl’) is the random variable
in our die-experiment, the possible outcomes are the numbers (1,2,...,6)
with probability 1/6 for each. In rolling the die we observe a realization of
this random variable. We get a random number, namely a number, that
was obtained by chance.

Thus, chance does not mean complete arbitrariness. Getting something
by chance means that a random variable is realized. A random variable is
defined by the possible outcomes and their probabilities. We must know
how probable the events are and which events are possible at all. An event
'seven’ e.g. can never appear with a die. There are still rules in the matter
of chance or random events, but probabilistic rules.

This way of thinking is not so well known, not even among scientists,
though in nearly any experiment one meets a random number, which will
show up if one repeats the same experiment again and again. You will
usually get always slightly different results and if vou plot a histogram
you will get a distribution as e.g. in fig.1.1. Hence the experimental re-
sults are realizations of a random variable; the true value of the quantity,
of course, which we would like to obtain, is not random. The randomness
comes in because there are always some uncontrollable influences on our
experimental device, that add to the true value and which can be repre-
sented by a random number. Experimental measurements are therefore
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Figure 1.1: A typical histogram collecting the various results scattered around a mean

value x. The solid line represents a Gaussian distribution

realizations of a random variable, and we may write
Y=z+7, (1.1)

where z shall stand for the true value of the quantity we measure, 5 is
the random variable that represents the external influences and v is there-
fore the random variable, whose realizations we actually observe in our
measurements.

In order to define the random variable n we have to specify its possible
outcomes and their probabilities. We have reasons to believe that these
experimental uncertainties are best represented by a random variable 5
where the probability that a realization will be in the interval (z,z + dz)
will be

1 1
2)dz = ——e¢ 2
p(2)ds = —o—r

2
ay
3

(12)

p(z) is a function which nicely fits the histogram of fig.1.1 (solid line).



The width of the curve is measured by the parameter ¢ and this is, at
the same time, a measure for the uncertainty, the statistical error of the
experimental result. There are well established rules by which one can
estimate z and o from the histogram, and formulating an experimental
result means giving an estimate # of z, the true value, and an estimate
& of o, the experimental error. This error also measures how good the
estimate % of z is, because one may show that with 68% probability the
true value will lie in the interval

(8-6,8406) . (1.3)

All these considerations are very elementary and more or less well
known to every scientist. But nevertheless, the consequences of the fact
that experimental results should be viewed as realizations of a random
variable are often not taken seriously enough.

1.2 TInverse problems

We will demonstrate the fruitfulness of stochastic notions with a problem
that we will shortly outline in this lecture and discuss more deeply in the
next two lectures. It is a very prominent problem of stochastic systems
where these experimental errors play a crucial role and where we are not
yet dealing with a dynamical stochastic system. Dynamical systems are
introduced afterwards and a similar relevant problem will be presented.
This prominent problem I want to introduce now is the so-called inverse
problem. Inverse problems arise very frequently in science because many
quantities which one would like to examine are not directly measurable.
Such quantities are e.g. the sizes of particles in a suspension, the density
of human tissue or the relaxation times of some dynamical process. In
many cases one is interested in the distribution of these quantities, e.g.
in the frequency of a given particle size, in the density of the tissue as a
function of the location or in the weight with which the dynamical process
with a given relaxation time contributes to the whole dynamical process.
Though these distributions are not directly measurable one can get in-
formation about them e.g. by scattering of light, X-rays or neutrons. The
quantity measured by such experiments is the intensity of the scattered or



transmitted light (or X-rays or neutrons). Hence one has somehow to in-
fer from these experimental results the distribution one is looking for. By
theoretical considerations one normally finds how the distribution affects
the experimental result. If we call the distribution function a(r) where r
stands e.g. for the particle size and if we denote the intensity of scatte-
red neutrons by G(w) where w characterizes the scattering angle then the
relation between these two functions can frequently be written as

G(w) :/dr[{(w,f)h(r) (1.4)

where the kernel K(w,r) is given by the theory or the model. There are
plenty of examples where such a relation is assumed.

The inverse problem now consists in the estimation of the function h(r)
from the experimental data for G(w). These data will be obtained at some

discrete w;, 7 = 1,...,N and they will be corrupted by unavoidable errors.
Hence the information consists of the data {¢7,i=1,...,N} with
g7 = Glw;) + o3¢ (1.5}

where o; is the standard error and ¢ a random number, a realization of
a standard Gaussian random variable. From this information one has to
infer the function A(r).

Thus, an inverse problem is a frequently occurring and typical problem.
One likes to know a function which characterizes the system we study. This
function, however, cannot be measured directly but has to be extracted
from measurements of some other quantity. From the relation between
h(7) and G(w) one immediately recognizes that, given h(r), one may easily
infer the quantity G(w) we expect to measure, but the inverse problem,
going from the measurements of G(w) to the distribution a(r), turns out
to be a difficult task. This is especially true because the measurements
are always corrupted by experimental errors. We will see in the following
lectures that, if this inversion is not done with enough care and enough
background of stochastic methods, one will not get reasonable answers.
One has to control the uncertainty in the answer (r) in dependence on
the experimental error in the measurements of G(w). Then it will become
evident that the usually applied methods such as the least-square mini-
mization will not work. There are many distributions compatible with
the data. One has to introduce more information than the data alone to



get a unique solution. One may e.g. require that the solution has some
properties like a special smoothness or maximum entropy.

The phenomenon that the information contained in the experimental
data is not enough to obtain a unique solution is the reason why such
inverse problems are also called ill-posed problems. We will study the
proper treatment of ill-posed problems in the third lecture and we will
_ elaborate the further requirements which lead to uniqueness. But there is
an interesting moral in this. Probing nature by means of an experiment
will sometimes not give us a unique answer. The information will always
be incomplete. Only by imposing further arguments can we find a definite
answer.

1.3 Stochastic processes and time series

Until now we have considered random variables and the usefulness of this
notion in problems where time plays no role. But there also exists the
concept of a time-dependent random variable, say Y(t), that means that
at each time ¢ there is a random variable with a probability distribution
p(y,t). Some realizations of such a time dependent random variable are
drawn in fig.1.2 . Each realization corresponds to a different trajectory
or path in space and looks very irregular because in this example there
is little correlation for neighbouring times. We call a time dependent
random variable a stochastic process or a random process. (One should
also mention that for a proper definition of a stochastic process not only
p(y,1), but also all higher distributions p(y:,#:,32,2), etc. must be given.)

One observes realizations of a stochastic process e.g. if one measnres a
time dependent quantity z(z). Because at each time ¢ we have a different
experimental error e(t) we would introduce

Y(t) = 2(t) + () (1.6)

as the time dependent random variable, where at each time ¢(t) may be
a Gaussian random number, independent from e(t') for v # t. This is, of
course, a very simple stochastic process, because the standard Gaussian
stochastic process (t), which is also known as white noise, is adding to a
well defined time dependent quantity. For z(t) = coswt this looks like fig.1.3,
and from this picture we would anticipate that it is a deterministic signal
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Figure 1.2: Two realizations of a typical stochastic process

superposed by some noise. This is the case of an observational noise, which
is only the time-dependent version of the above mentioned experimental
error. A really interesting stochastical dynamical system is much more
than this. To introduce it let us write z(t) = coswt as a dynamical system,
e.g. as

z(t)=az(t—1) + bz(t — 2) (L.7)

with appropriate parameters a, b. This is a discrete version of a differential
equation and it is called a dynamical system because given = at former
times, namely z(t — 1), z( —2), one may calculate z(t), and because this can
also be done without any ambiguity, we call this a deterministic dynamical
system. Hence, the system

z(t) = az(t-1)+ ba(t—2) (L1.8)
Y ) z(f) + (t)

would also describe a process as shown in fig.1.3. But now let us introduce
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Figure 1.3: A simple sinusoidal function of time corrupted by a white noise

a random variable in the dynamic equation too, so that we change the
dynamics to
X(t) = aX(t—1) + bX(t—2) + n(t), (1.9)

where 79(t) is e.g. also a white noise process independent of ¢(¢). Then
with given z(t — 1) and z(t — 2) a definite determination of z(z) is no longer
possible. We can give only probabilities for the value of z(z), that means,
even if &(t — 1) and z(t — 2) are already known, «(¢) is a random number, a
realization of the random variable X(z). Hence by introducing a random
variable into the dynamic equation X(¢) becomes a random variable too
(and therefore we have written capital letters X in eqn.1.9, to distinguish
random variables from realizations).

If we now calculate realizations of this process then we get something
like that seen in fig.1.4. You see the great difference from a pure cosine wave
which we would obtain without the white noise in the dynamical equation,
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Figure 1.4: A realization of a stochastic process as given in equ.1.9.

but you see also the difference from the case in fig.(1.3) where only the
observational noise is present. There is still some oscillation in the signal
but irregularly, stochastically; it is a signal of a stochastic oscillator. The
frequency of this oscillator is by construction the same as of the other two
signals. But there is one difference now. I have changed the parameters a,
a little bit, but in such a manner that the frequency will not be modified.
However, a damping is introduced. Hence without the white noise the
trajectory of the system X(z) would look as in fig.1.5. This is necessary
because the addition of the white noise in the dynamical equation acts
like an external drive, as an input of energy and without a damping the
trajectory would diverge.

A linear, stochastically driven oscillator is the most elementary stocha-
stic dynamical system. Taking into account also the unavoidable observa-
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Figure 1.5: A damped cosine wave described by a dynamical system without the white
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tional error we would formulate such a system as
X(t) = aX@t—1)+bX(t—2) + nt)
Y@ = X(@) 4 ct) . (1.10)

By superimposing such systems one may describe a wide variety, namely
the whole class of linear stochastic systems. If we observe time-dependent
processes in nature which already look very random one may ask whether
they can be modelled by such a linear stochastic system.

Time dependent processes which look random are observed very fre-
quently. In meteorology and climatology one registers the mean tempera-
ture or pressure of every day, month or year. The sequence of such values
associated to different but equidistant times is called a time series. In
fig.1.6 two prominent time series of climatology are shown, the first one
is the difference of the atmospheric pressure at two meteorologic stations,

10
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Darwin in Australia and Tahiti. The second one is the difference of the sea
surface temperature from a mean value at some location on the equator in
front of the South American coast. One recognizes wild fluctuations but
also regularities, at least some correlations. There are years where both
quantities become large. These are the years when the so-called El-Nifio
phenomenon appears, a warm sea flow off the west coast of Peru causing
heavy damage to the fishing and all industry depending on it.

Meteorology and climatology are the traditional fields where time series
are registered. Modern analysis of such time series consists of finding a
stochastic process of which the time series could be a realization. One
calls this the identification problem and it means the fitting of parameters
of a stochastic dynamical system to a time series. There are many other
time series, also in other scientific fields. In medicine there are the electro-
cardiogram and electroencephalogram series which all of you have at least
heard of but there are also less well known ones, e.g. those measuring the
acceleration of the hand, observing by this means the fluctuations which
are very small for normal persons but can become very large for persons
with a certain disease, called Parkinson tremor. Fig.1.7 shows such time
series from a normal person above and from a Parkinson tremor patient
below. Apart from the different amplitudes (the difference in scale is not
shown but the amplitude of a Parkinson time series is about 1000 times
larger as for a series from a normal person) they look quite different. It
turns out that the first series can really be described by a linear stochastic
oscillator system whereas the Parkinson time series has been identified as
a chaotic signal.

1 would like to show you still another time series, namely a typical
speech signal. If one measures the sound pressure with a rate of, say
13 kHz, one obtains a time series as given in fig.1.8. These are very
instationary, because any phonem corresponds to a different stochastic
process (see fig.1.9). Recognition of these different processes means speech
recognition. This is a difficult but very exciting and also commercially
attractive task.

In presenting these different time series and interpreting them as realiza-
tions of stochastic processes we have at the same time already mentioned
some aims which are the motivation for the analysis. Whenever one has
really found a mathematical model for the observed process, one can

12
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» make predicfions, this is e.g. interesting in climatology and meteoro-
logy. One wants e.g. to forecast the El-Nifio events or other climato-
logical signals.

« characterize the system and study the change of the characteristic
parameters of the model in dependence on external influences. This
is relevant to the tremor time series analysis.

o classify the time series or parts of it. This is a task which is necessary
for speech recognition.

o code the time series. If with the identified model one can reconstruct
the signal without too much distortion one may store or transmit the
parameters of the model instead of the series. This may reduce the
amount of information to be stored or transmitted considerably.

1.4 Continuous time stochastic processes

By considering the time series we have introduced a discrete time para-
meter because observations are being made at discrete, mostly equidistant
time points. Also the stochastic models were adapted to this viewpoint
and were formulated with a discrete time parameter. Dynamical systems
formulated with a continuous time parameter are differential equations as
e.g.
z(t) = —az(t) (1.11)
Given z at ¢t = 0 one may calculate «(t) for any t > 0 from such an equation
{here we get z(t) = z(0)e~*, an exponentially decreasing function). Again
we may turn such a deterministic differential equation into a stochastic
differential equation by adding e.g. white noise to the right hand side of
eq.(1.11), leading to
TX(t) = —a X () + () (1.12)

By this means X(t) becomes a stochastic process, a random variable for
each time. Instead of a decreasing function z(t) as the solution of eqn.(1.12)
we now obtain as realizations of {X(t),¢ > 0} trajectories as shown in fig.
1.10 . The relaxation to zero dictated by the deterministic part of the
equation {—az(t)) is always disturbed by the noise. We get a stationary
state of fluctuations about zero.

16
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Figure 1.10: A realization of the stochastic process given by equ. 1.10.

Many such stochastic differential equations have been formulated up
until now. The additional noise in these equations simulates the external
influences, which cannot be taken into consideration in more detail. This
is justified, if there are many different influences, say forces, which are all
independent and add up to such a force fluctuating on a small time scale
like a white noise. There are many situations where such a picture is a good
approximation to the real situation: small particles in a fluid, pollutants in
the air, macromolecules in a solution or in a polymeric melt. In rheology
where one studies the flow behaviour of polymeric fluids this approach of
formulating stochastic differential equations for the macromolecules has
been very fruitful. The macromolecule is modelled as a chain of beads
connected by springs which simulate the forces between the beads. For -
each bead one writes down the equation of motion in the classical manner,”
but one adds the noise term to simulate the external stochastic influences.
By this a set of stochastic differential equations is obtained. The fourth

17



lecture will deal with such stochastic equations in rheology.

In this context one is not interested in a realization of X(t), but more
in statistical properties of such trajectories. One can show that experi-
mentally accessible quantities are expressed by quantities like < X?(t) > or
< X(®)X(t+7) > where < O(z) > means the expectation value of O(X) to be
calculated by e.g.

<OX(t)) >= /d:cO(z)p(z,t) ) (1.13)

One will see that only the simplest of the stochastic differential equations
can be treated analytically, that means, by giving closed mathematical
expressions for such expectation values.

But a very powerful method, even for the most complicated stochastic
differential equations is the simulation of the equation. One generates
thousands or millions of realizations of the stochastic process formulated
by the set of equations and evaluates the statistical properties. By this
means one obtains again estimates of the expectation values which have to
be treated like experimental values. One has to determine an interval, in
which e.g. with 68% probability the true value of the expectation value lies.
A proper discussion of the estimators is again a matter, where notions and
concepts of stochastics are necessary. In the fifth lecture such simulations
are presented and discussed.

1.5 Conclusions v

In this introductory lecture we have pointed out that *Stochastic Dynami-
cal Systems’ is a field in which one studies complex systems like polymeric
fluids or the atmosphere with the concepts of mathematical stochastics
and probability theory. We hope we have shown that these notions are
really adequate and useful. (Some books about this topic are e.g. [1, 2, 3].)
We introduced the concept of a random variable and of the random or sto-
chastic process and we briefly discussed those prominent topics within this
field: the treatment of inverse problems, the identification of a stochastic
dynamical system from a time series and the formulation and the simula-
tion of stochastic differential equations. These topics will be studied more
deeply in the following four lectures.

18



Chapter 2

Stochastic Concepts for

Analyzing Experimental Data

J. Honerkamp

In this and the following lecture we will discuss various aspects of a
characterization of a material by its specific response to external influen-
ces. The material we have in mind here is a polymeric melt. The external
influences will be some types of deformation. But one will readily reco-
gnize that the methods used to analyze the response data, i.e. the raw
experimental data and to interpret these in terms of a theoretical model
will be very general. Also a couple of very useful concepts and methods of
stochastic dynamical systems can be explained within this discussion.

2.1 The relaxation spectrum

A polymeric melt is a very complex material. It is not a pure, Newtonian
fluid like water, it is not a solid like a rubber, it has viscous and elastic
properties. In order to study these viscoelastic properties one may design
experiments where some type of deformation is exerted on the material.
It will respond with an internal stress which may be characteristic for
that material. For a sudden step strain e.g. an internal shear stress will
appear, relax and approach zero after a while. The form of this relaxation
will be different for different materials. (For a solid these stresses stay
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constant, for a Newtonian fluid like water there are no stresses at all.) If the
deformation v, is small enough (what this means depends on the material)
the internal shear stress r(t) is a product of the amount of deformation, o,
and of the relaxation modulus, which describes the approach of the stress
to zero:

() = 1 G(t) - (2.1)
We call the region of deformation where 7(2) is proportional to v, the regime
of linear viscoelasticity. The relaxation modulus G(z) is defined only for
#>0 (t = 0 is the time where the deformation is applied to the material).
The decrease of G(t) with time can be described by a superposition of
decreasing exponential functions

M
G(t) = Z hoe 7 (2.2)
a=1
where the 7.,  =1,..., M are some relaxation times and the h,, k. > 0 are

the weights which measure the contribution of a process with the charac-
teristic time r, to the whole relaxation process.

Hence, in a first Ansatz of a linear viscoelastic theory one resolves
the whole relaxation process into a superposition of elementary proces-
ses which are governed by some relaxation time. This idea is plausible
from the point of view that the constituents of the polymeric melt, the
macromolecules, are long chains which, under a sudden deformation of
the material, are stretched. The adaption to this new shape of the bulk
body will take time and due to the complicated structure and interaction
there will be different time scales. Turning it around, if we introduce a
relaxation process for every time scale, then there may be more and less
dominant relaxation times i.e., different weights for each relaxation time.
Hence we may introduce a continuous relaxation spectrum h(r), so that
the relaxation modulus G(t) is now expressed as

G(t) :/ dlnTh(r)e™t" (2.3)
and we get back a relation Lke (2.2) if we introduce a grid of relaxation
times [r,, a = 1,..., M] and describe the integral in (2.3) as

AM

G(t) = D hra)mae™"™ (2.4)

a=1
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where m, are the weights due to the discretization of the integral. The
relaxation spectrum h(r) or the set {h, = h(r,) with suitable chosen .}
is a candidate for a characterization of the material, and there is some
experience which makes us believe that the spectrum is really a good cha-
racteristic function. If this is true, then one should be able to judge, alone
from the knowledge of the relaxation spectrum, the flow behaviour. At
least there should be a simple relationship between the relaxation spec-
trum and some relevant properties of a flow of these melts in an industrial
process. And if the relaxation spectrum is really able to play a central role
in the characterization of a material, then also other properties, such as
e.g. those of the molecular mass distribution should be inferable from it.

There is another reason why the relaxation spectrum is a useful quan-
tity. The sudden shear deformation is not the only standard influence on
a material we can apply. Sometimes there are other types of deformati-
ons which are more easily applicable. Each of these standard experiments
introduces a material function like the relaxation modulus G(¢). The com-
mon information content is the relaxation spectrum and once this spec-
trum is known, all material functions can be calculated. This is the task
for which the spectrum is most frequently used today. From one material
function one tries to infer the relaxation spectrum. Then the other mate-
rial functions can be calculated. We will call this the conversion task of the
relaxation spectrum contrary to the characterization task we mentioned
above.

2.2 Measuring the dynamic moduli

A deformation history for which the corresponding material function is
relatively quickly and easy accessible is the oscillatory shear flow. If we
denote the instantaneous shear (in the z — y plane, say) by 7(t), then in
oscillatory shear flow we have

vty =yocoswt, t>0, (2.5)

where w is the frequency and v, the amplitude. On the other hand the
general relationship between internal stress r(t) and shear rate #(t) reads

21



(see e.g. [4])
)= [ dsG(eyite-9) 26)

where G(s) is the relaxation modul introduced in section 2.1. In a complex
notation we write now v(t) as

~7(t) = Re ('ygei“’t‘i“’) , t>0, (2.7)

where we introduced a phase ¢ for generality. (Actually we have ¢ = /2
in an experiment so that () = yosin(wt)). Then we obtain

i
7(t) = Re {/ ds G(s)iwyge ¥ eiw (=) } . (2.8)
0
In the steady state regime (¢t — o) we get
T(t) = Re (iw7oei'”te_i“’6(w)> (2.9)
with -
Glw) = / ds G(s)e™s. (2.10)
0
If we write )
Glw) = S (G"(w) ~ G (W) (2.11)

where G”(w) is the loss modulus and G’(w) the storage modulus, we finally
end up with

7(t) = 10 (G'(w) cos(wt — ) — G’ (w) sin(wt - ?))- (2.12)

Hence under an oscillatory shear flow a linear viscoelastic material res-
ponds with an internal stress which is also a superposition of a sine and
cosine function with the same frequency. For small oscillatory shear flow
we have two real material functions, G’(w) and G”(w), or one complex func-
tion G(w).

