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Abstract. In many strategic settings comparing the payo¤s obtained by players under full
cooperation to those obtainable at a sequential (Stackelberg) equilibrium can be crucial to
determine the �nal outcome of the game. This happens, for instance, in repeated games
in which players can break cooperation by acting sequentially, as well as in merger games
in which �rms are allowed to sequence their actions. Despite the relevance of these and
other applications, no fully-�edged comparisons betwen collusive and sequential payo¤s have
been performed so far. In this paper we show that even in symmetric duopoly games the
ranking of cooperative and sequential payo¤s can be extremely variable, particularly when
the consuete linear demand assumption is relaxed. Not surprisingly, the degree of strategic
complementarity and substitutability of players�actions (and, hence, the slope of their best-
replies) appears decisive to determine the ranking of collusive and sequential payo¤s. Some
applications to endogenous timing are discussed.
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1. Introduction

Standard game-theoretic settings dealing with the emergence of cooperation usually weight
the stream of players�payo¤s colluding a �nite or in�nite number of periods to those ob-
tained by defecting one period and then playing simultaneously à la Nash (noncooperatively)
afterward. The possibility that players can defect from the collusive outcome as leaders or
followers in every stage game is usually not considered explicitly. An exception to this ap-
proach is contained, for instance, in Mouraviev and Rey (2011), who study the role of price
(or quantity) leadership in facilitating �rm collusion in an in�nitely repeated setting. They
show that, under price competion and, to a much lesser extent, under quantity competition,
the possibility that players sequence their actions in every stage game can help to sustain
collusion. This occurs because the presence of a deviating leader makes it easier for the
follower to punish such defection.
In general, the focus on the link between timing and collusion is not entirely new in the

economic literature. For instance, in some classical contributions on cartels and mergers
under oligopoly, colluding �rms are assumed to act as Stackelberg leaders (d�Aspremont
et al. 1982, 1986, Donsimoni et al. 1986, Daughety 1990, Levin 1990). Moreover, a few
recent papers on merger pro�tability consider di¤erent pre-merger and post-merger timing
structures, where groups of �rms can act either as leaders or followers (Huck et al. 2001,
Heywood and McGinty 2008 and Escrihuela-Villar and Fauli-Oller 2009). In these and
other potentially interesting economic applications, it is crucial to compare the payo¤ under
collusion to those under noncooperative sequential play to determine the outcome of the
game.
While the literature comparing leader and follower�s (as well as simultaneous Nash) payo¤s

has a long-standing tradition (see van Damme and Hurkens 1999 and 2004 or von Stengel
2010 for references), the number of papers that compares collusive and sequential outcomes
even in a simple duopoly framework appears, at the best, scant. If, on the one hand, it has
been proved that in regular symmetric duopoly games with single-valued best-replies and
monotone payo¤s on rivals�actions (denoted monotone spillovers), when actions are strate-
gic complements the follower�s payo¤ dominates which of the leader and the opposite holds
under strategic substitutes,1 on the other hand, the relationship between fully cooperative
and sequential payo¤s has been scarcely explored so far . To the best of our knowledge, in an
oligopoly setup with quantities acting as strategic substitutes, Levin (1988, 1990) has pro-
vided a comparison between prices, quantities and social welfare in Cournot, Stackelberg and
monopoly equilibria. In a symmetric setting, Figuières et al. (2003) have considered, in turn,
symmetric conjectural, simultaneous Nash and Pareto-optimal interior equilibria. However,
their model assumes symmetric conjectures for players and, therefore, their main results do
not apply to the analysis of a Stackelberg equilibrium, which is naturally asymmetric.
Our paper considers a class of symmetric duopoly games and shows that the rankings of

cooperative and sequential payo¤s can be extremely variable. In particular, when actions
are strategic substitutes and spillovers negative, it is shown that, rather surprisingly, the