The extraction of this quantity from the stress signal (¢) is usually done
by Fourier-transformation:

11 nT
G'(w) = —~/ di (1) cos wit 2.13a
@ = = [ an (2.132)
G (w) L ﬂTclt‘r(i)sinu.)t T =2xn/ (2.13b)
w = —— R = w. .
’ Yo nT Jo
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where n is some integer so that n7T is approximately equal to the length
of the time signal. We are, however, also interested in the experimental
error of the material functions, which is due to statistical fluctuations of
the signal. Therefore we prefer another method, a usual linear regression
method, for estimating ¢/(w) and G”(w) by which the error is also easily
obtained. But before we discuss this method let us mention two immediate
generalizations.

o If the deformation history is generalized to
K
7(t) = Ea; cosw;t (2.14)
i=L

with given (w;,a;), we obtain in the linear regime (in the following we
will neglect the phase ¢):

K
T4y = e (G (wi) coswit — G"(wi)sinwit) . (2.15)
=1
The stress signal is a superposition of the signal for each frequency.
This is the consequence of the linear relationship. The regression
method to be discussed below for estimating G'(w) and G”(w) can
also be applied to this case and with a shear deformation history
like (2.14) we will obtain the relaxation moduli G'(w), G*(w) and their
experimental errors at the frequencies w;, i = 1,...,K.

Nonlinear behaviour will appear as a nonharmonic periodic time be-
haviour of r(t). Higher harmonics will be observed in the stress signal.
This may be represented then e.g. as

) = 710(G'(w)coswt — G’(w)sinwt (2.16)
+ G(w) cos 3wt — G4 (w) sin 3wt
+ G5(w) cos 5wt ~ Gy (w)sindwt + ...)
where G4(w), ... may still depend on . Our procedure to extract G'(w)

and G"(w) from a time series 7(t;), i = 1,..., N can easily be generalized
to the estimation of the coefficients G'(w), G"(w), G4(w), ... -

In the linear regression method the coefficients G’(w) and G”(w) are found
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from the stress signal r(t;), i=1,...,¥ by minimizing the discrepancy

N
¥ = ; ;1? (r(t;) — 70 (G (w) cos wt; — Cr’”(w)sinmti))2 ; (2.17)
that means, G*(w) and G”(w) are chosen so that y? is minimal. Here o; are
the experimental errors of =(;), i.e. the experimental error of the stress
measurement at t = t;. We assume this error to be constant, o; = ¢o. Under
this assumption it is not necessary that the value of the error is known,
it can be estimated by the regression method. The formulation of the
fit problem as such a minimization problem and its final solution is very
well known and every student who will ever be confronted with data will
have to learn it. But there are two points which are not so well known
but which are extremly important and therefore also deserve to belong to
common wisdom.

o The first point is that there is an elegant solution for the coefficients
and their errors. In order to introduce this, let me write formula
(2.12) at the points t; where r(z) is measured as

L
) =Y KiuGo, i=1,...,N, (2.18)
a=1
Ga, @ = 1,..., L are the coefficients to be estimated and K;, are the ele-

ments of an N x L matrix K. (In our case L=2 and K;; = v coswts, G, =
G'(w), Kiz = —yosinwt;, G = G"(w)). Then we have to minimize

N oy L 2
=3 = (T(ti) - Zmaca> . (2.19)
a=1

= %
The coefficients {G,} which minimize x* are now given directly in

terms of quantities which appear in the so-called singular value de-
composition of the matrix K.

This decomposition reads

L
K= wuv! (2.20)

j=1
where u;, j=1,..., L are the L eigenvectors to the N x N matrix KK”
with the largest eigenvalues; v;, 7 =1,...,L are the eigenvectors of the
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L x L matrix KTK and w;, j = 1,...,L are the singular values, which
are related to the eigenvalues q; of KTK by w; = ,/a;.

Numerical algorithms for calculating these quantities for a given ma-
trix K can be found in nearly every numerical library, (e.g. in the
IMSL, the NAG or in [5]) and in terms of these quantities the solution
of the regression problem reads

L 1 N
GGZZw—j(V:‘)a PICHAOI (2.21)

=1
The error ¢(G.) of G, can be calculated from

L

oXGa) =0ty

j=1

—
|

((vj)a)? . (2.22)

w?

o

and the constant experimental error oy of the stress measurements

can be estimated by
70 = \/Xhin/ (N — L) . (2:23)

where x2,, is the value of x? at its minimum.

The second point can easily be inferred from these formulae. The
solutions G, are not well defined if some w; become very small (com-
pared to the largest singular value which will set the scale). Small
changes in the experimental value r(¢;) (which may be realized in a
further, but identical experiment) will lead to large changes in the
solution. The solution is badly defined which is also expressed by
the fact, as one deduces from (2.22), that the variance, the statistical
error of G, is very large. In the case we are just considering this pro-
blem does not arise and we will come to this point later in the next
lecture.

We will demonstrate the use of the linear regression method for esti-
mating the material functions including their errors with some examples.

Fig.2.1 shows typical cases of functions y(¢) and r(t), where y(t) = o coswt
with 70 = 10% in (a) and v = 0.1% in (b). The results for the material
functions are

G'(w) = 64555 £ 0.31, G"(w) = 1140.00 £ 0.42 (2.24)
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Figure 2.1: Strain and stress as function of time in an oscillatory shear flow, measured
at a PS sample (Rheometrics): (a) Strain amplitude 10%; (b) Strain amplitude (0.1%),
so that the experimental noise is high

and
G'(w) = 664.65110.23, G”(w) = 1212.61 + 13.83. (2.25)

respectively. Due to the very small strain amplitude in (b) the experimen-
tal noise is high. The material functions can still be determined by the
least square method. Of course, the statistical errors are much larger.

2.3 The least-square estimation of the spectrum
Having discussed how to obtain the values of the dynamic moduli G'(w), G"(w)
including their statistical experimental errors from the stress time series

we will start from these dynamical moduli as the experimental data. If
wi;i=1,...,N are the frequencies of the oscillatory flow we have applied,
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our data consist of {wi, g/ 0l,9/%, 0;i = 1,...,N}, where e.g. g/° denotes

the value obtained for G'(w;) and o} is the corresponding error. Our task
is now to find from these data the relaxation spectrum, which we already
introduced in the discussion of the relaxation modulus

M
=3 hae ™™ (2.26)
From (2.10) we obtain then
~ b . o0 M 1.
G(w) / ds G(s)e™™* :/ ds Y hoe (T
0 a=1

Z hy 'r',(l — WT)
- + iw

14 (wre)?
so that the dynamic moduli are represented by the spectrum in the follo-
wing way:

Ma

(2.27)

a=1

M
, (w‘ra ” B WTy
Gw) = Zh T @)’ G'w) = ;h“—u(wm)? . (2.28)
The set of relaxation times {r,, = 1,..., M} are chosen equidistantly dis-

tributed on a logarithmic time scale. In order to find the set of weights
{ha, « =1,..., M} for which the differences
C(wime)® i Wi T,
7 G Ho o <
Zh T (orr )2 and g Zha—l+(w;‘ra)2 (2.29)

a=1

are as small as possible, we define the discrepancy as

: D7}, {ha })
- L Lo ) S Cem Y

(2.30)

=
Il

il

and look for that set {h,} for which x* is minimal.
We call this set the least-square estimator and as mentioned in sect.2.2
it can easily be found with the singular value decomposition of the 25 x Af

matrix K with
1 WiTa

Kia = o) 14 (wita)?’

i=1,...,N {2.31a)
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1 (wi-NTa)?

Kig = , i=N+1,...,2N. 2.31b
v 1+ (wionTa)? ( )
The least-square estimator then reads
X
ha =Y —(vi)aluj - &) (2.32)
i=1 Wi
with g7 = (¢7,...,9Zy) where
9 =g /oi i=1,...,N (2.33a)
97 =9"njoi_n, i=N+1,... 2N, (2.33b)
and the w;,u;,v;, j = 1,..., M are given by the singular value decomposition

of the matrix K. The statistical errors o(h,) are calculated from

Z 7 (i) (2.34)

k.

In section 2.2 it was mentioned that there is always the danger that the
statistical uncertainties of the least-square estimator are too large so that
this estimator is not meaningful anymore. This is now just what happens.
The larger M is, i.e. the higher the resolution we choose on the r-axis, the
broader the range which is covered by the singular values and the smaller
the smallest singular values become. This is plausible because our problem
is the discrete version of the solution of an integral equation of the first
kind. We look for the solution A(r) of

Gw) = /_‘FDO dint K(w,7)h(7), (2.35)

which, if the integral is approximated by a discrete sum, takes the form

w,)—ZIn(

With increasing M the distance between nearest points (74, Tat1) decreases;
the columms in the matrix K, therefore, become less independent, leading
to smaller singular values (strict dependence leads to a zero singular value).
The growth of the errors with increasing M is demonstrated in fig.2.2 for
some experimental data, the least-square estimator is shown with M = 8

) K(w;, ma)h(7s) . (2.36)
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Figure 2.2: Normalized results for a relaxation spectrum derived with a least-square
method: (a) M =8 and (b) M = 16 gridpoints at the 7-axis

and with M = 16. One recognizes the dramatic increase of the errors.
That means, there is not only one set of weights {h,} which nicely fits
the experimental data, but a continuum of sets in the neighborhood of
the least-square estimator. To understand this better and to formulate it
more precisely let us look at the discrepancy achieved by the least-square
estimator. One can show that one expects a value around 2¥ — M < 2N for
it. But even, if each individual discrepancy, e.g.

Z ho—ita)® (2.37)

“14 (wita)?

is of the order of o; (so that x* is of the order of 2/, which is the number
of experimental data), the fit {a,} can be considered to be compatible
with the experimental data. We will therefore define those sets {a,} as
compatible with the data, for which the inequality

D({g/}, {ha}) < 2N (2.38)

holds. Then we could follow from this discussion that there are many
sets {ho} of weights which are compatible with the experimental data.
The least-square estimator is just one of these (see fig.2.3). If we would
repeat the experiment getting slightly different experimental data we could
obtain a largely different least-square estimator out of these because small
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Figure 2.3: Example of a spectrum with three weights { ki, ko, ha, by + by + h3 = 1 }.
The interior of the triangle is the allowed region where k; > 0. Prs is the least square
estimator, G is the region of sets which are compatible with the data.

variations of the data may lead to large variations of the least-square
estimator. If this situation arises which is signalized by small singular
values compared to the largest one, the problem of fitting the data by a
set of weights is called ill-conditioned or ill-posed. The proper treatment of
ill-posed problems is discussed thoroughly in the mathematical literature
and the main methods are briefly discussed in chapter 3.

2.4 Material functions and the relaxation spectrum

Until now we have studied two material functions, the relaxation modu-
lus G(1) measurable in a sudden shearing displacement experiment, and
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the dynamic moduli ¢'(w),G"(w), which are measured in oscillatory shear
deformation. All these material functions can be expressed through the
relaxation spectrum. We have

M
Gt) =3 hae™™ (2.39)
a=1
and .
(o) = Zh 1&::.3 - () :;haﬁ . (2.40)

If we have determined a material function by one experiment we could
estimate the spectrum {h,} and with this information we are able to predict
the other material functions. This conversion will be considered in sect.
2.5. Here we would like to list the various material functions as well as
some related constants.

From G(t) we may infer the constants

M . M h
GO)=) he and GO =-3_ =, (2.41)

which are, however, not experimentally well accessible because of the great
experimental uncertainties for small times in the sudden deformation ex-
periment.

Looking at
Blw) = %(G”(w) — G (W) ‘ (2.42)
for w — 0 we obtain
G(w) = (m + OW?) — iB(w + Ow?) (2.43)
with
M
o= haTa, (2.44a)
a=1
M
B=3 harl. (2.44b)

If we plot |G(w)] as function of w we get a curve which for w — 0 increases
and reaches a plateau at 7.
Further standard experiments and the related material functions are
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1. Stress growth upon inception of steady shear flow: y(t) = yot for ¢ >
0, v(t) =0 for t < 0.
Then we have 4(t) = v for ¢ > 0 and

i
7(t) :70/ dsG(s) . (2.45)
0
With (2.39) we obtain
M t
T(t) = 7o Z hc/ dse™*/"> = Yon (t) (2.46)
a=1 0
with
M
77 =Y hara(l - €7y, (2.47)
a=1
For ¢ — oo we obtain
M
7T == hata . (2.48)
a=1

2. Stress relaxation after shear flow:

Yot , 0<t<ty
i) = 2.49
S { Yot1, <t (2.49)

Then

t) = 70/0 G(s)ds

M
= 50 hata(l—e7=), 0<t<t, (2.50a)
a=1
13
) = v G(s)ds
t—ty
M
= 70 hata(ellTHTE Tty >t (2.50b)
a=1

3. We may apply a given stress r, for ¢ > 0 and measure the deformation
¥(t). In a linear regime then

¥(t) = T J (1) i (2.51)
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where the creep or compliance function J(t) can be respresented as
: M
T = —+JO) + > Lo (1 -ty 2.52
® ” (0 Z: ( ) (2.52)

Here a retardation spectrum {I,} is introduced, it serves for repre-
senting J(¢) in a simple form, but it is not independent from the
relaxation spectrum [6]. For the Fourier-transform we obtain

M
Fw) = 771 ot (J(o) n Zz ) - X_:I“ITT:E?; (2.53)

and one can show, that the relation

~ 1
J(w)= ——=—— 2.54
«) (w)2G(w) ( )

holds by which also follows that the factor in front of ¢ in J(t) and of

1
w)?
may introduce similar to G’(w) and G”(w) two real dynamical creep
functions J'(w) and J(w) by

in J(w) is just % . J{w) is a complex quantity as G(w) and one
0

Fw) = S(=9"@) ~i7'w) (2.55)
Then we obtain
J(w) = +Z l+(w‘r T (2.56a)
: o, (wra)’
J'(w) = 7(0) - ;lam , (2.56b)
and because of
(@I W) = @)+ () = e = 2 ST 5

wG(w) G — G G"2 4 G2

we have also

” GI/ W

7' = ZEy o ©) i é,z(w) , (2-58a)
oy G ;

T = Gy o) (2:585)
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Figure 2.4: The dynamic moduli G'(w), G”(w) and [G{w)] in (2} and the corresponding
J'(w), J"(w) in (b); (data from Rheometrics).

Fig.2.4 shows G'(w), G"(w) and |G(w)| for a PDMS-sample, as well as
the corresponding J'(w), J”(w) and J(w).

As this discussion shows, J(w) is easily calculable from G(w), but in
order to infer J(t) one has to convert J(w) into J(z). This can only
be done by estimating the retardation spectrum from J(w) in order
to calculate J(t) from this. We will discuss such problems in the next
section.

. Creep recovery

{‘rg for 0<t<ty
T=

0 for t<t. (2.59)
Then
(8 = nJ(t) 0<t<yy (2-60a)
= 7(J({) = J{t—t;1) + J(0)) <t (2.60b)
or
1 M .
10 = n(o IO Li-c), 0t (26l

a=1

i

M
To(t—l FJ(0) = Y (et e_'/7°)) , 11 <t.(2.61b)
7o

a=1



2.5 Conversion with the least-square estimator

As explained already in sect.2.4 one may determine one material function
from another with help of the spectrum. Hence G(t) can be calculated, if
the relaxation spectrum is inferred from the dynamic moduli, J(t) is easily
obtained if the retardation spectrum has been estimated from J(w).

Sometimes this conversion is done with the least-square estimator of
the spectrum or with some methods which try to improve the least-square
estimaton. As we have seen in sect. 2.3 the least-square estimator either
does not resolve the spectrum well enough or, for higher resolution, it is
corrupted by too large errors. The attempts to improve this estimator by
introducing the positivity condition or varying the gridpoints 7, in order
to get an even smaller discrepancy, do not change this situation. On the
other hand the conversion seems to work very well with the least-square
estimator taken for the spectrum. We will study this problem here and
do various conversions with the least-square estimator. We will see, that
indeed the conversion task can be done satisfactorily by the least-square
estimator.

We start with a theoretical spectrum and simulate experimental data
9:%,9/ from it. Then we will determine the least-square estimator from
these data and calculate from this the material functions G(t), n*(t) and
¥y ,0(¢), which is the first normal stress coeflicient extrapolated to zero
strain (see (7, 8]). Furthermore we can derive J'(w), J"(w) from G'(w), G“(w)
and infer from these creep material functions the least-square estimator of
the retardation spectrum, by which finally J(t) can be obtained.

As the theoretical spectrum we choose the function

h() :Ale—(xn(r/n)):/zbf+Aze-(xn(r/72))2/zb§ ' (2.62)

That means, on a logarithmic r-axis the spectrum is a superposition of two
Gaussian curves with maxima at = and m and width b, and b, respectively.
The height of the maxima are dictated by A; and A4,.

The synthetic data are then obtained via

'ad G’ (w;)(1+ oon}) (2.63a)
W = G4 o), i=1,...,N (2.63b)

where o is the relative error, 7/, 7" are standard normally distributed ran-
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dom numbers and G'(w;), G"(w;) are calculated according to

+oo (w~‘r)2
) = TR 2.
&' (w5) /_w dnt O (2.64)
and oo
") = W
G (w;) —/_Do dlnrh(r)1+(wir)2 s (2.65)
where we have chosen
For
Wi = Wmin (“m“) , i=1,...,N (2.66)
Winin

so that we get the frequencies also equally distributed on a logarithmic
scale and the integrals in (2.64) and (2.65) are approximated by a sum,

e.g.

M (wiTa)? M (wiTa)?
() = e = e, VR 2.67
G'(w;) ; h(Ta)ma e ; (ma T (wm,)?) o (2.67)
a—1
M—1
where 7, = Tin (T'"") , a=1,...,M and therefore
Tmin
1 Tmax
My = In(7a/Teo1) = W1 In( p—

In the following we will always choose oo = 0.03 (that means there is a
constant relative error of 3% ) and wmin = 5- 107, wmay = 5-10* . Fig.2.5
shows in (a) a theoretical spectrum, in (b) some data for ¢/(w) and G"(w)
derived from it. In (a) also the least-square estimator is shown. Because
there are not many grid points =, the errors are not too large, but the
spectrum 1s not resolved very well.

In (c) the least-square estimator of the retardation spectrum as derived
from J'(w) and J"(w) is presented whereas J/(w) and J”(w) are shown in
(d). The material functions calculated from these least square estimators
are given in fig.2.5 (e)-(h), namely the relaxation modul G(t) in (e), the
compliance function J(2) in (f), n*(2) in (g) and ¥, (t) in (h). The solid
lines refer always to the calculations by the true spectra (the relaxation
spectrum was given, the true retardation spectrum was derived analyti-
cally from this), the marks are due to the calculation of these material
functions by the least-square estimators of the spectra.
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Figure 2.5: (a) a theoretical spectrum; (b) some data for G'(w), (+) and G"(w), ()
derived from it; {c) the least-square estimator of the retardation spectrum as well as
the theoretical result for it calculated from the given relaxation spectrum; (d) the
compliance moduli J'(w), (O} and J"(w),(V); (e) the relaxation modul G(¢); (f) the
compliance function J(t); (g) n¥(¢) (h) ¥1,0(¢). The solid lines refer to the calculations
by the true, known spectrum, the marks are due to the calculation of these material
functions by the least-square estimators of the spectra.
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One observes complete agreement. The least-square estimator turns
out to be a good converter even with a low resolution for the spectra.
Hence it is not necessary to take into account more 7,-values. By this the
errors in the least square estimators only grow and thereby also the errors
in the calculated moduli which are now still on the order of the markers.

2.6 Scaling behaviour of material functions

The viscoelastic properties depend on the temperature. If we vary tempe-
rature, the dynamic moduli e.g. will change, they are therefore functions
of frequency end temperature. But experience shows that under variation
of frequency and temperature the changes of the material functions are
not quite independent. Fig.2.6 shows G(w) for two different temperatures,
one recognizes that by vertical and horizontal shift of one curve one may
obtain a common curve in broader w-range. This observation is reflected
in the following Ansatz for the temperature dependence of the material
functions:

G, T) = e(T)TF'(a(Th);  G"(w,T) = o(T)T F'(a(T)w) (2.68)

where F', F” are functions of one variable. The Ansaiz therefore reduces
the functions of two variables to those of one variable. If such an Ansatz
is justified by the experimental data, one speaks of a scaling behaviour of
the material functions.

Given now experimental data

G'(wi, Tj), G"(wi,T3), i=1,...,N,j=1,...,.M (2.69)

the task is to determine the functions «(T), a(T) and F'(z), F"(z). This can
be done in the following way. We will demonstrate it for the two data sets
G'(wi, Th), G'(wi, T») shown in fig.2.6. i
Choose Ti, say, as the reference temperature. Choose some constants
a; and ¢, (eg ay=1,¢ = 1), interpreted as a; = a(7}) and ¢, = ¢(Ty) and
set
Gw,Th)y=cTh F'(ayw) (2.70)
introducing by that the function F” in the range ayw € jur,wa] . If the scaling
Ansatz
G'(w,T) =c(T)T F'(a(T)w) (2.71)
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is true, then

Cw,T) = o(Ty)Ty F(a(Ty)w) (2.72)
o(Th) T ,(a(Tz)w )
(T T: - a(T) 7t

follows. Define now

a(Ty)
a(Th)

Given a(T1), ¢(T1), & should be zero if the scaling behaviour holds and

a(Ty) and c(Tz) are chosen properly. Of course, this can only be checked,
.o a(T2)
if o(T1)

are made and where G'(

C(Tz) 2

6 = G'(wi,T3) - O T

G'(

wi, T1) (2.73)

w; still lies in the frequency range where measurements for 7= 7;

a(Tz)
a(Th)
therefore define the quantity

w;,T1) can be obtained by interpolation. We

V() o) = 1 3 (2.74)

a(T3)
a(Ty)
number of these terms. We have weighted the difference ¢; with the factor
1/0s, where o; is proportional to the error of G(w;,T3), hence e.g. o; =
G(w;,T3) if there is a constant relative error in the measurements of the
function G(w,T).

Minimization of V(a(T3),¢(23)) leads to estimates of a(T3), ¢(T3) as well
as to errors for this estimate.

where the sum runs over all w;, for which

wi€elwy,wy] and k is the
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Chapter 3

Inverse Problems: From
Experimental Data to a
Theoretical Model

J. Honerkamp

In chapter 2 we have introduced the least-square estimation of the spec-
trum. We have seen that this is not a good and reliable method to infer
a spectrum to be interpreted physically and to characterize the material,
though the conversion task could be done with the help of this estimator.
In this chapter we will introduce two mathematically well studied me-
thods which lead to more reliable estimations of the spectrum. They are
accepted tools for treating inverse problems also in other fields [9, 10, 11].

3.1 The regularization method

In this section we will present a method, known as the regularization me-
thod, by which ene obtains more reliable answers for the relaxation spec-
trum than with the least-square method. We consider again the problem
to find a function h(r), which ’explains’ the data {¢?, 0:,¢i = 1,...,N}, so
that
4o
o7 :/ dlnr K(ws, Th(r) + &1, i=1,.. N (3.1)

oo
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where ¢, is the experimental error. As explained in sect.2.3 there are many
sets {hq} compatible with the data, namely for which the discrepancy

N1
DL =Y o
i=1p ¢

(gg_[m dlnrlx’(w,-,r)h(‘r))z <N (3.2)

where N is the number of experimental data points. In order to choose
one specific set out of these one has to introduce another criterium. This
can e.g. be smoothness expressed as the condition that the square of the
second derivate of h(r), integrated over the interval in question, should be
as small as possible. Hence we could e.g. minimize

J(hy = /;dlnr (W), I = (=00, +o) (3.3)

under the condition
D({g7},h) = N. (3.4)

Such a minimization under a condition can be done by introducing a La-
grangian multiplier A and by formulating

J(h,\) = /Idlm(h"(r))2 + M(D{gf 1. By — N) (3.5)

as the objective function which has to be minimized with given A. This
turns out to be a well-posed problem, the solution may be called hy(r) and
then A has to be determined finally by choosing it so that really

D({g/}h)=N.
Instead of J(k,)) one could also minimize

Jh,A) = AJ(h,§)+N (3.6)

DU}, 1) + A/;dr (Lh)?

(where L becomes the second derivative operator) again subject to the
condition

D({g7 1 h) = N.

In this form one recognizes directly the differences to the least-square
estimation of the spectrum.
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By the term in the objective function, which is added to the discre-
pancy a further aim is introduced and this will cure the ill-posedness. The
condition (3.4), on the other hand, will secure the compatibility of the
solution with the data.

This strategy of treating an ill-posed problem is called the regulariza-
tion method [12, 13, 14, 11] and X is the regularization parameter. There
are many versions of the regularization method. They differ in the opera-
tor L in the objective function and in the strategy used to determine the
regularization parameter, that means, to secure the compatibility of the
solution with the experimental data. Even L =1 is possible (see e.g.[15])
and for this operator a comparison of different strategies used to deter-
mine the regularization parameter within ill-posed rheological problems
has been made [16]. In this publication also a new strategy for the de-
termination of the regularization parameter, the self-consistent method,
has been introduced, which is more robust than the others and still leads
to good results in those cases where the other strategies fail. Tests and
applications of this regularization method will be discussed in sect.3.3.
There we use either L=1or L = i—l but always the self-consistent method
for the determination of the regularization parameter. The case where no
complete knowledge about the errors is available is discussed in sect.3.4.

3.2 The maximum-entropy method

There is another method used to treat ill-posed problems, the maximum-
entropy method. This is, however, only applicable, if the function h(r)
which one is looking for is positive semidefinite, i.e. h(r) > 0. If A(r)
represents some spectrum, this will be the case.

The maximum-entropy method makes use of the fact, that for any pro-
bability distribution p(z) a quantity, called entropy, is defined via

Slpl = — <lnp(z) >= 7/{[12 p(z)Inp(z) , 3.7)

where I is the interval in which p(z) is defined. Because a spectrum h(r)
has the same properties as a probability distribution, namely it is

h(r) >0, (3.8)
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and one may normalize h(r) so that

/dr Mr)=1 (3.9)
I

one may introduce also the entropy of a spectrum in the same manner.
But, normally, the spectrum has a physical dimension and we therefore
prefer a notation of a relative entropy

STh | ho] = — /Id'r h(7) ln(}it)((:))) (3.10)

where ho(r) is some prior spectrum. One can easily prove that for any
spectrum
SIh [ ho] <0 (3.11)
and, of course
Slho [ hol =0 . (3.12)

That means, if we ask for that spectrum which has maximum entropy and
which is consistent with the data in the sense that

D{{g?}h)=N, (3.13)

then we obtain that spectrum which is as near as possible to the prior
spectrum but compatible with the data. The prior distribution is normally
not compatible with the data, especially if we choose this as constant
because we have no information at all before taking the data. Again we
have here an objective function which has to be minimized, the negative
of the entropy, and the consistency of the solution with the data is secured
by the condition on the discrepancy. But also the prior distribution comes
into play. If we choose this as a constant, then we will find the spectrum
which is compatible with the data but which also deviates as little as
possible from a constant.

To illustrate the interplay between maximum entropy principle and
compatibility condition let us look at an example, where M = 3, {ha} =
{h1,h2,ha, by + ha + hg = 1}. The region, where h, > 0 is shown in fig.3.1
as the interior of the triangle, where also the lines of equal entropy are
drawn. S, is the point of maximum entropy without taking care of the
experimental data, so Sy represents the prior distribution. The point Prs
may be the least-square estimator and the region ¢, surrounded by the
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S': mazimal entropy with data
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So: mazimal entropy ha hy=0
awithoy! data ’

Figure 3.1: Example of a spectrum with three weigths {hq,ho, hg; A1 + ho + hy = 1} .
The interior of the triangle is the allowed region where h, > 0. The closed circles are
lines of constant entropy. Sp is the point of maximum entropy without taking the data
into account, Prg is the least square estimator. G is the region of sets {h,} which are
compatible with the data. S is the maximum entropy estimator.

ellipse {D({g?},ha) = N}, represents the solutions which are compatible
with the data. So there are still many solutions for which h, > 0. The
point S marks the maximum entropy solution. One recognizes, that there
is a unique solution and for it we have not only

D({g7} ha) <N, (3.14)

but
D({9{},ha) =N . (3.15)

As with the regularization method there are also different versions of the
entropy method according to different formulations of the compatibility.
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An especially robust method which leads to good results in situations
where the above introduced, most frequently used version fails, is given by
[17]. Instead of (3.13), the compatibility of the solution with the data is

formulated as
N

DU N = = Tk (3.16)
where
Z=min D({g7}. by, (3.17)

M.z is an integer which will be explained in a moment and which is less
than or equal to M which is the number of gridpoints on the r-axis so that
the discretization of the integral reads

M
/dlnTK(w,T)h(r)’: S Kl ha (3.18)
a=1
Within this discretization one may find 2 from (3.17). The number Mg
is then the number of {r,}, for which the weight &, at the minimum of z
turns out to be not zero.

3.3 Test of the methods with synthetic data

In order to test the regularization and the maximum entropy method we
will start with a known spectrum and simulate experimental data from it.
Then we will determine the spectrum from these data and compare this
estimation with the given spectrum.

The simulation of the data will be done in the same manner as described
in sect.2.5.

First we will demonstrate that our modifications of the regularization
and maximum entropy method lead to more robust algorithms. For the
regularization method we invented the selfconsistent determination of the
regularization parameter [16], the maximum-entropy method was modified
by another formulation of the compatibility with the data [17}. For the
theoretical spectrum as defined in sect.2.5 we choose the parameters

Ay =10,7=5-10"3 b, =1; A, =10, 1, =10, by =1 . (3.19)
and in fig.3.2 we show what can happen with the unmodified versions

and what are the results with the modified versions. That means, there

46



(o) h(r) (regularizotion-method Lf = f) (6) h() {mod. reguicrizotion—rmethod Lf = f)

200 20.0
15.04 15.04

0.0 10.0

b Hikmaet: }{‘ii‘o"'” ™ T;‘iﬂ% 1
I

{c) h(r) (moximum~entropy~method) (@) () (mod. moximum—entropy~method)

h(r)
h(r}

20 0 20.0

1504 5.0
E 1004 3 1.0
b E
5.0 5.04
OD—_ 0.0
10 w0, 0t 0" i 8 0t - 10
T

Figure 3.2: Possible results of unmodified and modified versions of the regularization
and maximum entropy methods: (a) Reconstruction of a spectrum with the regulariza-
tion method as explained in sect.3.1; (b) Reconstruction from the same data with the
selfcousistent determination of the regularization parameter; (c) Reconstruction of a
spectrum with maximum entropy method as explained in sect.3.2; (d) Recoustruction
from the same data with the modified maximum entropy method.
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Figure 3.3: Simulated experimental data (a) and reconstructions of the spectrum (mar-
kers with error bars): in (b) by the regularization method with L = 1, in (¢) with L
equal to the second derivative and in (d) the reconstruction by the maximum entropy
method. The solid line refers always to the theoretical spectrum.

are cases where the data are so unrepresentative that the unmodified,
commonly used methods fail whereas the modified versions still lead to

satisfactory results.

Next we compare the methods with three different spectra:

1. We consider a very harmless spectrum with parameters as in eqn.3.19.

The simulated experimental data and the spectra, the input spectrum
as well as the reconstructed ones by the various methods, are shown
in fig.3.3. All methods are able to reconstruct the spectrum very well.
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2. We consider a spectrum where the peaks are very narrow, the para-



meters are
A =10, 7 = 0.1, b; = 0.75; Ay =10, 73 = 2, by = 0.75 .
The results are shown in fig.3.4.

3. We test the methods with a spectrum where the two peaks are of very
different heights. The parameters are now

A =10,71=5-10"3 b, =1; A2 =05, =50,b,=1.
Fig.3.5 shows the results.

It turns out that the regularization method with Lk = #” and the maximum
entropy method are both able to reconstruct these more difficult spectra
whereas the regularization method with Lh = h has problems with peaks
of very different heights.

Finally let us observe what happens if we do not have enough data to
reconstruct the spectrum in its full range. This is regularly the case. We
take the same spectrum as in fig.3.5 and take into account only the data
until w = 3 (see fig.3.6). Now the large peak of the spectrum can not be
reconstructed because in that r region there is no information from the
data. But the small peak is reproduced very well by the regularization
method with Lh = #” and by the maximum entropy method.

3.4 Error models

In the introduction of the regularization, the maximum entropy and also
the least-square method the knowledge about the errors of, o of the ex-
perimental data ¢/%, ¢/’7 is always used. Frequently, however, one does not
know these. But sometimes one may assume that the relative error is
constant, then we have

o} = g’ 00 (3.20)

where oo 1s the relative error. If this is the only unknown the methods are
still applicable. In general an overall factor oy in the error model

o} =095} (3.21)

i
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Figure 3.4: Simulated experimeutal data (the peaks of the spectrum are very narrow to
each other) (a) and reconstructions of the spectrum (markers with error bars): in (b)
by the regularization method with L = 1, in (c) with L equal to the second derivative
aud in (d) the reconstruction by the maximum entropy method. The solid line refers
always to the theoretical spectrum.
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the regularization method with L = 1, in (c) with L equal to the second derivative and
in (d) the reconstruction by the maximum entropy method. The solid line refers always
to the theoretical spectrnm.
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is allowed to be unknown. It can be determined by the methods, but the
dependence of the errors on the number of data points, i.e. the varia-
tion of the errors has to be known in order to apply the method because
the relative weights of the individual discrepancies are determined by the
errors.

Very frequently this variation is also not known, it has to be estimated
from the data too. Work on this problem is in progress.
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Chapter 4

Stochastic Processes in
Rheology

F. Petruccione

In this chapter the mathematical definition of a stochastic process is gi-
ven. We describe under which conditions the important Markov processes
are obtained. Markov processes are described by a Master equation. The
special class of diffusion processes can be described by a Fokker-Planck
equation. For diffusion processes we show that an equivalent descrip-
tion with the help of stochastic differential equations (Langevin equati-
ons) is possible. Semi-Markov processes which are a special class of non-
Markovian processes are briefly introduced.

All these mathematical concepts can be found in theological models,
as for instance the Rouse model, the Doi-Edwards model, the Orwoll-
Stockmeyer model, or the Lodge model. This is described in great detail
in the following sections. The concentration on the stochastic concepts un-
derlying these well-known models opens the door for more realistic gene-
ralizations and thus for a better understanding of the complex rheological
behaviour of polymer melts.



4.1 Stochastic processes

4.1.1 Markov processes

We consider systems which evolve probabilistically in time, that is sytems
in which a certain time-dependent random variable X(t) exists. Such sy-
stems are called stochastic processes.

In order to characterize such processes we can measure at times ¢;,¢,, 3, . ..
the realizations z,,z,,zs,... of X(t). The system can be described by a set of
joint probability densities p(z1,t1;22,t2;23,ta;...) which determine the pro-
bability of finding the realization z; at time ¢;, z, at time t,, and so on.
In terms of the joint probability densities we can also define conditional
probability densities

)= p(z1,t522, 805 23,185 5 Y1, T Y2, Tes - )

(21,1120, tas 23, 835 .. | Y1, 7152, T - - 8
P(yl,ﬁ,yz,‘rz,n-)

(41)
The concept of a dynamical evolution equation leads us to consider the
conditional probabilities as predictions of the future values of X(t) (i.e.
z1,73,... at times ¢;,1,,...) given the knowledge of the past (values y;,ys,...
at 1,7, . )

The most simple case occurs when the value of X at time ¢ is completely
independent of its value in the past or future, that is

ples, by zs, 023 tss . ) = [ [ plei,t:) (4.2)
i

If furthermore p(z,¢) is a stationary distribution function p(c,t) = p(z) then
one speaks of an independently and identically distributed random variable
X(t) ~ I1D(0,0?) where o® is the variance of p(z). If p(z) is a Gaussian
probability distribution p(z) = pe(0,0?;z) with zero mean and variance o2
the stochastic process is called Gaussian white noise: X(t) ~ WN(0,0?).
We know from the central limit theorem that a sum of random variables
can be approximated well by a Gaussian random variable. If we now con-
sider a physical system subject to many fluctuating impacts the resultant
effect will be modelled with good accuracy by a Gaussian distributed ran-
dom variable at each time. If the typical time scale of the system is larger
than the time scale of the fluctuations one can neglect time correlations
of the random variables. The global effect of the fluctuations will then
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be modelled by Gaussian white noise. For this reason white noise plays a
very fundamental role.

The next simple process is the Markov process in which the knowledge
of only the present determines the future. To formulate the Markov as-
sumption we require that the times satisfy the ordering t; > ¢, > ... >
7 > 7 > .... The conditional probability is determined entirely by the
knowledge of the most recent condition, i.e.,

p(er, b2, t2i23, %35 |y, T 92, 125 ) = P2, Ty 22, ta5 2, 035 91, m) - (4.3)

The above assumption means that we can define everything in terms of
the simple conditional probabilities p(z1,#: | y1,m). As a consequence one
can easily show that

p(z3,tz {z1,t1) = /dxzp(’?s,ts { @2, t2)p(z2, 1 | 21,11). (4.4)

The above equation is called the Chapman-Kolmogorov equation. The
transition probabilities of any Markov process must obey this equation.

Let us conclude this section with the following remarks. It can be shown
that for Markov processes the waiting time of a random variable to jump
into a specified state is exponentially distributed. Markov processes can be
generalized by allowing other waiting time distributions. This generalized
class of models is known as semi-Markov processes.

4.1.2 The Master equation

We now want to derive the Master equation which is an equivalent form
of the Chapman-Kolmogorov equation for Markov processes. The Master
equation is a differential equation for the time development of the proba-
bility distribution. It is thus more directly related to physical problems.
The equation is obtained by going to the limit of vanishing time difference
T between the events. Let us now suppose that the transition probability
p(z,t+7|2',t) has the following form for small »

p(z,t+ 7|2’ 1) = [L— alz,t)r]6(z — &) + Tw(z,2',t) + O(=2). (4.5)
In the above equation w(z,z’,t) is the transition probability per unit time

to go from ' to z and hence w(z,z’,t) > 0. The coefficient 1 — a(z,t)7 in
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front of the delta function is the probabilty that no transition takes place
during 7 and therefore

a(z’,t) = /dzw(z,z’,t). (4.6)

Inserting the expression (4.5) into the Chapman-Kolmogorov equation
(4.4), divide by 7 and going to the limit of vanishing r we obtain the
so called Master equation

%p(z,t) :/dz’w(z,:c’,t)p(z',t)~/d:c’w(:c’,z,t)p(:c,t). 4.7)

If the range of the random variable X is a discrete set of states labeled
with the integer n the Master equation is usually written in the form

2 palt) = 3 (o (P 1) = wrnpal)) (49)

In this form the meaning of the Master equation becomes very clear: it is
a gain and loss equation for the probability of each state n.

In many physical applications one knows the probability for a transition
during a short time interval. With the help of the Master equation it is
now possible to calculate transition probabilities for large (finite) times.

The class of diffusion processes can be described by another fundamen-
tal equation: the Fokker-Planck equation. This equation is a special type
of Master equation, and can be obtained by assuming that only small
jumps occur and that the probability distribution function p(z,?) varies
slowly with 2. Such diffusive processes are characterized by the following
constraints on the transition probabilities for short times

/dy (y—z)p(y,t+7lz,t) = Az, )7 +o0(r), 4.9)
/dy (y—z)i(y— o)p(y,t+ 7| =2,1) = Dz, )7 +o0(7), (4.10)
/dy(y—z),-]~~(y‘:c),-"p(y,t+‘r|:c,t) = ofr), forn>2 (411)

In other words the transition probability for short times is given by a
Gaussian distribution with mean A(=,t) and variances Dy (=,t). With the
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help of the above assumptions and of the Chapman-Kolmogorov equation
one can derive the Fokker-Planck equation for the probability density p(z, )

l6*211’:‘(%0]19(1%)- (4.12)

d [}
gt = g A+ 50

" The Fokker-Planck equation plays a fundamental role in the kinetic theory
of polymer solutions and melts.

4.1.3 Stochastic differential equations

When a system is subject to fluctuating external forces, its equation of
motion is given by a differential equation with stochastic coefficients. Pro-
bably the best known stochastic differential equation is the Langevin equa-
tion that describes Brownian motion. A Brownian particle of mass m feels
two forces: a viscous drag, as it is known from macroscopic hydrodyna-
mics, —6mna%e ( 5 being the viscosity, and a the radius of the particle ),
and a fluctuating force F, which represents the impacts of the molecules
of the liquid on the Brownian particle. Thus the equation of motion for
the Brownian particle is given by
d’z

dz
Mo = -Gwna-gt— + F. (4.13)

The above equation is a stochastic differential equation with additive noise.
Let us now consider the equation
Xi = a(Xe, 8) +np; 7~ WN(D,02) (4.14)
for the random variable X,. The increment dX, during a small time interval
dt is given by
dX; = a(Xe, 1)dt + W, (4.15)
where
t4dt
dw, = / dt’ e (4.16)
t
W, is called the Wiener process. As dW, is a sum of Gaussian distribu-
ted random numbers it is itself Gaussian distributed. The mean and the

variance are given by
<dW, >=0, {4.17)
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and
t+dt t4dt
< (dW,)? >:/ dty / dty < e, >= odt. (4.18)
’ t t

If [t,t+ df] O [¢',¢ +dt'} = 0 then < dW;dW,: >= 0. From Eq.(4.18) we can now
determine a very important relation. It is fundamental to realize that dw,
can be written as

dW; = onVdt; 7~ WN(0,1). (4.19)

This means that the stochastic increment in an infinitesimal time step is
proportional to the square root of the time step. In the next chapter we
will see what consequences this fact has on the numerical integration of
stochastic differential equations.

In realistic applications, as we will see later on, one often encounters
stochastic differential equations with multiplicative noise, that is equations
of the form

X, = a( Xy, t) + (X, t)ne 7~ WN(0,07%), (4.20)

or, equivalently in differential form
t4dt t+dt
dX; :/ dt’a(X;,t’)+/ dt’' b( X, Yy (4.21)
t t

The above equation only makes sense if a definition of the stochastic inte-
grals is given. One can evaluate the stochastic integral with the help of the
well known Cauchy-Euler procedure. One takes the value of the integrand
at the beginning of the interval [t,¢ + dt] and multiplies it with the length
of the interval. One can then show that

dX, = a(Xy, t)dt 4 b(X, t)pV/di. (4.22)

This result corresponds to the treatment we have already introduced for
stochastic differential equations with additive noise. It is customary to call
this approach the Ito interpretation of the stochastic differential equation.
Another definition of Eq. (4.21) is obtained by taking the value of the
integrand in the middle of the interval. It can then be shown that this
so called Stratonovich interpretation of the stochastic differential equation
leads to the following differential expression

dX; = [a(X, 1)+ %b’(X,,t)b(X,,t)]dt +5( X, t)ymVdt. (4.23)
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As the Ito and the Stratonovich version of the stochastic differential equa-
tion differ in the form of the drift term, they obviously lead to different
results. Thus a stochastic differential equation with multiplicative noise
only makes sense if one specifies the interpretation of the stochastic inte-
grals.

We conclude this section by establishing a very important relationship.
The Langevin equation is an equation for the random variable X,. As an
example we might again consider

dX; = a(X,,8)dt + onVdt e~ WN(0,1). (4.29)

It is now interesting to find an equation which describes the dynamical
behaviour of the probability density p(z,t). If X, is known, dX, is just a
normally distributed random number with mean a(z,#)dt and variance o2dt.
These conditions are exactly the constraints on the transition probability
for short times that characterize diffusion processes, and which lead to a
Fokker-Planck equation. In our example the corresponding Fokker-Planck
equation would be

i} 0 1,8
Pt = [~6—za(ryt) + 502527]17@#)4 (4-25)

Thus in a formal sense the Langevin and the Fokker-Planck approaches
are equivalent. For practical reasons one may prefer the one or the other.
To describe the dynamics of polymer melts the Langevin approach might
be more appropriate, as it can easily be implemented on a computer for
a numerical evaluation. Obviously the equivalence can be generalized to
the three dimensional case, as well as for stochastic differential equations
with multiplicative noise.

A more detailed exposition of the fundamental equations arising in the
description of stochastic processes can be found in Refs. [1, 3, 2]. There
one can also find a description of the analytical tools required to treat
these equations. An introduction to the powerful numerical approach will
be given in the next chapter. .

In the next sections we will show that in the theories describing poly-
mer melts stochastic concepts arise quite naturally. Some theories were
originally developed with the help of stochastic tools, for some other theo-
ries a stochastic reinterpretation will be necessary.
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4.2 Stochastic differential equations in rheology

4.2.1 The Rouse model

Polymer kinetic theory is associated with the model developed by Rouse
[18]. As it contains all fundamental ideas of polymer kinetic theory we will
start our discussion with a short review of this model.

In the Rouse model a linear polymer chain is described by replacing
a portion of the chain containing many fundamental atomic units by a
spring and concentrating the masses of the atoms in beads. This model
is also called the freely jointed bead-spring chain. In its simplest version
one takes into consideration only the global orientation and length of the
macromolecule as degrees of freedom. Each polymer is then regarded as a
flexible dumbbell consisting of two beads connected by a Hookean spring.
The polymer is fully characterized by the vector Q that joins the two beads.
In addition to the internal entropic force F(Q) = HQ , where H is the spring
constant, the beads experience a hydrodynamic drag proportional to their
velocity » relative to the flow field, which is customarily described by
Stoke’s law,

Farag = ((v — Q). (4.26)

Here ¢ is a friction coefficient and we will consider homogeneous flow fields
v of the form v(Q,t) = k(t)- Q(t), where & is the traceless transpose velocity
gradient tensor. The dumbbell also feels Brownian forces due to the ther-
mal fluctuations of the surrounding solvent molecules or polymers. These
are modelled by a stochastic force n(t), which is here assumed to be a
Gaussian white noise with zero mean and two time correlations

< Th‘(t)nj(t’) >= Dé;;6(t — t'), (4.27)

where D = #T (T is the temperature, k is Boltzmann’s constant). Neglec-
ting the acceleration terms the equation of motion for Q(t) reads

Q)= r(t)- Q1) — %F(Q(t)) +n(t), (4.28)

which is a Langevin equation with additive noise. The equivalent Fokker-
Planck equation for the probability distribution ¥(Q,t) is

g 2} 2 2kT 0
E\I’_FE-(R.Q\I’—ZFW—TEQW):O R (4.29)
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From the above equation one can see that the special choice of the diffusion
constant D ensures the equilibrium distribution ¥, to be

2
Weq (Q) = constexp <~ I;A:_QT> . (4.30)
The Hookean dumbbell model can be trivially generalized to a bead-spring
chain model, the proper Rouse model. Let us therefore give the equations
of motion of a chain consisting of N identical beads. Let =, be the coordi-
nate of bead v, and let @, =»,4; —7, for v =1,---,N — 1, be the connector
vector between bead v+ 1 and ». The Ito-Langevin equation for the v-th
connector @, is given by

Q,() = x(t)- Q,( CZAW Q. t)+EBW 7,(2). (4.31)

Here the vectors 7,(t) have the same two time correlations as in Eq.(4.27).
The 3 x 3 matrices A4,, and B,, are given by

Ave =200 —b,521)1 , B, =1/26,0—6,01)1 (4.32)

They can be interpreted as the elements of (N — 1) x (N — 1) dimensional
supermatrices 4 and B. Due to the fluctuation-dissipation theorem, which
asserts that the frictional dissipation is balanced by the fluctuations to
keep the temperature constant at equilibrium, these supermatrices obey
the equation

BB ; A (4.33)

The Fokker-Planck equation equivalent to the Langevin equation is

Q\II_ Zap (v Q¥)+— Za,«(A,U-QU\II)+kTTZay3‘,A”q, . (4.39)

Here the symbol 8, is an abbreviation for ﬁ.

Again one can see that the stationary equilibrium solution is given by

¥, (Q) = constexp <~%> , (4.35)

where V=%, 1HQ2.
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In rheology one is mainly interested in the evaluation of the stress tensor
a. For the Rouse model it is defined (apart from an isotropic term) as

c=nH) <Q,Q,> (4.36)

where n is the number density of polymer chains and the angular brackets
denote an average with respect to the distribution function ¥. Unfortun-
ately, the predictions of the Rouse model are not very satisfactory. The
material functions, which are linear combinations of components of the
stress tensor, turn out to be constant, in contrast to the experimental ob-
servation. Nevertheless, the Rouse model is very useful. It allowed us to
introduce the fundamental stochastic ingredients, which are also common
to more refined kinetic models.

4.2.2 The Doi-Edwards model

As we have seen the Rouse model is only a very crude approximation
for the dynamical behavior of a polymer in a melt. In fact many kinetic
theories for polymer melts make additional assumptions for the motion
of a single macromolecule. One postulates a mean field built by all the
other macromolecules which constitute the environment of the described
single polymer. The effect is the reduction of the complicated many-chain
problem to a much easier one chain problem. The price to be paid for
this simplification is the introduction of a mean field which is not determi-
ned self-consistently but only postulated. For concentrated solutions and
melts one usually supposes that the neighborhood of a randomly chosen
macromolecule has the effect that motions perpendicular to its contour
are strongly hindered. In the reptation picture of de Gennes [19, 20] a
macromolecule is confined to a tube-like region and only diffusion along
its contour is possible. This assumption is the starting point for the well-
known Doi-Edwards model for polymer melts [21].

We will now discuss the basic equations of the Doi-Edwards model and
their stochastic interpretation. The original Doi-Edwards model describes
a single polymer chain in a highly entangled state. Ignoring the small scale
wiggling motions of the real chain one describes the large scale diffusive
motion with a more basic so-called primitive chain which represents only
the bare topological structure. Based on the reptation picture one assumes
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that the motion of the primitive chain is hindered by the other chains such
that only motion along the contour is possible. The ends of the chain may
move in any random direction. In a flow field described by a tensor x there
is an additional deformation of the primitive chain. The dynamics is then
described by the following diffusion equation for the probability density
p(u,s;t) [23] ,

Z—f:—%~(n-u—n:uuu)p+D% . (4.37)
In the above equation u(s) is the unit vector tangent to the primitive chain
at the point of arclength s with 0 <'s < L, where L is the contour length
of the primitive chain and D is the diffusion coefficient. The quantity
p(u, s;t)d?uds is the probability of finding a tangent vector with orientation
between » and u + du at a position between s and s +ds at time ¢t . The
first term on the right hand side describes the flow induced deformation of
the primitive chain within the independent alignment approximation and
the second term describes the diffusive motion. The boundary conditions
for the diffusion equation are

1
plu,0;t) = plu, Lit) = -, (4.38)

which describe the random orientation of the end vectors. The stress
tensor can be obtained from a formula of rubber elasticity (apart from an
isotropic term) as

o(t) = Go < u(s,t)u(s,t) > , (4.39)
where Gy is a constant with the dimensions of the rigidity modulus and
the brackets denote an average with respect to p(u,s;t) at fixed time.

In a work by Ottinger [24] the stochastic picture that underlies the dif-
fusion equation (4.37) is clearly demonstrated by interpreting this equation
as a Fokker-Planck equation. In this interpretation one has two stochastic
processes U(t) and S(t). The process U(t) describes the motion of a unit
vector U which obeys the deterministic equation of motion

%I;J::K<U—R:UUU ,
and the process $(t) describes the dynamics of a real number $ (correspon-
ding to s/L) lying between 0 and 1 which obeys the stochastic differential
equation
ds(t) = @ aw@) (4.41)

(4.40)
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where W(t) is the Wiener process. The process S(t) is simulated with
reflecting boundaries at S=0and S=1.

The important point is that the variable S now plays an active dynami-
cal role in contrast to the pure labelling in the Doi-Edwards interpretation.
In this way it is demonstrated that it suffices to simulate one single vector
U so that in fact the Doi-Edwards model (with independent alignment) is
a one link theory. The two processes U(t) and S(t) are coupled through the
boundary condition Eq.(4.38). When 5(t) reaches one of the boundaries,
then U(¢) has to be newly chosen as a random unit vector.

The Doi-Edwards model has been a major contribution to the under-
standing of the dynamics of polymer melts.

Another major approach in the description of polymer melts is the
model of Curtiss and Bird [25], which is based on the kinetic theory in
phase space. A polymer molecule is modelled as a Kramers chain consisting
of identical beads connected by rigid rods. The other molecules provide
anisotropic friction on adjacent beads. The theory obtains a constitutive
equation for the stress on the basis of the mild curvature assumption. This
assumption effectively reduces the one-chain theory to a one-segment one.
The dynamics of this segment is in fact identical to that of the vector U
in the Doi-Edwards model so that the two models are very similar in their
stochastic contents despite their different motivations. Anadvantage of the
Cutriss-Bird theory is that it provides an explicit mesoscopic expression for
the stress tensor, which differs in one additional term from the stress tensor
in the Doi-Edwards theory, and leads therefore to different predictions. As
we are only interested in the stochastic contents of the theories here, we

refer to the literature {25] for a more detailed description of the Curtiss-
Bird model.

4.2.3 A dumbbell model with anisotropic friction

The idea of reptation has been very successful. It is therefore interesting
to see if it can be used to improve the Rouse model. We will start by
studying a generalization of the Hookean dumbbell model. The model
treats a representative polymer in a mean field. The ansatz for the mean
field is that the environment of the test polymer leads to an anisotropic
hydrodynamic drag force on the beads. In the kinetic theory frame of Bird
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et al. [25] the ansatz for this hydrodynamic force is
Fh=—(ul(y — k1) O (a)

Here instead of a scalar friction coefficient ¢ an anisotropic friction tensor
¢pn~! appears with a dimensionless tensor i to be specified later. For p =1
one obtains the Hookean dumbbell model. The correct Fokker-Planck
equation with tensorial friction has already been given by Baxandall {26].
It reads

%\P:~%-((va—%u-Q)W)i»%TT%-;L%\II . (4.43)
The position of the tensor u between the two derivatives is not surprising,
the same is found for the diffusion of a particle in a medium with space
dependent mobility [3]. One can see immediately that the solution for
equilibrium is the Gaussian one that we already know. The Fokker-Planck
equation can now be transformed into an equivalent Langevin equation for
Q. Since we will study mobilities which depend on @ this has to be done
with great care, because the result 1s a stochastic equation with multi-
plicative noise. The [to-Langevin equation corresponding to the above
Fokker-Planck equation is
PL O+ BO) ). (149)
The stochastic force  in the last term of the above equation is Gaussian
white noise with zero mean and the two time correlation functions as in
Eq.(4.27) and the matrix B has to fulfil

Q) = (1) Q) - *Fult) - Q) +

B BT =y, (4.45)

because of the fluctuation-dissipation theorem.
To conclude the definition of our dumbbell model with anisotropic fric-
tion we must specify the tensor u. Following [26, 27, 28, 29] we choose

p=(1-a)l+ocuu. (4.46)

Here u is the unit vector in the direction of @ and « (0 < & < 1) is &
dimensionless parameter which is a measure for the anisotropy. For a =0
one gets the isotropic friction tensor, as in the Hookean dumbbell model.
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For all o the mobility in the direction of w is 1/¢ and the mobility in a
direction perpendicular to u is (1—a)/¢ so that for o # 0 motions along the
direction of the dumbbell are favored. For the extreme case of o = 1 all
motions perpendicular to u are suppressed because the mobility in these
directions is zero.

As an alternative ansatz one could also consider the tensor

u:(l—a)1+a%QQ. (4.47)

A similar ansatz has been used in the works of Volkov [29] and of Giesekus
[30, 31]. It is of the same form as Eq. (4.46) but with @ instead of .
This has the effect that the mobility depends not only on the direction of
the dumbbell’s connector but also on its length. For two dumbbells with
unequal length but the same direction the mobility for the longer one is
greater then for the shorter one.

The predictions for both mobilities were studied with the help of Bro-
wnian Dynamics simulations [32]. The ansatz of Eq.(4.47) where the mo-
bility increases with increasing length of the dumbbell is more successful.
In a rough way this may incorporate the effect that under high shear rates
the mobility of the polymer increases. As the dumbbell model for a poly-
mer is very crude it will be necessary to study the effects of an anisotropic
mobility also in a chain model.

4.2.4 A chain model with anisotropic mobility

It is now straightforward to generalize our dumbbell model with confi-
guration dependent tensorial mobility to a bead-spring chain model. The
intermolecular interactions are treated as a mean-field acting on the chain.
To this end we must introduce anisotropic mobility tensors for the beads.
The ansatz for these tensors corresponds very closely to the assumption
in the Curtiss-Bird model. A major difference lies in the fact that in the
present model the number of beads is a physical quantity which measu-
res the degree of entanglements in the polymer system. Again we have
chosen a simple Hookean force law for the springs and Brownian forces
that follow from the fluctuation dissipation theorem. In this section we
will therefore only sketch briefly the corresponding Langevin and Fokker-
Planck equations. A more detailed derivation can be found in Ref. [33]
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As a mesoscopic model for the chain we choose N identical beads
connected by Hookean springs with spring constant #. All other chains
are treated as a mean-field by assuming that the chain moves more ea-
sily along its contour than in other directions on an appropriate length
scale. The Fokker-Planck equation for the probabilty distribution func-
tion ¥(Q,, -, Qn-1,t) is given by

_.w_ Za (h-QU¥)+= Za (Ao - QU‘II)+—28 A, 8,7 . (4.48)

The summation indices run from 1 to N — 1. The 3 x 3 matrices A,, are
elements of the symmetric (¥ — 1) x (N — 1) supermatrix A which follows
from the matrix representation of the mobility tensors of the beads as

Byt by —Hy 0o ... 0 0
“Hy Motz —H3 ... 0 0
A: - . . . : : .
0 0 ... —my_2 By_2t BN My
0 0 0 —HN_1 My_1+ By

The corresponding Langevin equation is given by
. H kT
QW =r0)- Q0 -F > Aw-Q, + - >0, A+ Y Bioom,.  (4.49)

Here the first two terms on the right-hand side are the drift terms origi-
nating from the flow field and the intramolecular forces. The third term
is an additional drift term which is a consequence of the Ito interpretation:
of the Langevin equation. It vanishes if the mobility tensors of the beads,
and thus the matix A, are independent of the variables @, . In the last
term of Eq. (4.49) the N —1 vectors n, describe the effects of the Brownian
forces. They are modelled as Gaussian white noise with zero mean and
the two time correlation functions as in Eq.(4.27). The 3 x 3 matrices B,,
are the elements of the (N — 1) x (N — 1) dimensional supermatrix B which
as for the isotropic case has to fulfil the condition Eq.(4.33) which is an
expression of the fluctuation dissipation theorem.

In order to complete the model an ansatz for the anisotropic mobility
tensors has to be given. For instance, one could choose the tensors p, as

p,=(1-a)l+auu, ,(v=1,---,N) (4.50)
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where the o, are dimensionless parameters with 0 < «, < 1. The unit

vectors u, are defined for v =1,---,N by
Q:/1Q:} forv=1
=1 Qo +Q)/Q_1+Q,| forv=2-- N-1 (4.51)
Qn_1/1Qn_1 | forv=~wn

The effect of this ansatz is that for a motion in the direction u, the bead
v feels a friction ¢ , while for a motion in a direction perpendicular to u, it
feels a friction ¢/(1 — a,), which is greater for , # 0. In this way a motion
along the contour of the chain is favoured. In principle the parameters a,
could be different for each bead. In Ref. [33] two cases were studied. In
the first one all parameters assumed the same value. In the second one
the parameters for bead 1 and bead N were set equal to 0 to study the
influence of the mobility of the chain ends. The model was found to be
a real improvement over the Rouse model. The time dependence of the
material functions is satisfactory, as an overshoot is predicted. However
the experimentally observed shear thinning effect cannot be explained for
larger shear rates.

4.3 Master equations in rheology

4.3.1 Transient network theories

Concentrated polymer solutions and melts can also be described with the
help of an approach that originated from the theory of rubber elasticity. A
vulcanized rubber consists of strands which are permanently cross linked
at junctions. To allow the description of the liquid-like behaviour, which
is typical for polymer melts, one has to assume that the junctions, which
represent the entanglements in the polymer system are temporary. In
transient network theories junctions break up and reform continuously.
Let us now assume that the junctions are connected by elastic strands.
These strands are idealized as Hookean springs. Their length and orienta-
tion is given by Q. For simplicity let us assume that we have only one type
of strand, with spring constant #. The vectors Q are distributed indepen-
dently according to the distribution function ¥(Q,#). ¥(Q,t)d3Q gives the
probability of finding »(z) network strands joining two entanglements with
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a configuration around @ at time ¢ in unit volume. The number density
of strands n(2) is thus defined as

w0 = [£Q ¥ (4.52)

and is generally a function of time. As the internal force law of the strands
that make up the network was assumed to be linear, the distribution func-
tion ¥o(Q) at equilibrium will simply be a Gaussian one, that is

2
¥ (Q) = ﬁe}(p (—2?7) . (4.53)
Here o* = kT/H is one third of the mean square equilibrium length of the
strands ( with £ Boltzmann’s constant and T the temperature) and no gives
the equilibrium number density of strands.

At equilibrium the rate of junction creation should be equal to the rate
of junction loss. It is therefore plausible that the distribution function
¥(Q) obeys the following Master equation

29(Q,0=h(@(Q)- ¥ (0] . (451)

The terms on the right hand side describe the creation and the destruction
of the strands. Note that here new strands are created from the equili-
brium ensemble, as is usually assumed in transient network theories. The
function A(Q) determines the rate of the creation and destruction of the
strands. The above equation is in fact the Master equation describing a
birth and death process for each strand Q. Such processes are also known
under the name of one-step processes.

As we are mainly interested in the flow properties of polymer melts
we have to describe the motion of a strand @. For a Gaussian network
the junctions can be shown [34] to move affinely with the deformation, as
obviously does the strand vector joining two of them. The deformation
of the strands which is induced by the flow field is thus given by the
deterministic differential equation

Q=x-Q , (4.55)

where « is the transpose of the velocity gradient. The equation of conti-
nuity determining the distribution function ¥(Q,¢) as a consequence of the
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affine deformation is given by

a g

Eq,_*_a_q..(mqql)_o . (4.56)
If we now allow that during the flow the strands may be lost and created we
have to combine Eq.(4.54) with Eq.(4.56). Doing so we finally get the so-
called convection equation [25] for the configurational distribution function

¥ (Q,t), which plays a fundamental role in polymer network theories ;

FUQO+ A QUQ N =A@ (@ -¥(@1)] . (457)
The convection equation is a balance equation for the flow, the loss, and
the creation of strands.

The quantity we want to determine to characterize the rheological be-
haviour of transient polymer network theories is the stress tensor o, which
for a Gaussian network with strands of only one type is defined as {25]

c=H<QQ> . (4.58)

Here the brackets denote an average over an ensemble described by the
distribution function ¥(Q,?).

Transient network theories can be classified by the chosen ansatz for
the function h(Q). For h = constant one obtains the well-known model of
Green and Tobolsky [35]. In this case the stress tensor can be evaluated
analytically from a closed constitutive equation. In order to improve the
predictions of the Green-Tobolsky model, several models have been pro-
posed, in which the strand creation and destruction probabilities depend
on the instantaneous stress. One example is the model of Phan-Thien and
Tanner [36, 37, 38). For this model it is also possible to derive closed con-
stitutive equations, because the rates depend on some mean properties of
the ensemble, such as < @* >. Models where the creation and destruction
rates depend on the history of stress or the history of strain rate have
also been proposed (for a review see ref. [39]). All the above-mentioned
models have in common that the rates depend on global (or averaged)
quantities. From a physical point of view it is much more plausible to
assume that the rates depend on the local configuration of the strands.
In these Yamamoto-type models [40, 41, 42, 43, 44], where the destruc-
tion probability depends on the strand extension, it is not possible to write
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down a closed constitutive equation. It is exactly this class of network mo-
dels for which simulation algorithms will be particularly useful. In fact the
simulation of such network models leads to very satisfactory rheological
predictions {45, 46]. ’

Let us conclude this section with the following remark. The convec-
tion equation (4.57) which usually describes the dynamical behaviour of
transient network theories is not a proper Master equation. It is as we
have seen a combination of a Liouville equation with a Master equation
for a birth and death process. It is nevertheless possible to generalize the
convection equation to a proper Master equation. To this end one has to
reconsider the dynamics of a single strand. In Gaussian transient network
theories the strand is modelled as a Hookean spring, which is deformed
affinely in a flow situation. At equilibrium the only dynamics is represen-
ted by the birth and death process. One could now describe the dynamics
of a strand by a dumbbell model. Doing so the strand does not only feel
the affine deformation, but also a retractive force and Brownian motion.
The Hookean dumbbell model fulfills the above requirements, although
one could also consider nonlinear dumbbell models. The transient net-
work is thus formally modelled by an ensemble of dumbbells. The strands
evolve stochastically in time according to a proper Langevin equation, as
for instance

QO = w(t)- Q) ~ ZF(Q) + (1), (4.59)

which is typical for molecular kinetic polymer models. If we allow again
the strands to be generated and removed with certain rates as is typical
for transient network models, then our new model can be described by the
following equation for the distribution function ¥(@,t) [47]

a a ( 2 2kT 0

ETA s 30\~ QY - ZF‘I’ - “2—56"1’> =MQ)[T(@)-¥(Q)] . (1.60)
which is a Master equation describing a diffusive process (Fokker-Planck
equation) and a birth and death process. This approach gives us there-
fore a theoretical framework in which the two different points of view of
molecular kinetic theories and of transient network theories can be uni-
fied. This approach is very promising as it naturally allows the study of
non-Gaussian transient network theories by considering nonlinear internal
force laws [47].
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4.3.2 The Orwoll-Stockmayer model

Master equations arise also in another class of models we want to introduce
briefly. Let us consider a polymer chain as a freely jointed chain made out
of N + 1 beads. The beads are separated by a constant bond distance b.
Let us denote the connector vector joiming bead i — 1 to bead i bu;, where
u; is a unit vector. This so called Kramers chain makes elemental jumps
of the following type. When an interior bead moves, the vectors u;, and
w;41 before the flip are transformed to the vectors w'; and w';4; according
to the following rule

w'; = uiq and wig = uil (4.61)

That is, beads on the interior of the chain can suddenly jump to positions
attained by a 180° rotation of the connecting rods, while the neighboring
beads are held still. Orwoll and Stockmayer [48) specify the terminal beads
0 and N to move so that

u'y = —uy and N (4.62)

The model is completely defined if one also specifies the probabilities w;
per unit time that the i-th bead jumps. In the model of Orwoll and
Stockmayer these are given by

w; = a(l —auuig1), (4.63)

with @ < 1. The flip probability for an end bead is assigned a constant
value

wy = wy = a. (4.64)

The jumping probabilities depend on the chain configuration. The motion
of the chain may be described by a Master equation that is configuration
dependent. One finds that the probability distribution function obeys the
following Master-equation

d N
Ep(uh'",uzv,t) = —p(ul,--~,uN,t)<Zw.-)+wop(—ul,uz,~--,u1v,t)
=0
N-1
+Z"-Ui(ui-i-l:ui)P(ulv"':ui+1yui:"':"'N;t)
i=1

Funp(u, - wN-1, —UN, ) (4.65)
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The first term on the right-hand side of the above equation describes the
loss of the configuration (u1,---,uxn) as a consequence of the flip of one
of the N +1 beads. The other terms on the right hand-side describe the
creation of the configuration (us,---,uy) from all the other chain configu-
rations.

We have briefly reviewed the dynamics of the Orwoll-Stockmayer model
as it is of fundamental importance for the understanding of a new semi-
Markovian model that we will describe in the next section.

4.4 Semi-Markov processes

In concentrated polymer solutions and melts the motion of a chain is stron-
gly hindered due to the presence of the other chains. In Freiburg we de-
veloped a new model which is based on the following assumption [49] . A
given polymer chain is frozen in space until it meets with a "gap”, i.e.,
a portion of free volume in the melt. When a gap reaches a segment of
chain the corresponding segment may jump to a new position, while the
rest of the chain remains stationary. Note that the exact forms of the gaps
are not specified, and not even considered, except for how they influence
the movement of the chain. In the description of the chain dynamics the
waiting time between two succesive Jumps of the same segment plays a
fundamental role. When one specifies the possible motions of the chains,
along with their relative probabilities, the type of chain, and the waiting
time distributions, the equilibrium model is completely specified.

Our model is based on a generalization of the Orwoll-Stockmayer model
[48]. In the original Orwoll-Stockmayer model the probability for a given
bead to jump may depend upon the angle made by the two connecting-
rods adjoining it. We remove this dependence, and allow all beads to jump
with equal probability independent of the configuration of the chain.

Furthermore we allow the motion of the end beads to be more general:
The bead may jump to any point on the sphere of radius a centered on
the adjoining bead. In other words, the unit vector pointing from the
second-to-the-end bead to the end bead may suddenly jump to a random
orientation chosen from a uniform distribution on the unit sphere. This
generalization allows all possible orientations of the rods independent of
the initial chain configuration. The stochastic kinematics of the original
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model are a Markovian process. Thus, the probability of a bead making
a jump is dependent only upon the current configuration of the chain,
and not upon the past jumps of the chain. Such an assumption implies
that the times between successive jumps of a bead are much shorter than
the time scale of interest, namely the time scale of the motion of chains.
However, in the theory presented above, the motion of the segments of the
chain are governed by the motions of neighboring chains on longer time
scales. Thus, the time scale characteristic for a chain segment to meet
up with a gap may be much longer than the time scale of interest, and
thus, the waiting times for bead jumps are assumed to be fractal. For this
reason the model describes a semi-Markovian process. The assumption of
a fractal waiting time distribution has turned out to be very fruitful in a
similar problem, namely the relaxation of concentrated solutions of electric
dipoles [51]. Unfortunately, we can no longer write a Master Equation for
the time evolution of the probability distribution function for the chain,
and an analytic solution no longer seems possible.

All that remains to complete the model is the specification of the wait-
ing time distribution function for the beads. It is defined as:

(t)dt := Prob{the time between successive jumps for a given (4.66)

bead is between t and t + dt}.

For simplicity, we assume that this probability is configuration indepen-
dent and independent of the time of day. Actually, we expect some seg-
ments to be effectively screened by other segments, and thus to have a
lower probability of jumping. Also, we expect that chain segments that
are near in space to other segments that have recently jumped to have
greater probability of jumping. We also ignore, for the time being, exclu-
ded volume effects. One fractal distribution 1s:
1
b(t) = BT 0P
For 0 < 8 < 1, the waiting times have no first moment, and thus, no
characteristic time scale.
It 1s also useful to define another distribution function:

(4.67)

P(t)dt = Prob{when examining any given bead at any given timn(e,68)

the time one must wait until the bead jumps is
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between ¢ and ¢ + dt}

Z Prob{the total jump is ¢ in this interval} x
all v>:

Prob{time ¢ — ¢ has passed in this interval}

J /: © Y(t")dt' dt,

It

i

where J is the proper normalization constant. For the simple distribution
given by Eq.[4.67], P(¢) has the form:
J
PO= T (4.69)
Note that if 8 < 1, P(z) is not normalizable, and is thus no proper probabi-
lity function. We will therefore consider only chains for which B>1 We
may then find the normalization function 7 as

1
J = 0 B>1 (4.70)
5 (1+1‘:)ﬁdt

= f-1.

Our simplified model has only two parameters: 8 and N , the number of
beads in the chain. However, we may interpret the beads in the chains as
entanglement points, which we may expect to be roughly related to the
entanglement molecular weight, M, (similar to the Doi-Edwards model):

N=M/M, -1, (4.71)

where M is the molecular weight of the chain. This leaves the parameter
# as the only adjustable parameter in the model, which is related to the
gap diffusion. It may be closely related to the concept of free volume often
invoked by physical chemists. However, we leave it open for now as an
adjustable parameter to be fixed by one experiment, such as diffusion.
The Freiburg model is certainly not a reptation model. In fact, the
probability for a chain making even one reptative-like motion is vanishingly
small for longer chains. Nevertheless the chain kinematics considered here
are similar to those of the Curtiss-Bird [25] and Giesekus [52, 30] models,
since chain segments move independently. However, here the segments
have no preferred anisotropic motion, and the process is non-Markovian.
Also, since the full chain kinematics are considered (and simulated) here,
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the predictions of the model for diffusion are unambiguous. At equilibrium
the model predicts non-Fickian diffusion in agreement with experimental
data. A more detailed discussion of the predictions of the model can be
found in Refs. [49, 50]

The model may be also interpreted as a network model with the beads
representing entanglements, and bead jumps as the simultaneous destruc-
tion and creation of segments. However, here we have a connection to
chain properties, and the destruction and creation rates are allowed to be
non-Markovian. The latter point suggests that the model is more reali-
stic, since the junction lifetimes are on the same time scales as the chain
motions themselves.

4.5 Summary

The description of a complex dynamical system, such as a polymer melt
requires the introduction of stochastical concepts. To this end we have
briefly reviewed the fundamental equations describing the dynamics of
stochastic processes. The Chapmann-Kolmogorov equation was shown to
characterize the properties of the very fundamental class of Markov proces-
ses, whose dynamics is generally described by a Master equation. For the
restricted class of diffusive processes the Master equation is approximated
by a Fokker-Planck equation for the probability distribution function. In
this case the diffusive system can be equivalenty described by a stochastic
differential equation for the stochastic variable. This equivalence is funda-
mental for the Brownian Dynamics simulation approach to polymer melts.
Semi-Markov processes were briefly introduced.
Stochastic differential equations arise very naturally in the theoretical
description of polymer chains in a melt. If the chain is modelled as a
. bead-spring chain the single bead, neglecting inertial effects, feels a hydro-
dynamic drag, an internal force law, and a stochastic force which represents
the effect of the interaction with the surrounding molecules. As stocha-
stic differential equations can be very efficiently solved numerically one
can introduce configuration dependent mobilities in the theories, which
lead to a more realistic modelling. Also well established theories as the
Doi-Edwards theory can be shown to be based on stochastic differential
equations.
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Master equations also occur in rheology. Transient network theories
are usually described by a convection equation. Introducing an additio-
nal diffusive motion of the strands, that is by modelling the strand as a
dumbbell, these theories can be shown to be described by a Master equa-
tion for both a diffusive and a birth and death process. Another model,
the Orwoll-Stockmayer model is also described by a Master equation.

A new model, which was developed in Freiburg, is based on semi-
Markov processes. Unfortunately the predictions of this model cannot
be calculated analytically. For a Kramers chain the jump probabilities no
longer depend on the configuration. One must specify the waiting time
distribution for the jumps to occur. This is assumed to be fractal.
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Chapter 5

Simulation of Stochastic
Processes
P. Biller

In this lecture the powerful numerical method of computer simulations
of stochastic processes is introduced and explained. The idea of a computer
simulation is to follow a particle subject to the stochastic process under
study. Generally one introduces small discrete time steps and calculates
the changes the particle will make during such time steps. The particle is
registered up to a desired final time and in this way one obtains a single
realization of the stochastic process. Usually the interesting quantities are
defined as certain averages of the stochastic process. Therefore one has
to repeat the simulation until a large number of realizations is obtained
from which the desired quantities, together with their statistical errors,
can be calculated. In the following we will give the details of such a
procedure for the Langevin equations and Master equations, as well as for
the semi-Markov processes that arise in the description of the rheological
behaviour of polymers. Before we begin with this programme let us make
some introductory remarks on the generation of random numbers on a
computer.
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5.1 The generation of random numbers

Random numbers are one of the most important ingredients in any com-
puter simulation. One may ask: how can a deterministic machine like a
computer provide true random numbers? The answer is that the compu-
ter uses simple laws to generate a series of numbers which have statistical
properties, such as the absence of correlations, that resemble those of true
random numbers. So the more appropriate term for the stochastic quanti-
ties appearing in computer simulations would be pseudo random numbers.
The generation of equally distributed random numbers in the unit in-
terval [0,1] is a fundamental task. A method frequently employed is the
linear congruential method (53] which works as follows. For prescribed
parameters a,b,m one chooses an initial value ro (which for example may
be a function of the instant of time when the generation of the random
numbers is started) and then constructs the series of numbers r, using the

recursion formula
Tng1 ={ar, +b) mod m . (5.1)

The n-th random number is then defined as
Tp =rn/m. (5.2)

It obviously lies in the unit interval. The quality of the random num-
bers generated in this way strongly depends on the choice of the para-
meters a,b,m. For instance, m has to be chosen very large, for it gives
the maximum possible number of different random numbers. For exam-
ple, a good random number generator is obtained with the parameters
a = 513,b = 297410973, and m = 2%". More details on the choice of the para-
meters, as well as the various methods to test the quality of a generator
can be found in the literature [53]. There one can also find alternatives to
the linear congruential method. Tested subroutines for the generation of
random numbers equally distributed in the unit interval can be found in
any program library.

With the help of the random numbers z, equally distributed in the unit
interval one can easily generate equally distributed random numbers ! in
the general interval [a, 8] by the operation

T, =a+(f—a)z, . (5.3)
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In the simulation of Gaussian white noise to be treated soon, Gaussian
random numbers are used instead of equally distributed ones. Without
proof we give the following simple recipe for their generation known as
the Box-Miiller method [53]. Given two equally distributed random num-
bers 21,z from the unit interval one can build two random numbers y;, ¥,

through
y =V —2Inzicos(2rzz) , y2=V-2lnz sin(27rz32) (5.4)

which represent two independent realizations of a variable that is normally
distributed. Random numbers 5, described by a Gaussian distribution
with mean p and variance ¢2 can then easily be obtained as

o= p+0Ua - (5.5)

Sometimes one has to draw random numbers z, from an arbitrary nor-
malized probability distribution p(z) (with say 0 < z < o). There are
several possibilities to do this {5]. Here we introduce the so-called inver-
sion method: pick a random number z, equally distributed in the unit
interval and solve the equation

P(z) = /Ozdy p(y) =zn (5.6)

for z. This solution defines the random number z, which is a realization
of a stochastic variable z with the probability distribution p(z).

5.2 The simulation of Langevin equations

This section explains the general method for a computer simulation of a
stochastic differential equation, also known as Brownian dynamics simu-
lation. As an example we will first consider the stochastic process of a
Hookean dumbbell and then some generalized models. Throughout this
section we will study the typical flow situation of inception of steady shear
flow at time zero where x takes on the form

01 0
K&(t) =7 (0 0 0) o) . (5.7)
0 0 0
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Here 7 is the constant imposed shear rate and 6 is the Heaviside step
function. The quantity of interest in rheology is the stress tensor & which
for the Hookean dumbbell model is simply given by

c=nH<QQ> . (5.8)

Here n denotes the number density of polymers. The definition of the
stress tensor for the generalized models treated later can be found in the
literature [25]. Here it is not the precise form that is important but the
fact that o is always defined as an average over the stochastic process. For
the inception of steady shear flow one concentrates on the determination
of the material functions 7+,%F,¢F which are defined by

7t (7)) = 02y @)/7
(8 9) = (0a() — 0y (1) /42, (5.9)
1/’;@:"7) = (”vv(t) T Oaz (1)) /7

The steady state values for ¢t — oo are denoted by #,41,%2. These are the
material functions for the characterization of steady shear flow.

5.2.1 The algorithm for the Hookean dumbbell model

According to the last chapter the stochastic motion of a Hookean dumbbell
is described by the Langevin equation

an-Q—%c;Hn, (5.10)

where the stochastic forces n are modelled as a Gaussian white noise with

zero mean and the two time correlations

4T
¢

Before the simulation can begin one first has to introduce dimensionless
quantities. Fixing the energy scale T, the length scale VET/H (which is
one third of the mean-square equilibrium length of the dumbbell) and the
time scale Ay = ¢/4H one arrives at

(mt)n; (¢) = ——8;;8(¢ — ) . (5.11)

Q=r-@-1Q+n, (5.12)
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where
{m(t)n; (¢)) = 6:;6(t =) . (5.13)
In the above equations all quantities should be interpreted as dimen-
sionless, although we have not introduced new symbols for simplicity.
The next step before the simulation is the discretization of the dimen-
sionless Langevin equation by the introduction of finite time steps which
leads to

Qi+ At) = Q(t) + Atls(t) - Q(t) — %Q(t)] FVALF() . (5.14)

Here At is the time step and each component of the vector f(t) is a nor-
mally distributed random number. The latter vectors are uncorrelated for
different times. The above equation is known as the Euler discretization
of the original Langevin equation and resembles the corresponding discre-
tization for an ordinary differential equation. It gives the increment of the
quantity @ in a small time step. This increment is a sum of a deterministic
part and a stochastic part. It is important to note that the stochastic in-
crement is not proportional to the time step, but to its square-root. This
follows from the well-known fact that in an ordinary Wiener process the
variance grows proportional to the time.

The discretized equation is the starting point of the computer simu-
lation. It allows the determination of the stochastic quantity @ at the
time t + At if its value is known at time ¢. One starts at time zero with a
vector Q, that is randomly drawn from the known Gaussian equilibrium
distribution. Then the succesive application of the discretized Langevin
equation leads to one particular realization of the stochastic process. Since
we are interested in the stress tensor which is an average over the stocha-
stic process this single realization is not enough and we have to repeat
the simulation for a large number of times M. Then we can calculate an
estimator for a quantity ¢ (which may be time dependent) by the ensemble

. average

M
{9) = %qu : (5.15)
i=1

where i labels the different realizations. An estimator for the statistical
error of the ensemble average is given by the square-root & of the following

83



expression
M
7= ) - 07 = 5 3 ) )

One can see that the estimator for the error o asymptotically varies as
M=% 50 that one needs four times as many realizations in order to reduce
the error by a factor of two. The obtained results clearly depend on the
time step chosen. Therefore the whole simulation is run for different time
steps and the results are then extrapolated to time step zero to obtain the
final results. For the Euler scheme used here the extrapolation has to be
linear [54]. The structure of the program is summarized in the following
flow diagram:

§1: Choose a random vector @, from the equilibrium distribution. This is
the initial configuration of the dumbbell.

§2: Calculate the new configuration after a small time step At with the
use of the discretized Langevin equation.

83: If you are interested in measuring some quantity ¢ at the present time,
then calculate the value of this quantity for this realization and add
it up to the contributions of the former realizations. Do the same for
the quantity ¢2.

S4: If the time has not reached the final time, then go back to S2, otherwise
the calculation of this realization is finished and you proceed to S5.

85: If the number of realizations has not reached the prescribed value M ,
then repeat the simulation steps $1-54, otherwise proceed to S6.

§$6: Calculate the estimators of the interesting quantities and their stati-
stical errors.

S7: Repeat the whole simulation S1-S6 for other values of the time step
and determine the final results by an extrapolation to time step zero.

This is the general way to do a Brownian dynamics simulation for the
Hookean dumbbell model. Let us end this description with a few remarks.
First, we are not really interested in stochastic trajectories itself, but only
in averages of the stochastic process. For such a situation one can show
[54] that only the first two moments of the random numbers appearing
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in the stochastic increment have to be correct. So, instead of normally
distributed random numbers one may work with equally distributed ran-
dom numbers in the interval [~v/3,v3]. Depending on the machine, this
can reduce the necessary computer time up to one order of magnitude.
Second, there is an easier simulation method if one has a steady flow, or if
one is only interested in the steady state values that are approached after
the inception of the flow. Then it is sufficient to simulate only one single
realization over a very large time and instead of an ensemble average one
builds a time average to obtain the (time step dependent) results. In this
way one implicitly assumes that the system is ergodic. The determination -
of the statistical error is slightly more complicated and can be found in the
literature [55]. Third, methods of higher order than the first order Euler
integration scheme may also be used. For this point we again refer to the
literature [2].

5.2.2 The algorithm for the Rouse model

Now we want to generalize the Hookean dumbbell model to the original
Rouse model where the polymer is modelled as a chain consisting of N
beads connected by N — 1 Hookean springs. The Langevin equation for
this model was given in (4.31) in the last chapter. Using the same length,
time, and energy scale as above, it is easy to derive the dimensionless
Langevin equation for the v —th connector vector (v =1,..,N —1). After
discretization we arrive at

N-1 N-1
QA1) = Q)+ AUKD @)~ Y Ave QoWIHVAL I Buo fo(t) - (5:17)
o=1 g=1

As before, each component of the three dimensional vector f,(t) is a nor-
mally distributed random number. The matrices A,, and B,, are given
by

Ao = (200 =8,051)1 , Buo = 1[2b00 —buo-1)1. (5.18)

As indicated in the last chapter they are the elements of supermatrices
A and B that obey the equation B-B" = 1A as a consequence of the
fluctuation-dissipation theorem.

All quantities appearing in the discretized Langevin equation are de-
fined and we are ready to start the Brownian dynamics simulation. The
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program runs exactly the same way as described above for the Hookean
dumbbell model. The only difference is that now we have ¥ — 1 times as
many stochastic variables as before. Moreover, the interesting phenomena,
occur on a time scale which scales quadratically with the number of beads.
So one has to simulate a much longer time and for practical reasons the
maximum bead number is limited to values of about 50.

Let us now turn to the results of the simulation. Both the Hookean
dumbbell model and the Rouse model lead to predictions that are not at
all satisfactory. For example, the viscosity 7 and the first normal stress
coefficient 4, are independent of the shear rate, and the second normal
stress coeflicient v, vanishes. All this is in contradiction to experimental
data. Moreover the models are simple enough to be solved analytically
[25]. So one may wonder: why do we make such a complicated simulation
program for a model that can be solved analytically and moreover leads
to disappointing results? The answer is simple. First, it is a great advan-
tage that the computer simulation can be checked when analytical results
are available. Second, the Hookean dumbbell model and the Rouse model
are ideal starting points for more sophisticated models. For instance, one
may argue that a linear force law for the springs is inadequate because
the polymer is only finitely extensible. With a nonlinear force law the
model cannot be solved analytically any more. However, a simulation is
straightforward since only very few lines in the program have to be chan-
ged slightly. The inclusion of such a nonlinear force law along these lines
has been treated in Ref. [56] and there it was found that the viscosity and
the first normal stress coefficient decrease with increasing shear rate, in
accordance with experiment. Here we want to discuss another generaliza-
tion of the Hookean dumbbell model and the Rouse model, namely the
inclusion of anisotropic mobility tensors as motivated in the last chapter.
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5.2.3 The algorithm for the dumbbell model with anisotropic
mobility

We begin with the implementation of the dumbbell model. Let the inverse
of the scalar friction coefficient be substituted by an anisotropic mobility
tensor of the form Zu. In the last chapter we have learned that this leads
to a stochastic differential equation with multiplicative noise which can be
interpreted in different ways, either according to Ito or to Stratonovich.
For the simulation it is essential to discretize the Ito-Langevin equation
because only in this version are the stochastic Brownian forces, that are
added in a small time step, uncorrelated with the actual stochastic variable
Q(t). The Ito-Langevin equation was given in Eq.(4.44) in the last chapter.
After the introduction of dimensionless quantities and discretization we get

Qt + At) = Q(t) + At[r(t) - Q(t) — %u Q) + %3% W+ VAIB - f(t) . (5.19)

We can see immediately that the general simulation algorithm described
for the Hookean dumbbell model also works for this more complicated mo-
del if one takes into account the following modifications. The anisotropic
tensor p appearing in the discretized Langevin equation is configuration
dependent and therefore depends on the actual value of the stochastic va-
riable @(#). So this quantity is not fixed throughout the simulation as in
the Hookean dumbbell model where it was simply the unit tensor but time
dependent. Therefore it has to be calculated anew in each time step. The
same is true for the additional drift term in the Langevin equation and
for the matrix B which is defined by B - BT = . The calculation of B is
straightforward since the elements of B can be given analytically in terms
of the elements of pu.

5.2.4 The algorithm for the chain model with anisotropic mo-
bility

For the chain model with anisotropic mobility tensors one has to modify

the computer program for the Rouse chain. Again the mobility tensors -

which now appear in the supermatrix A depend on the actual values of the

stochastic variables so that they have to be calculated anew in each time
step. Also the elements of the supermatrix B have to be calculated anew
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in each time step from the equation B.B” = 1A. This can be done with the
so-called Cholesky decomposition algorithm. The additional calculations
that become necessary in each time step increase the computation time
significantly. Even for a chain with only ten beads a supercomputer like
the CRAY?2 needs about one hour of CPU time for one single run.

For a suitablly chosen ansatz for the anisotropic mobility all qualitative
predictions of the models are in full agreement with experimental findings.
In particular, shear rate dependent material functions, including a nonva-
nishing second normal stress, with an overshoot in their time dependence
for high shear rates, are found. The results are described and analysed in
great detail in Ref. [32] for the dumbbell model and in Ref. {33} for the
chain model.

5.3 The simulation of Master equations

5.3.1 The general algorithm for network models

In this section we will give the details of a computer simulation of the con-
vection equation that arises in network theories of polymer melts. This
serves as an example for a program for other more general Master equa-
tions. As in the simulation of the Langevin equations in the last section
one follows the stochastic motion of particles in small time steps. Typi-
cal for a process described by a Master equation is that the small time
behaviour is characterized by jumps between different states. In our con-
crete example network strands can be generated or destroyed in a small
time step. The probabilities for these events depend on the creation and
loss rates. Fixing the equilibrium distribution to be Gaussian, the single
loss rate function & specifies the whole stochastic process, as explained in
the last chapter. We do not want to specify the functional form of this
function here but we have in mind the particularly interesting situation
that » depends on the actual configuration Q of a strand. In addition to
the stochastic jumping from the equilibrium generation reservoir to exi-
stence and from existence to death we also have the deterministic change
of the configuration of strands due to the flow that has to be taken into
account in each time step. All these effects are now simulated for a large
ensemble of network strands. The first step is again the introduction of
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dimensionless quantities. As in the last section the energy scale is kT, the
length scale is \/kT/H, and the time scale A is taken from the definjtion of
the loss rate function h. Then the simulation proceeds as indicated in the
following flow diagram:

S1: Generate the Gaussian equilibrium ensemble consisting of M strands
at time zero. This ensemble is followed in the simulation and a copy
of it serves as the ensemble from which strands are generated.

$2: For each strand in the actual ensemble calculate the new configuration
vector after a small time step: Q(t + At) = Q(¢) + At k(1) - Q(¢).

$3: For each strand in the actual ensemble calculate the configuration
dependent probability A’ = 1 — exp[-h(Q(¢))At] that the strand is dest-
royed in the time step A¢. Remove strands from the actual ensemble
according to the calculated probabilities.

S4: For each strand in the Gaussian generation ensemble calculate the
configuration dependent probability A’ that the strand is created in
the time step Ar. Bring strands into the ensemble according to the
calculated probabilities.

$5: If you arc interested in measuring the stress tensor at the present time,
then evaluate the corresponding average over the actual ensemble and
its statistical error according to the rules in the last section, otherwise
proceed to S6.

$6: If the time has not reached the final time, then go back to S2.

Also in' this simulation the results depend on the time step chosen. In
general one can show that with decreasing time step the results tend to
the exact values. More quantitative details on this problem can be found
in Ref. [57].

The main difference from the simulation of the Hookean dumbbell mo-
del in the last chapter is that the change of the configuration vector is
much easier because it is only deterministic but that now one has the ad-
ditional possibility that ¢frands are generated or destroyed in a time step.
Therefore the number of particles in the ensemble may not be constant, but
time dependent. This is the reason for simulating the whole ensemble over
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successive time steps instead of generating single realizations one after the
other as in the sirmulations of the last chapter.

Let us briefly discuss different network models classified by the function
h. The Lodge model where the function # is constant is simple enough to
be solved analytically. In a similar way as the Hookean dumbbell model
was helpful for a test of the computer program of Langevin equations the
Lodge model serves as a check for the algorithm for network models. In
analytical theories one generalizes the Lodge model by the assumption
that the rate h depends on some averaged quantities, such as the mean-
square equilibrium length. However, physically it is much more plausible
to assume that A depends on the configuration of each single strand. For
example, one can imagine that longer strands will break more easily than
shorter ones. Such a theory with configuration dependent rates is not
analytically solvable any more but it is very easy to modify the program
for the Lodge model in order to solve it numerically. From symmetry
arguments one argues that the loss rate should be a function of @*. So the
simplest ansatz for a model with configuration dependent rates is

HQ?
i)

h= %(1 te (5.20)
Here ¢ is a positive dimensionless parameter characterizing the strength of
the configuration dependence. For ¢ = 0 one reobtains the Lodge model.
The qualitative predictions of the model turn out to be very satisfactory
for both the shear rate dependence and the time dependence of the ma-
terial functions. In particular, it turns out that the nonvanishing second
normal stress difference can be directly traced back to the configuration
dependence of the loss rate function. A more detailed description of the
results can be found in Ref. [45].

5.3.2 The continuous time algorithm for network models

The simulation algorithm presented above works for the most general net-
work models. In special cases a much more efficient method is possible
which avoids the introduction of time steps [58]. It is therefore called con-
tinuous time simulation. What is the central idea behind this alternative
algorithm? Instead of testing at each time step whether strands enter or
leave the actual ensemble, one determines beforehand how long a single
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strand lives in the ensemble. The lifetime 7 is a stochastic quantity and
so we have to determine the whole probability distribution function of
lifetimes.

Let us assume a strand to be generated at time ¢, out of the Gaussian
distribution with configuration Q,. The probability that this strand is still
in the ensemble at time ¢ is given by

P (t;t0) = exp[~I (¢;t0)] = exp [— /:ds r(Q (s))] . (5.21)

For time-independent loss rates this reduces to an equation which is well-
known, for instance in the connection with radioactive decay processes.
The above formula is then the obvious generalization to time-dependent
loss rates. The time-dependent configuration vector appearing in the above
equation obeys the differential equation @ = x-Q with the additional initial
condition Q (t,) = Q,. For sufficiently simple flows, such as the inception
of steady shear flow, this differential equation can be analytically solved

leading to
Qoz + ¥ (tit0)Qoy
Q) = ( Qoy ) , (5.22)
Qo2
with
0 ,iftp <t <0
f(tito) = t ,ifto<0andt>0 . (5.23)

t—tg ,if0<ty<t
Note that P(i;t) is identical to the probability that the lifetime + of the
strand is at least t ~ ;. We want to know the probability p(r;te)dr that
the lifetime is between r and 7+ dr. So the strand lives up to the time
to + 7 but not to time ¢y + 7+ dr. It follows that

P(Tit0) = —P(5;t0)],_,, ., = R(Q(to + T))P(ta + it0) . (5.24)

We have now obtained the desired probability distribution function from
which the lifetime of the strand will be chosen randomly during the simu-
lation. It is interesting to see that this quantity not only depends on the
time t; when the strands under study entered the ensemble but through
I(t;t0) and & on all configurations @ from time t, up to the time ¢y +r and
thus on @, and the shear rate.

The main steps in the continuous time simulation are then the following:
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S1: Define a series of measurement times at which you like to measure the
stress tensor.

$2: Choose a random time ¢y equally distributed in an appropriately chosen
time interval. The time ¢, represents the time at which the new strand
enters the ensemble.

$3: Choose a random vector @, from the equilibrium ensemble. This is
the initial configuration of the new strand.

S4: Choose a lifetime » randomly from the correct probability distribution
p(r;to). Thus the strand will five from time #, until time o + r.

S5: Calculate the configuration Q(t) at those measurement times where
the strand exists. From this determine the contribution to the inte-
resting quantities at these times and add these contributions to those
obtained for the earlier strands. Do the same for the squares of the
interesting quantities. Update the number of contributing strands at
the measurement times where the strand lives.

$6: If the number of simulated strands has not reached a prescribed value
M, then repeat the simulation steps S52-S5, otherwise proceed to S7.

s7: Evaluate the interesting quantities and their statistical errors as en-
semble averages at the chosen measurement times.

Let us make some remark on the above program. As the number of
strands that enter the ensemble with the given configuration @, is propor-
tional to the rate A(Q,), one can think that instead of one strand a(Q,)
strands enter the ensemble. This is the easiest way to take the confi-
guration dependent generation rate into consideration in the simulation.
So in step S5 instead of one we add A(@,) when counting the numiber of
contributing strands and for the same reason also the contributions to the
measured quantities are weighted with the same factor before adding them
to earlier contributions. The determination of the random lifetimes r in
step 54 is the central point in the simulation. These are drawn randomly
from the distribution p(r;t,) with the inversion method described in section
5.1. For our problem at hand this strategy leads to the equation

I(T +to;t0) + In(z,) = 0 (5.25)
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with a random number z, equally distributed in the unit interval. This
equation has to be solved for r. For simple models like that where the
function A quadratically increases with Q* this can be done analytically.
In more complicated situations a numerical determination of r is straight-
forward.

Note the main differences to the general algorithm introduced above.
In the continuous time simulation it is possible to follow the evolution of
single strands one after the other. More important is the fact, that no
discrete time steps are introduced and so one does not have errors due
to time discretization. Furthermore, there are no time consuming tests at
each time step whether strands are created or destroyed. So the continuous
time algorithm is much more efficient. Its only disadvantage is that it only
works in special cases. First, the differential equation for the deterministic
motion of the strand must have an analytical solution. However, this is
true for homogeneous flows that are usually studied. More stringent is the
necessary condition that the probability distribution of lifetimes must be
calculated beforehand analytically. This is only possible in cases where
the functional form of the loss rate function &, as well as of the flow field,
are very simple.

5.3.3 The continuous time algorithm for the Doi-Edwards mo-
del

At the end of this long chapter let us mention another interesting appli-
cation of the continuous time simulation, namely the simulation of the
Doi-Edwards model. In the last chapter the stochastic picture that under-
lies the Doi-Edwards model was explained. One has a vector U obeying
the deterministic equation of motion U = k- U — x : UUU and a stocha-
stic quantity $ controlled by a Wiener process with reflecting boundaries.
Each time the variable § reaches one of its boundaries the vector U has
to be chosen new as a random unit vector. We note the similarity to the
network model: we again have a configuration vector that has a specific
lifetime during which it is changed deterministically by the flow field. The
lifetime of the vector is now controlled by a Wiener process. One could
have the idea to simulate this Wiener process with the simulation algo-
rithm introduced for Langevin equations in order to determine the times
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when the stochastic quantity S reaches one of its boundaries. This is in-
deed possible and has been done in Ref.[24]. However, it is not necessary
to simulate the process S explicitly because for the determination of the
stress tensor at time ¢ only the value of the process U(t) has to be known
while the value of the process S(t) is irrelevant. Moreover, the Wiener pro-
cess with reflecting boundaries is simple enough to calculate all necessary
quantities analytically. Therefore a much more elegant way is the direct
application of the continuous time simulation approach.

Suppose that one wants to measure the stress tensor at time t. For
technical reasons it is easier in the following to work with birth times
instead of lifetimes. For a vector U(t) that exists at time ¢, the process
S controls the stochastic birth time ¢ when this vector was created with
random orientation. Now let pu(¢ — ¢')dt’ be the probability that this birth
time is between ¢’ and ¢’ + d¢’. This is equivalent to the probability that,
given the value S(¢) at time ¢, the last reflection at a boundary occurred
between times ¢’ and ¢ + dt’. The analytical expression for u(t—t') can be
found in the works of Doi and Edwards and is given by [23]

2rg 4
pt—1) = Z 7r"’8Td exp (—I%dt)) s (5.26)

p odd

where T, is called the disengagement time. So the quantity p(t —¢) can
directly be interpreted as a probability distribution for the stochastic va-
riable #. The continuous time simulation for the Doi-Edwards model then
runs as follows:

S1: Choose a random timet from the probability distribution u(t—t'). The
time ¢’ is the time when the process $(t) reached one of the boundaries
the last time before ¢t and hence when the vector U(t) was born with
random orientation.

§2: Choose a random orientation over the unit sphere. This defines the
vector U(t').

§3: Calculate the orientation U(t) of the vector at the present time t with
the analytical solution of the differential equation of motion.

S4: Calculate the contribution of this vector to the stress tensor and add
this contribution to those obtained for the earlier realizations. Do the
same for the squares of the measured quantities.
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$5: If the number of simulated realizations has not reached a prescribed
value M, then repeat the simulation steps 51-S4, otherwise proceed
to S6.

$6: Evaluate the interesting quantities and their statistical errors as en-
semble averages at the chosen measurement times.

Note that in order to allow a continuous time simulation the nonli-
near deterministic equation of motion of the vector & must be solvable
analytically. To this end the flow tensor « has to be simple enough.

More details on the algorithm and the comparison of the obtained re-
sults with those of other numerical approaches can be found in Ref. [59].

5.4 The simulation of semi-Markov processes

In this section of the chapter we are going to describe a simulation algo-
rithm for the semi-Markov process which was introduced in the last chapter
and which is briefly recapitulated here. The model for the polymer is a
Kramers chain with N beads that make elementary jump motions of the
Orwoll Stockmayer type. Up to now the model only treats the equilibrium
case so that the chain remains motionless inbetween jumps. Each bead
jumps according to the waiting time distribution

(1) = (5.27)

B
(1+¢)s+1
with a free adjustable parameter g > 1. The slowly decaying function % has
no higher moments than the first which makes the model non-Markovian,
in contrast to the original Orwoll-Stockmayer model for which the waiting
time distribution is exponential.

_ Since the waiting time distribution is given analytically and the de-
terministic motion inbetween jumps is trivial one can use the continuous
time simulation approach introduced in the last section. As before, we
simulate one chain at a time. A sufficient number of chains are simulated
to obtain the desired statistics, and the results of all chains are averaged.
All units of length are normalized by the rod-length a, and time is already
made dimensionless through the expression for ¥(1). At the beginning of
the simulation one has to define initial values of the bead jump times. One
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can show [49] that these have to be drawn from the distribution function
P(¢t) given by 51
P(t)= @)—ﬁ .

This can easily be done with the method of inversion. The jump order
is then found from the selected jump times, and stored in a table. The
table is ordered only once at the beginning of the simulation and then
updated throughout. Thus, the next bead to jump is always given by the
first entry in the table. During the simulation new jump times are always
drawn randomly from the distribution % which is again done using the
inversion method.

For the equilibrium situation considered here it is interesting to study
the diffusive behaviour of the center-of-mass and the autocorrelation of
the end-to-end vector. .

(5.28)

The simulation thus proceeds in the following steps:

$1: Define the times at which you like to measure the interesting quanti-
ties.

$2: Choose the initial configuratior of the chain from a random walk of
unit step length. Calculate the initial end-to-end vector and set the
initial center-of-mass position arbitrarily to 0. Draw initial values of
the bead jump times from the distribution function P(t) and build
the jump table.

$3: The length of the current time step is given by the jump time of the
bead in the first entry of the jump table. Advance the simulation
time counter by this time step.

S4: If the simulation time counter has advanced past some of the measu-
rement times, then add the interesting quantities (and their squares)
at these times to those of the previous chains, else go to S5.

$5: Change the configuration. Calculate the new center-of-mass position,
and the new end-to-end vector (if an end bead jumps).

$6: Decrease all jump times by the current time step, select a new jump
time for the bead that just jumped, and update the jumping order
table.
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S7: If the time has not reached the desired final time, then go back to S3,
otherwise proceed to S8.

S8: If the number of simulated chains has not reached a prescribed value
M, then repeat the simulation steps S2-S7, otherwise proceed to S9.

$9: Evaluate the interesting quantities and their statistical errors as en-
semble averages at the chosen measurement times.

To check the entire simulation, #%(t) can be replaced by the (dimen-
sionless) exponential form +os(t) = exp(—t) to make the model Marko-
vian, and the simulation results compared with the analytic results for the
Orwoll-Stockmayer model.

The results of the model are very interesting. One finds that the model
predicts non-Fickian diffusion in an intermediate time region ({r.(¢)?) ~ =
with o dependent on §), in agreement with experimental data. For longer
times the diffusion is Fickian and scales with the chain length v as n1-2/2
where « is a function of 8. For example, for § = 1.3 one finds for the
diffusion coefficient D ~ N=22. The autocorrelation of the end-to-end
vector of the chain has a stretched exponential form (exp[—(t/7)7],
7 a function of 3 and N) with a time constant r that scales as N33 for
f =13. A thorough discussion of the predictions can be found in Ref.
[49]. For the future it is planned to generalize the model to investigate
also non-equilibrium cenditions.

with

5.5 Conclusions

At the end of this long chapter on stochastic simulation algorithms for
the investigation of models for polymer melts let us remark that we only
have described some aspects of the field. For instance, we have not at all
considered the important Monte-Carlo calculations on a lattice. Let us
briefly summarize the main results.

« Typically only oversimplified models can be solved analytically and
more realistic models have to be treated numerically.

« Instead of solving the partial differential equations (e.¢., Fokker-Planck
equation, convection equation) numerically, it is preferable to simu-
late directly the stochastic dynamics underlying these equations.
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e Very often the programs for the realistic models do not differ much
from those of the simple models with analytical solutions. So the
known solutions of the simple models serve as a check of the computer
programs.

The simulation of the stochastic process is straightforward: generally
one follows the evolution in small time steps to get one realization.
The results follow as averages over many such realizations.

A careful error analysis is necessary: one has statistical errors and
errors due to time discretization (the latter vanish in continuous time
simulations).

A more and more detailed model building (and thus a better under-
standing of the system) is only limited by the necessary amount of
computer time.

The author hopes to have shown that simulation methods are a very pow-
erful and valuable (and perhaps the most promising) tool to study such
complex dynamical systems as polymer melts.
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con il Dipartimento di Chimica dell’Universita di Napoli);
Virtorio DE Arraro dell’Universitd di Torino: « Le forze
nella natura e la loro unitd »; RoserTo FIESCHI: « Sclenziati e
armamenti » (in collaborazione con la Stazione Zoologica di
Napoli); MarcerLo Pera dell’Universita di Pisa: «Prove e
argomentazioni nella preferenza delle teorie scientifiche » (in
collaborazione con la Stazione Zoologica di Napoli); Mirko
D. GrMex dell’Ecole Pratique des Hautes Etudes: « Miti e
realtd nella morte di Plinio» (in collaborazione con la Sta-
zione Zoologica di Napoli); Davibe Maria Turorpo: «Le
mani sulla vita » (in collaborazione con la Stazione Zoologica
di Napoli); Franco Bonaupi del CERN di Ginevra: «Il
CERN di Ginevra: il grande laboratorio europeo per lo
studio della fisica delle particelle »; ForTunaTO TrTO ARECCHI
dell’Universita di Firenze: « Dal caos all’ordine in fisica »;
ENrICO BELLONE: « Scienza e modelli storiografici » (in colla-
borazione con la Stazione Zoologica di Napoli); CarLo Rus-
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BIA, premio Nobel per la Fisica: « La trasformazione dell’e-
nergia in materia: ’alchimia dei tempi moderni? » (in collabo-
razione con il Dipartimento di Fisica dell’Universita di Na-
poli); Ebuarpo CaianierLo, Giorio CEVENINI, ANTONIO
D’Auria: «Intelligenza artificiale e formazione: I - La lunga
via dell'intelligenza; II - Tecnologia e formazione; III - Intelli-
genza artificiale e strutture produttive » (in collaborazione
con la rivista « Zadig»); AuGusto MARINONI: « Leonardo:
una nuova immagine dell’artista-scienziato; I - La lingua di
Leonardo; IT - La matematica di Leonardo; III - Leonardo e la
natura »; E.C.G. SuparsHaN dell’Universita di Madras e
dell’University of Texas: « From Fermi Interactions to elec-
troweak interactions; I - Early history of beta decay; II -
From beta decay to weak interactions; III - The chiral V-A
interactions; IV - Fundamental constituents and fundamental
interactions; V - Electroweak interactions» {in collabora-
zione col Dipartimento di Fisica dell’Universita di Napoli);
Itaro SaBELLn: « Agopuntura oggi »; ALpo CLEMENTI, FRANCE-
sco Guerra, Luict Pestarozza, Arpo Picciaru, Fausto
Razzi, Jean Craupk Risser, Curtis Roaps, JoHaNN SUNDBERG
¢ WALTER TORTORETO: « Musica e scienza: un rapporto con-
flittuale? » (in collaborazione con I’Associazione Informatica
Mousicale Italiana e con il Dipartimento di Fisica dell’Univer-
sita di Napoli); Bruno Corpr del Massachusetts Institute of
Technology: « Recenti scoperte della fisica dello spazio e loro
implicazioni filosofiche »; R.V. Matrrya dell’Imperial College
of Science and Technologies di Londra: « Programmi ed espe-
rienze di management-science »; VALENTINO L. TELEGDI dell’In-
stitut fiir Hochenergiephysik, Zurigo: « La figura e Popera di
Roland Eotvos »; S. Zapracosta, J.J. Van Roop, M. Simon-
SEN: « Nuove frontiere della biologia: il complesso maggiore
d’istocompatibilita (MHC): I - Il complesso maggiore d’isto-
compatibilita al di la dell’istocompatibilitd; I - The Relevance
of the MHC in Biology and Medicine; III - Evolutionary
Aspects of the MHC » (in collaborazione con il Diparti-
mento di Biologia e Patologia Cellulare e Molecolare «L.
Califano » dell’Universita di Napoli); Vrrrorio G. Vaccaro
dell’Universita di Napoli: « La ricerca e i suoi strumenti nella
fisica delle particelle »; SHELDON L. GrasHOW, premio Nobel
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per la Fisica: « La sfida della fisica delle particelle »; Bruno
Rosst del Massachusetts Institute of Technology: «La sco-
perta del vento solare »; G. Barong, G. Derra Garta, G.
NemeTHY, F. LEij: « Ruolo dell’acqua nelle interazioni fra
molecole biologiche: T - Interazioni in soluzione acquose di
amminoacidi, ammidi e peptidi modello; II - Entalpie di
idratazione di ammini e uree; III - Modelli di idratazione
negli studi conformazionali di peptidi; IV - Il ruolo del
solvente nell’aggregazione di ammini e uree: simulazioni nu-
meriche »; CHEN Jing-Hua della Societd di agopuntura tradi-
zionale della Repubblica Popolare Cinese: «Il trattamento
delle malattie respiratorie con ’agopuntura e le erbe cinesi »;
Humeerto MaTUraNA: « Riflessioni sulla cognizione come
fenomeno biologico »; Paoro DE Luca, Dennis W. STEVEN-
soN, James E. MickLE: « Attualitd dello studio della Paleobota-
nica e dell’Etnobotanica » {in collaborazione con I’Orto Bota-
nico di Napoli); GiorGto Bernarpt del Laboratoire de généti-
que moléculaire - Institut Jacques Monod di Parigi: « Il caso e
la necessita nell’evoluzione»; .M. KHALATNIKOV e V. BELINSKI
dell’Istituto Landau dell’Accademia delle Scienze dell’Unione
Sovietica: « Inflationary cosmology »; Paora MaNacorpa e
ABBe MowsHowrtZ: « Calcolatore e societd: I - Lavorare
quanto, lavorare come, lavorare per chi? Il - L’organizzazione
possibile: il futuro con la tecnologia dell’informazione » (in
collaborazione con il Dipartimento di Informatica e Sistemi-
stica dell’Universita di Napoli); Gianrranco CmMmino, ENnio
D Gioral, Giovannt PucLiese CarrateLL, Luict A. Rapr-
cATI DI Brozoro, CARLO SBORDONE, GIUSEPPE SCcorzA Dra-
GONI, EDoARDO VESENTINE: « I pensiero matematico del XX
secolo e Iopera di Renato Caccioppoli » (in collaborazione
con la Scuola Normale Superiore di Pisa); Franco RinaLpr
dell’Universitd di Napoli: « Recenti prospettive della ricerca
in psichiatria» (in collaborazione con '’ADFAOF-AFASP
Regione Campania); ALronso Maria Liquort dell’Universita
di Roma: « Dalla biologia molecolare e teorica all’oncologia »
(in collaborazione con I'Istituto Italiano per gli Studi Oncolo-
gici); Itato SaBELL:: « Esperienze di analgesia con agopun-
tura »; Davip Gross dell’Universitd di Princeton: « Teorie
unificate di ogni genere »;, MANFRED FINk dell’University of
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Texas: « Elctron Scattering: I-Electron Scattering as a Con-
tributor to Science and Technology; II - High Energy Elec-
tron Scattering Images of Atoms and Molecules; III - Low
Energy Electron Scattering; IV - Spin Effects in Scattering
World; V - Electron Beam Lithography »; Fausto MarcHr e
Itaro Saserr dell’Académie Médicale d’Acupuncture di Pa-
rigi: « La ricerca in agopuntura oggi »; GIUSEPPE CAGLIOTI,
Epuarpo Caianierro, Arronso Maria LiQuori, MICHELE
EMMER: « Simmetria e asimmetria in natura » JEAN CLAUDE
Darras, Presidente dell’Académie Médicale d’Acupuncture
di Parigi: « L’agopuntura: sua pratica, sue indicazioni, suoi
limiti »; CHen Jing-Hua della Societd di agopuntura tradizio-
nale della Repubblica Popolare Cinese: « Controlled trial of
acupuncture for disabling breathlessness ». « Aspetti della fi-
sica contemporanea: esperimenti sulle interazioni fondamen-
tali», seminari in collaborazione col Dipartimento di
Scienze Fisiche dell’Universita di Napoli coordinati da
Paolo Strolin: Tiziano Camporesi del CERN, «Lo svi-
luppo della fisica sperimentale delle particelle elementari:
Iinterazione elettromagnetica; ANTONIO EREDITATO  del
CERN, «L’unificazione delle forse fondamentali: verifi-
che sperimentali dell’interazione elettrodebole »; Fasrizio
Faser1 dell’Istituto Nazionale di Fisica Nucleare, Bologna,
« Esperimenti sulla struttura degli adroni: I'interazione
forte »; Eugenio Coccia dell'Universitd di Roma « Tor Ver-
gata », « L’interazione gravitazionale: aspetti sperimentali ».
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CONVEGNI

NUOVE PROSPETTIVE NELLE TEORIE DEI QUANTI
E DELLA RELATIVITA GENERALE

(in collaborazione con docenti e ricercatori delle Universita
italiane e con scienziati del CERN di Ginevra)

Napoli-Amalfi, 7-12 maggio 1984

Relazioni di: PaoLo BubinicH, Ebuarpo CalaNiELLO, VITTO-
rio DE Arraro, TurLio ReceGe, L. Van Hove.

Con la partecipazione di: J. BeLt, CERN, Ginevra; P. Bupr-
NicH, Sissa, ICTP Trieste; R.E. Marsuak, Virginia Polyt.
Instit., Presidente della American Physical Society, USA; C.
Reesi, Brookhaven National Laboratory, USA; T. REGgE,
Universitd di Torino; E.C.G. SuparsHaN, University of Te-
xas, Austin, USA; L. Van Hove, CERN, Ginevra; B. Zu-
MiNo, Lawrence Berkeley Laboratory, USA.

TEORIA GENERALE DELLE STRUTTURE
(in collaborazione con IAccademia delle Scienze del-
’'U.R.S.S. e con il Consiglio Nazionale delle Ricerche)
Napoli, 18 ottobre-Amalfi, 19-21 ottobre 1984

Relazioni di: M.A. ArzermaN, E. Camanierro, G. DEria Ric-
c1a e C. Tasso.

Con la partecipazione di: A. ALeskerov, F. Dororevuk, M.
MariNarO, G. Musso, A. NEecro, S. Parnisky, N. Postr-
GLIONE, L. RozZoNOER, G. ScarPETTA, I. SMIRNOVA, L. TENEN-
BAUM, A. VENTRE, L. Vorskry.
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PARTICLES AND GEOMETRY

(in collaborazione con il Center for Theoretical Physics,
University of Texas at Austin)

Austin, 25 febbraio - 1 marzo 1985

Relazioni di: SteveN WemNBERG, Bryck DE WirT, JoserH
PorcnNinski, Pamie CanpELas, RiCHARD MaTtznNer, WL Fr-
scHLER, Marc Henneaux, Cecile Morerte-DE Wirt, Jonn
ARCHIBALD WHEELER.

IL MERIDIONE E LE SCIENZE (secoli XVI-XIX)

(in collaborazione con I"Universita degli studi di Palermo e
con |'Istituto Gramsci Siciliano)

Palermo 14-16 maggio 1985

Inaugurazione: IeNazio Meusenpa, Magnifico Rettore
dell’Universita di Palermo; Francesco Renpa, Presidente
dell’Istituto Gramsci Siciliano.

Relazioni di: Paoro Casini Marciiro CaraPEzza, ANNA
Drerr’Orerice, Carro Orwmo, Guipo MasorTo, ALBERTO
Monroy, CHrisTINE GroeseN, F. Paoro CAsTIGLIONE,
Franco Pairabmvo, Franco Maria Ramonpo, Uco Bar-
piN, CorraDO Dorro, Rosario MoschHeo, PiErR DANIELE
Naroritani, Jost Evia, Paoro Ricurri, Siwvana Barreca,
SALvATORE PEDONE, PiETRO OMODEO, FERDINANDO ABBRI,
Pina CataranorTo, Nicorerta Morerro, Viapo Zoric,
Epoarpo BenvenuTto, Gruserpe BeENTIVEGNA, UMBERTO BoOT-
1AaZZINI, PAoLOo FrEGuGLIA, SanTI VArLenTi, Crara GALLINI,
PasQuate  AssennaTO, GruseppE  CASARRUBEA, (GIUSEPPE
Daro, Sterania Misuraca, GruserpE REestiro, Lucio SArNO,
Giovannt Frume, Gruserpe SiCHEL, SALVATORE D1 PASQUALE,
Vareria Brunazzi, ANTONIETTA JoLE LiMa, Aucusto Praca-
NIcA, ANTONINO BuTttrrTa, SEBAsTIANO Di1 Fazio, Jore Gr-
GANTE, ELi0 Manzi, GUGLIEMO BENFRATELLO, ANTONINO BE-
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NIGNO, Orazio Canciuia, Rosario La Duca, SALVATORE PE-
DONE, MarcerLo Renpa, Concerra Rizzo Inserra, Rosario
SPAMPINATO.

Tavola rotonda sul tema: La scienza oggi nel meridione. Con
la partecipazione di: Paoro Rossi, Carto CiLBerTo, IeNazIO
MeLisenpa, Paoro Cavanerg, Ernesto Drioir, GIuseppe
Giarrizzo, Grovanni GIUDICE.

ROLE OF DNA IN BRAIN ACTIVITY

(in collaborazione con il Consiglio Nazionale delle Ricerche,

la International Society for Neurochemistry, I'Istituto Inter-

nazionale di Genetica e Biofisica, la Stazione Zoologica di
Napoli e 'Universita di Napoli)

Napoli-Ravello, 26-29 maggio 1985

Direzione scientifica: Prof. Antonio Giuditta
Istituto Internazionale di Genetica e Biofisica.

Relazioni di: A. Guprrra, H. Hypen, W< E. Haun, GREGOR
J. Surcurre, Epwarp Herser, IL.R. Brown, I. Serra, AM.
GuurrriDA, G. BerNocchi, E. Scuerini, C.C. Kuenzie, K.
Susea Rao, P. ManDEL, V. Mages, S. Reints, H. Hypen, W.E.
Hann, B.B. KarrLan, J.G. Surcurrg, K.E. Davies, I. OBERLE,
M.XR. Morrison, L. Liv, E.A. Barnarp, J. Giraupar, H.
Soreo, J. MarLer, D.K. Barrter, M.W. Kmwimann, L.J. De
GEenNARro, E. HereerT, J. RoBErTS, D. RicHTER, R.J. MIiLNER,
I. Ginzeureg, U.Z. Lrrtausr, A.C. Manon, R.H. ScHELLER.

QUANTUM FIELD THEORY

(in collaborazione con I"Universita di Salerno, Dipartimento
di Fisica Teorica e con ’'Universita di Alberta - Canada).

Napoli-Positano, 1-8 giugno 1985

X1



Comitato scientifico: S. KamerucHr, F. Mancint, H. Matsu-
MoTo, N.Y. ParastamaTiou.

Comitato organizzatore: Istituto Italiano per gli Studi Filo-
sofici, S. De Funrro, M. Fusco-Girarp, F. Mancini, P.
Sopano, G. VITIELLO. :

Relatori: E. CaianrEriro, W.J. Mc Donarpb, F. Mancin,
H.P. Dtrg, H. Ezawa, RW. Jackw, S. Kameruchi, K.
Kikkawa, J.R. Krauper, J. Loruszanskl, K. Maki, H. Mat-
suMmoT0, S. ONEDA, N. Parastamatiou, E.C.G. SUDARSHAN,
M. Suzuxy, M. Tacmri, Y. Takamasua, M. Wapati, H.
UMEZAWA.

Partecipanti ai lavori: A. Auriia (Canada), F. Bassant (Ita-
lia), A.Z. Carr1 (Canada), D. DE. Farco (Italia), R. FErraRrt
(Italia), Y. Funmoto (Giappone), G. JoNa-Lasinio (ltalia),
M. Konuma (Giappone), L. Leprak (Stati Uniti), M. Misra
(Belgio), T. Muta (Giappone), Y. Nakano (Italia), B. Pre-
ziost (Italia), H. Scuirr (Canada), G.M. SemeNorr (Canada),
V. Srintvasan (India), S. Tanaka (Giappone), Y. ToMozawa
(Stati Uniti), K. Yosuma (Italia).

L’OPERA DI EINSTEIN. I - EINSTEIN E IL SUO
TEMPO

(in collaborazione con: Istituto Gramsci Veneto,
Goethe Institut, Max-Planck-Institut,
Intercultural Society for Science and Art)

Venezia, 13-14 dicembre 1985

Relazioni di: Umserto CuUrl, JOHN STACHEL, FRANGOISE BALI-
BAR, PaoLo BupinicH, Enrico BeLLoNE, FriEDriCH CRAMER,
Paoro Zriiing, DeEnntis W. Sciama, WoLFANG KAEMPFER,
Jean-Marc Levy-LeBLonD, GErt MATTENELOTT, REMO BoDEI,
Hemvz D. KitTsTEINER, MAssiMo CACCIARL
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L’OPERA DI EINSTEIN. II - EINSTEIN
E LA FISICA CONTEMPORANEA

(in collaborazione con: Istituto Gramsci Veneto, Diparti-
mento di Fisica dell’Universitd di Salerno, Goethe Institut,

Max-Planck-Institut, Intercultural Society for Science and
Arr)

Napoli, 28 febbraio - 1 marzo 1986

Relazioni di: Joun Stacuer, TurLio RecGe, FrancgoisE BaL-
BAR, ENrIcO BELLONE, RoBERT CoHEN, DIETER WANDSCHNEI-
DER, Epuarpo CaranieLLo, BRUNO BErTOTTI, JEAN-PIERRE VI-
GIER, PAOLO BUDINICH, JEAN-MARC LEVI LEBLOND, GIAN VITTO-
r10 Parrorrmvo, DEnnts W. Sciama, Remo RurrINt.

TEORIA UNIFICATA DELLA GRAVITAZIONE
3.7 marzo 1986

Relatori: TuiLio RecGg, PETro FrE, Riccarpo D’Auri,
JEANNETTE NELSON.

LEGGI DI SIMMETRIA E UNIFICAZIONE
DELLE INTERAZIONI FONDAMENTALI

(in collaborazione con il Dipartimento di Fisica Nucleare,
Struttura della Materia e Fisica Applicata
dell’Universita di Napoli)

Napoli, 15-18 aprile 1986
Relazioni di: Vrrtorio SiLvestRINI, Apriano Di Giacomo,
Varentino L. Trreepi, Nicora CasBo, GUIDO ALTARELLI,

Uco Awmaipi, Giovanni Beirorr, Luict A. Rapicatr b1
Brozotro.
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PHYSICS OF COGNITIVE PROCESSES

(in collaborazione con: Istituto Internazionale di Alti Studi

Scientifici - Universitd di Nijmegen - Dipartimento di

Fisica Teorica dell’Universita di Salerno - Centro Interna-
cional de Fisica, Bogota)

Napoli-Amalfi, 16-20 giugno 1986

Relazioni di: F.T. Areccur (Italia), A. Borseruino (Italia), V.
BrarrenserG (R.F.G.), R. Busa (Italia), G. Gacriorr (Ttalia),
A. Coors (Olanda), E. Harr (USA), H. Haken (R.F.G.), D.
Horstapter (USA), P. Jomannesma (Olanda), T. KoroNeN
(Finlandia), F. Lauria (Italia), D. Mackay (Inghilterra), H.
Marturana (Cile), L. Ricciarpr (Italia).

ADVANCES OF PHASE TRANSITIONS
AND DISORDER PHENOMENA

(in collaborazione col Dipartimento di Fisica Teorica
dell’Universita di Salerno)

Amalfi, 25-27 giugno 1986

Relazioni di: A. Anarony, K. Binper, A.]. Bray, J. Hertz,
A. Conicrio, K. Waresek, D.I. Uzunov, S.W. Kocy, C. D1
Castro, C. Parisy, A. ZepeLius, B. Preziosr, M. Suzuki, H.
Martsumorto, H. Armmrrsu, 1.D. LAwrIE.

FONDAMENTI DI INTELLIGENZA ARTIFICIALE

(Seminario internazionale di studi in collaborazione col Di-

partimento di Informatica e Sistemistica dell’Universita di

Napoli, col Dipartimento di Scienze Relazionali e della Co-

municazione dell’Universita di Napoli e col Progetto Strate-

gico di Intelligenza Artificiale dell’Istituto di Cibernetica -
CNR Napoli)

Napoli - 1-5 settembre 1986

X1V



Fondamenti di intelligenza artificiale - Il sistema F.O.L. -
Strutture cognitive - Rappresentazione della conoscenza -
Open system - Sistemi in comunicazione con 'ambiente -
Intentional logic - Ambienti multipli, punt di vista - Am-
bienti di programmazione e linguaggi per 'intelligenza arti-
ficiale.

Relazioni di: RicarD WALDINGER, HAROLD WERTZ, RICHARD
WEYHRAUCH, Y ORICK WILKS.

COOPERAZIONE SCIENTIFICA TRA ITALIA,
SPAGNA E FRANCIA NEL CAMPO DELLE
TECNOLOGIE DELLINFORMAZIONE: SITUAZIONE
ATTUALE E PROGETTI FUTURI

(in collaborazione con I'Istituto di Cibernetica

del C.N.R. di Napoli)
Napoli, 6-10 ottobre 1986

L’informatica teorica nello sviluppo delle tecnologie dell’in-
formazione. Complessita, fattibilitd e approssimazione. Lin-
guaggl funzionali e logici. L’Intelligenza Artificiale: meto-
dologia ed applicazione.

Interventi: Enric Trirras, JoSEPH AGUILAR-MARTIN, JAUME
Avucusti, Craupt ArsiNa, Gioreio AUSIELLO, ANTONIO Ba-
RONE, NaDAL BaTre, Grovannt Criscuoro, Jost CUENA, ME
GUEL DErGapo, Arpo De Luca, Francesc Esteva, Ramon
Lorez DE ManTARAS, ANToNIO MacHi, Antonio Massa-
ROTTI, ALFONsO Miora, Eucen NEmDL, DOMINIQUE PERRIN,
Jean Frangois PerroT, NUrIA PiEra, ANTONIO RESTIVO, TE-
REsA RiEra, Ton Sares, SerriMo Termini, LLORENC VAL-
VERDE, AMPARC VILLA, HAROLD WERTZ.
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RIEDUCARE IL CERVELLO

(in collaborazione con I'Istituto di Scienze Neurologiche
dell’Universita di Napoli)

Napoli, 23-24 ottobre 1986
Relazioni di: V. Bownavita, G. Gamnorrti, M.C. SiLVERI,
M.E. Zanosio, R. JoB, M.P. pe Parrz, S. CARLOMAGNO,
P. MontELLA, E. MaeNno CarpoeNeTTO, X. SERON, G. MI-

cerl, D. Grossi, M. VANDERLINDEN, G. VALLAR, F. CoYOTTE,
E. De Renzi

Interventi di: G.A. Buscamo, A. Basso.

CRYSTALS, GENES AND EVOLUTION
In honour of AM. Liquori

(in collaborazione con I'Universita degli Studi di Napoli)

Napoli, 3 novembre 1986
Relazioni di: A. Barrio, V. Crescenzi, M. Perurz.
Interventi di: D. De Masi, G. ToraLpo DI Francia.
CONVEGNO INTERNAZIONALE
DI PATOLOGIA AMBIENTALE

(in collaborazione con I’Associazione Italiana di Patologia
Ambientale e di Ecologia e I’Associazione Italia Nostra)

Napoli, 11-12 dicembre 1986
Presidente: D. Lauria

Relazioni di: G. Sarvatorg, S. DeL Giacco, D. Burkirt,
G. Mazzacca, R. Naccarato, M. Mancini, A.R. Bianco,
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L. Cacciatore, A. MenorTl, G.A. Ferucuio, G. D SimMonE,
D. Romeo, D. Lauria, G. D’Amato, G. Loseraro, A. Ciam-
MaicHELLA, A. La Rocca, A. Tessitore, G. Fasanaro, V.
MonTrONE, G. MarTiNerLy, L. Sterra, V. Derr’Amra, C.H.
OprpeNuEMER, P. Dourn, G. Bomsack, G. Vicaiang, P. Cra-
verl, C. Curo, D. MaNarDL

CONVEGNO ITALO-SOVIETICO SULLA
SUPERCONDUTTIVITA DEBOLE

(in collaborazione con il Consiglio Nazionale delle Ricerche
e con ’Accademia della Scienze del’'U.R.S.S.)

Napoli, 5-7 maggio 1987

NEW IDEAS IN ASTRONOMY

(in collaborazione con I'Istituto Veneto di Scienze, Lettere
ed Arti, col Dipartimento di Astronomia dell’'Universita di
Padova e con ’Osservatorio Astronomico di Padova)

Venezia, Palazzo Loredan, 5-7 maggio 1987

KOSMOS. LA COSMOLOGIA OGGI
TRA FILOSOFIA E SCIENZA

(in collaborazione con Ilstituto Gramsci Veneto e col
Goethe Institut)

Venezia, Ca’ Dolfin, 89 maggio 1987

BIOMATHEMATICS AND RELATT%D
COMPUTATIONAL PROBLEMS

(in collaborazione con il Consiglio Nazionale delle Ricerche,

col Dipartimento di Matematica e Applicazioni dell’Univer-

sitd di Napoli e col Dipartimento di Informatica e Applica-
E zioni dell’Universita di Salerno)

Napoli-Capri, 25-30 maggio 1987
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THE ETHICS OF SCIENTIFIC KNOWLEDGE

(in collaborazione con I'International Centre of Theoretical
Biology e con I'Istituto della Enciclopedia Italiana)

Venezia, Palazzo Loredan, 4-6 giugno 1987
Relazioni di: E. Agazzi, M. Arorsi, A. Borseruivo, E. Caia-
NIELLO, V. CapPeLLETTI, P. CERLETTI, P. Faserra, R. GranT-
HaM, R. Levi MontaLcini, AM. Ligouori, G.B. Marint Ber-
ToLO, A. OLIvErRIO, M. PErA, M. PiarTeLLI ParMarINI, SIR K.

Porrer, 1. Pricocmng, G. Propi, A. SaLaM, V. SGARAMELLA,
C. Vi, L. Worprert, E. ZUCKERKANDL.

LA RESPONSABILITA ETICA DELLO SCIENZIATO

(in collaborazione con 1'Universitd di Colonia e con I'Isti-
tuto Italiano di Cultura di Colonia)

Colonia, 21-23 aprile 1988

UNITY AND INTERNATIONALISM OF SCIENCES
AND HUMANITIES

(in collaborazione col CERN)
Ginevra, 9-10 maggio 1988

SEQUENCES, COMBINATORICS, COMPRESSION,
SECURITY AND TRANSMISSION

(in collaborazione con il Dipartimento di Informatica e
Applicazioni dell’Universita di Salerno)

Napoli-Positano, 6-10 giugno 1988
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LA MECCANICA QUANTISTICA DI FEYNMAN
A 40 ANNI DALLA SUA PROPOSTA

(in collaborazione con !Istituto di Ricerca sulle Onde Elet-
tromagnetiche del CNR)

Napoli, 16-18 giugno 1988

IV CONVEGNO NAZIONALE DI TOPOLOGIA

(in collaborazione con il Dipartimento di Matematica e
Applicazioni «Renato Caccioppoli » dell’Universita di Na-
poli, col CNR, col Ministero della Pubblica Istruzione)

Conferenze generali di: J. Apamek, F. Cammaroto, V. Fr-
pErcouk, M. HenringseNn C. Gariarpr, J. Jonges, S. Mar-
pesic, Y.C. mcCrory, S.L. MpziNnarisaviry, S. NamMPaLLy,
T. Noiori, C.M. Pareek, R. Piccmnni, P. Suarma, P. Sr-
MoN, L. Stramaccia, R. TaLAMO, J. VERMEER.

Comitato scientifico: D. Demaria, G. DE Marco, M. Dor-
CHER, S. Guazzong, G. TRONI. ~

ANALISI REALE E TEORIA DELLA MISURA

(in collaborazione con il Gruppo di Ricerca in Analisi Reale
e col Dipartimento di Matematica e Applicazioni «Renato
Caccioppoli » dell’Universita di Napoli)

Capri, 12-16 settembre 1988

SECONDO CONVEGNO INTERNAZIONALE
DI PATOLOGIA AMBIENTALE ED ECOLOGIA

(in collaborazione con la II Facoltd di Medicina e Chirurgia
dell’'Universitad di Napoli e con I’Associazione Italiana di
Patologia Ambientale ed Ecologia)

Napoli, 27-28 ottobre 1988
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Relazioni di: L. Cacciatorg, F. ParonerTo, B.H. LAUTER-
BURG, B. Narras, P. MarcreiLin, V. Kostantinovic, V.
Rizza, S. AntongLLo, M. Prazza, A. Menort, G.A. Feru-
cuo, F. Fipanza, E. Farinaro, D. Lauria, A. Racozzino,
S. Corrora, E. Asatino, L. Caparpo, D. Marmvo, R. Rar-
monpi, M. Caruso, G. Donatong, L. Gruriani, A. La
Rocca, R. MancHist.

IL PRINCIPIO ANTROPICO

(in collaborazione con I'Istituto Gramsci Veneto, il Goethe
Institut, il Dipartimento di Astronomta dell’Universita di
Padova)

Venezia, 18-19 novembre 1988

LAMARCK E IL LAMARCKISMO
Napoli, 1-3 dicembre 1988

LA SCIENZA COGNITIVA IN ITALIA

(in collaborazione con I'Istituto di Scienze Neurologiche e
il Dipartimento di Scienze delle Relazioni dell’Universita di
Napoli)

Napoli, 7-8 aprile 1989

I FONDAMENTI DELLA MATEMATICA
E DELLA FISICA NEL XX SECOLO:
LA RINUNCIA ALLINTUIZIONE

(in collaborazione con il Dipartimento di Matematica
dell’'Universita di Perugia e con il Comitato Nazionale per
le Scienze Matematiche del CNR)

Perugia, 27-29 settembre 1989
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MECHANISMS OF FERTILIZATION:
PLANTS TO HUMANS

Convegno dedicato alla memoria di Alberto Monroy

(in collaborazione con la Stagione Zoologica « Anton
Dohrn » di Napoli)

Sorrento, 1-4 ottobre 1989

SECOND IIGB WORKSHOP
MOLECULAR BIOLOGY OF DEVELOPMENT

(in collaborazione con IIstituto Internazionale di Genetica
e Biofisica)

Capri, 24 ottobre 1989

Relazioni di: M. AsHBurNEir, J. Camros-OrTEGA, M. CHAL-
riE, T. CLing, E. DE Rosertis, D. Dusours, W. GeHRING, P.
Gruss, D. HirsH, R. Horvrrz, M. Leving, M. Norr, A.
SprabLING, C. Wu.

Comitato scientifico: P. Bazzicaruro, E. Boncineiwi, F.
Graziant, M.G. Persico.

WAVES AND STABILITY IN CONTINUOUS MEDIA

(in collaborazione con il Dipartimento di Matematica e
Applicazioni «Renato Caccioppoli » dell’Universita di Na-
poli e col Comitato Nazionale per le Scienze Matematiche

del CNR)
Napoli-Sorrento, 9-14 ottobre 1989

Relazioni di: CJ. Amick, M. Anme, L. Arkeryp, N. Ber-
romo, P.L. CuristianseN, M. Fasrizio, A. Greco, A. Hey-
woobp, H. Marsumura, A. Morro, I. MuLLEr, A.A. Nayren,
P. Popio GumueLy, A. Quarteroni, RK. Rajacorar, P.
RennNoO, S. RioNero, T. RuGeerl, B. TrauGHAN, R. TEmaN.

Comitato scientifico: M. Fasrizio, P. Renno, S. RioNEro,
A. Romano, G. Toscanr.
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LE ORIGINI DELL’'UNIVERSO
Terzo convegno veneziano di filosofia e cosmologia

(in collaborazione con: Istituto Gramsci Veneto, Diparti-
mento di Astronomia dell’'Universitd di Padova, Goethe
Institut)

Venezia, 24-25 novembre 1989

SCUOLA ESTIVA DI TOPOLOGIA 1990
IPERSPAZI E SPAZI UNIFORMI

(in collaborazione con il Dipartimento di Matematica e Ap-

plicazioni « Renato Caccioppoli » dell’'Universita di Napoli,

con il CNR e col Ministero dell'Universitd e della Ricerca
Scientifica e Tecnologica)

Napoli, 9-14 luglio 1990

Coordinamento scientifico: Gruseppe D1 Mato (Universitd di
Napoli), Davipe Demaria (Universita di Torino), Gino Tr-
RoONI (Universita di Trieste).

Relazioni di: G.A. Beer, A. Dmmov, L. Hora, S. Levi, S.A.
Namrarry, R.A. McCoy, A. TuerA, H. WEeBER.

IV CONVEGNO DI ANALISI REALE
E TEORIA DELLA MISURA

(in collaborazione col Gruppo di Ricerca CNR in Analisi
Reale, col Dipartimento di Matematica e Applicazioni « Re-
nato Caccioppoli » dell’Universita di Napoli e col Diparti-
mento di Matematica e Statistica dell’'Universita di Napoli)

Capri, 10-14 settembre 1990
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COORDINAMENTO SCIENTIFICO: L. Areano (Bari), V. Aversa
(Napoli), L. BaronE (Lecce), N. BerruTi ONEsTO (Pavia), M.
Boni (Modena), B. Bongiorno (Palermo), P. pe Lucia (Na-
poli), E. pE Pascate (Cosenza), M. PucList (Bari), G. Santa-
cat1 (Catania), C. Vintt (Perugia), A. VorciZ (Trieste), H.
Weser (Potenza), C. Zanco (Milano).

REGULATION OF HEAT SHOCK GENE
EXPRESSION

(in collaborazione con I'Istituto Internazionale di Genetica e
Biofisica e con la Fondazione Viamarconidieci)

Ravello, 17-20 settembre 1990

Coordinamento scientifico: BRuno Maresca, Susan Linp-
QUIST.

Relazioni di: O. Bensaupe, T. Bosch, J.R. Brown, E.A.
Craic, F.J. Dice, G. Grorcoruros, C.A. Grossi, R.L. Hat-
BERG, G. Hann, P. Harrison, A. Horwich, S.H.E. Kaur-
man, Groria Ly, J.T. Lis, R.1. MormMoTo, N.S. PeTERSEN, N.
Peanner, S.K. PrErce, B. Porra, M.J. ScHLESINGER, R.
Vorwmy, D.B. Young, R.A. Youne, J.B. WinriELD, C. Wu.

METODI DI ANALISI REALE NELLE EQUAZIONI
A DERIVATE PARZIALI

(in collaborazione col Dipartimento di Matematica e Appli-

cazioni «Renato Caccioppoli » dell’Universita di Napoli,

con 1’Universita di Napoli «Federico II », con I’Accademia

di Scienze Fisiche e Matematiche di Napoli, col Ministero
della Pubblica Istruzione)

Capri, 17-20 settembre 1990
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Relazioni di: A. Avvantaceiatt (Universitd di Roma «La
Sapienza »), A. Bojarskr (Universitda di Varsavia), A. Can-
Fora (Umversita di Napoli), E. b Giorar (Scuola Normale
Superiore), E. Fases (Universitd del Minnesota), C. Frrrer-
MaN (Universita di Princeton), F. GuerELmmvo (Universita
di Catania), T. Iwaniec (Syracuse University), E. Lanco-
Nerul (Umiversita di Bologna), P.L. Lions (Universita di
Parigi), M. Marivo (Universitd di Catania), S. MaTarasso
(Universita di Bologna), A. Maucert (Universita di Catania),
F. Murat (Université Pierre et Marie Curie), C. ParenTI
(Universita di Bologna), L. Robvo (Universita di Torino),
E. Stem (Universita di Princeton), G. Taentt (Universita
di Firenze), M. Troisi (Universita di Salerno), N. TRUDIN-
GER (The Australian National University), 1. Wik
(Universita di Umea), R. WrEeepen (Rutgers University).

STOCHASTIC DYNAMICAL SYSTEMS

(in collaborazione con la Facolta di Fisica dell’Universita di
Friburgo 1.B.)

Napoli, 8-9 ottobre 1990

Relazioni di: P. BiLier, J. HonERkAMP, F. PETRUCCIONE.

FRONTIERE DELLA BIOLOGIA (III)

(in collaborazione con I'Istituto Internazionale di Genetica e
Biofisica e con la Fondazione Viamarconidieci)

15 febbraio-30 marzo 1991

Relazioni di: C. Ciro, C. Marva, B. Maresca, M. D’Ugrso,
U. D1 Porzio.

XXIV



L’ORDINE NELL’ALGEBRA E NELLA LOGICA

(in collaborazione con I'Istituto di Matematica della Facolta
di Architettura dell’'Universita di Napoli e col Dipartimento
di Scienze dell’Informazione dell’Universita di Milano)

Napoli, 5-8 febbraio 1991

Relazioni di: E. Casarr (Firenze), M. Curzio (Napoli), M.L.
Dara Chiara (Firenze), A. De Luca (Roma), M. Dick-
MANN (Parigi), A. D1 Nota (Napoli), U. FeLener (Tubinga),
G. Geria (Potenza), A. MaciNTyre (Oxford), D. Munbicr
(Milano), D. PerriN (Parigi), P. Risensom (Kingston, Onta-
rio), G. TaLLint (Roma).

FRONTIERE DELL’ANTROPOLOGIA

(in collaborazione con il Museo di Antropologia dell’Uni-
versita di Napoli)

Napoli, 28 febbraio - 27 marzo 1991

Relazioni di: F. Gusti, F. Fepeig, B. Chiarerir, A. TArTa-
BINI, J. WOODBURN.

LINEAR SPACES

(in collaborazione con il CNR, il Dipartimento di Mate-

matica e Applicazioni « Renato Caccioppoli » dell’Universita

di Napoli, 1l Gruppo Nazionale di Ricerca del MURST
« Strutture geometriche, combinatorie, loro applicazioni »)

Napoli-Capri, 26 maggio - 1 giugno 1991

Coordinamento scientifico: A. BeuteLspacuer (Universita di
Giessen), F. Mazzocca (Universita di Napoli), N. MEeLoNE
(Universita di Napoli), D. Oranpa (Universita di Napoli),
G. Tarum (Universita di Roma « La Sapienza »).
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