1See, for instance, Gal-or 1985, Amir et al. 1999 and von Stengel 2010. By relaxing the assumption of
complements or substitutes actions, von Stengel, 2010 proves that either the leader�s payo¤dominates that of
the follower (which is also dominated by the simultaneous Nash) or, in turn, it is dominated by the follower�s.
See also Dowrick (1985), Amir (1995), Amir and Grilo (1995), Amir, Grilo and Jin (1999), Currarini and
Marini (2003, 2004), Von Stengel and Zamir (2010) for various leader-follower payo¤ comparisons between
single players or coalitions.
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leader can earn in some cases a higher pro�t than the equal-split cooperative (e¢ cient)
payo¤ and this occurs, in particular, when players�best-replies are very (and negatively)
sloped. This is because the leader can exploit in full her �rst-mover advantage when the
follower responds by strongly lowers his strategy. Exactly the reverse occurs in a game
with strategic substitutes and positive spillovers. Here the leader can do better than under
symmetric collusion when the follower is not very reactive. A similar but opposite reasoning
applies to the case of strategic complements: with negative spillovers, equal-split collusive
payo¤s may be lower than follower�s payo¤ when best-replies are very �at (also losing their
contraction property), and the opposite under positive spillovers. In this paper we are also
able to provide a taxonomy of all feasible rankings of payo¤s and actions of players arising in
the di¤erent equilibria (simultaneous, sequential, collusive) with strategic complements and
substitutes.
At the end of the paper we discuss some possible implications of our results. To this aim,

we introduce an elementary endogenous timing game in which players can decide the timing
of their cooperative or noncooperative strategies. Thus, we show that, when binding agree-
ments among players are allowed, intertemporal cooperation is in general more vulnerable
to defection than cooperation at just one stage.
The paper is organized as follows. The next section introduces the basic setup of the paper.

Section 3 presents some results concerning players�equilibrium strategies and payo¤s. To
understand the forces at work, some simple examples of price and quantity competition are
brie�y sketched. Section 4 applies some of the paper results to the issue of endogenous
intertemporal cooperation. Section 5 concludes.

2. The Setup

We assume two players i = 1; 2 with identical strategy sets Xi = X � R+ and symmetric
payo¤s ui(xi; xj) : X2 ! R, i.e. such that, for every pro�le (xi; xj) 2 X2, ui(xi; xj) =
uj(xj; xi). We restrict payo¤s to be either strictly positive or strictly negatively monotone
on rival�s strategy. We talk, in turn, of positive (PS) and negative spillovers (NS). Moreover,
players�actions are de�ned strategic complements (substitutes) if and only if, for every i = 1; 2
and j 6= i, the payo¤ ui(xi; xj) exhibits increasing (decreasing) di¤erences in (xi; xj) 2 X2,
i.e., ui(xi; x0j) � ui(xi; x00j ) � 0 (� 0) for every x00j ; x

0
j 2 X with x00j > x0j. It is well known

that, with smooth players� payo¤s, increasing (decreasing) di¤erences hold if and only if
@2ui
@xi@xj

� (�) 0 (Topkis, 1998).2

We can now de�ne the behaviour of players in the di¤erent scenarios. Under perfect
collusion, players are assumed to set cooperatively their strategy pro�le

(2.1) xc = (xci ; x
c
j)

where, for every i-th player,

xci = argmax
xi

P
i=1;2ui (xi; xj) :

The above formulation implies that the two players possess transferable utilities. No side-
payments are explicitly allowed and, therefore, payo¤ allocation only depends on the strate-
gies played by the two players at the (e¢ cient) pro�le (2.1). In the following analysis

2For simplicity, we will assume in general strictly increasing or strictly decreasing di¤erences, implying,
in turn, strictly increasing and strictly decreasing players�best-replies.
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we will assume a symmetric cooperative solution, namely, xci = xcj = xc and, therefore,
ui(x

c; xc) = uj(x
c; xc). We show in Appendix that, for a large class of games (such as games

with strict quasiconcave payo¤ functions and convex strategy sets), the cooperative solu-
tion is symmetric.3 Depending on the model applications such solution can be interpreted,
in turn, as the formation of a merger (or a cartel), or as tacit collusion. When players
are assumed to move simultaneously and noncooperatively, they play à la Nash, and the
equilibrium strategy pro�le is

(2.2) xn = (xni ; x
n
j )

where, for every i; j = 1; 2 and j 6= i
xni = argmax

xi
ui
�
xi; x

n
j

�
:

By symmetry, if the Nash equilibrium xn of the duopoly game is unique, it must be sym-
metric: xni = x

n
j = x

n. Finally, when players act sequentially, we assume that the relevant
equilibrium concept is the Stackelberg (subgame perfect Nash) equilibrium, i.e. the pro�le

(2.3) xs = (xsi ; rj (x
s
i ))

where, for the leader (henceforth player i)

xsi = argmax
xi
ui (xi; rj (xi))

and, for the follower (henceforth player j), rj : X ! X such that

rj (xi) = argmax
xj
uj (xi; xj) :

Note that if players�payo¤s are continuous and strictly quasiconcave, best-replies are con-
tinuous and single-valued. In addition, if players� strategy sets are compact and convex,
Brower�s �xed-point theorem ensures the existence of a Nash equilibrium xn of the simulta-
neous move game. The existence of a Stackelberg equilibrium xs requires both the continuity
of the leader�s payo¤ on her action as well as a follower�s continuous best-reply, implying
that the leader faces a continuous maximization problem over a compact set. In turn, the
existence of the cooperative equilibrium xc does not pose particular problems when players�
payo¤s are continuous and strategy sets compact. The uniqueness of equilibria (2.1)-(2.3)
is, in general, a more demanding property. When not speci�cally stated di¤erently, we will
assume it.

3. Main Results

It is well known that, in symmetric duopoly games with monotone spillovers and single-
valued best-replies, if actions are strategic substitutes (and best-replies decreasing), players�
payo¤s under equilibria (2.2)-(2.3) respect the following inequality:

(3.1) uL � uN � uF :
where uN indicates a player�s payo¤ at the simultaneous Nash equilibrium (2.2), and uL

and uF denote, respectively, the leader and the follower�s payo¤s at the subgame perfect
Nash (Stackelberg) equilibrium (2.3). Since we have assumed strictly increasing or strictly

3See also Salant and Sha¤er (1998) and Leahy and Neary (2005).
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decreasing players�best-replies and monotone spillovers, we can exclude the trivial interior
equilibria in which xn = xs and, therefore, uL = uN = uF . As a result, (3.1) becomes

(3.2) uL > uN > uF :

When, conversely, players�actions are strategic complements (and best-replies increasing),
it is obtained that:

(3.3) uF > uL > uN :

This means that, when (3.2) holds, since all players prefers to lead and none to follow, in the
endogenous timing game à la Hamilton and Slutsky (1990) - known as extensive form game
with observable delay - where two players declare simultaneously their intention to play early
or late a given strategic game, there exists a unique pure subgame perfect Nash equilibrium
in which players end up playing simultaneously. If, conversely, (3.3) holds, both sequential
(Stackelberg) equilibria, with either order of play among players, are supported as subgame
perfect Nash equilibrium of the extended game.
In what follows, some of the results presented do not strictly require the monotonicity of

players�best-replies (implied, in turn, by the property of increasing or decreasing di¤erences
of players�payo¤s). However, for simplicity, our main results are characterized for two well
known classes of duopoly games in which actions are, in turn, strategic complements and
substitutes. The �rst result is rather trivial and it is simply based on (3.1)-(3.3) and on the
Pareto-e¢ ciency of the symmetric collusive outcome.

Proposition 1. In all symmetric duopoly games in which players� actions are strategic
complements (substitutes) the symmetric collusive payo¤ of every player must be higher than
leader�s (follower�s) equilibrium payo¤ at the sequential game, namely, uC > uL(uC > uF ).

Proof. Suppose by contradiction that, if duopoly game actions are strategic complements
uC � uL. By (3.3), uC � uL < uF and. using symmetry, 2uC < uL + uF , contradicting the
e¢ ciency of the cooperative strategy pro�le xc. The same occurs when actions are strategic
substitutes and uC � uF . �
Corollary 1. In all symmetric duopoly games in which players�actions are strategic com-
plements (substitutes), the following payo¤ ranking arises: uC > uL > uN (uC � uN > uF ).
Proof. This is obtained by combining symmetry, the results of Proposition 1, and the e¢ -
ciency of the cooperative allocation. �

However, to obtain a complete ranking of players�payo¤s, it remains to be ascertained if,
in turn, uC � uF or uF > uC for actions that are strategic complements and uC � uL or
uL > uC for actions that are strategic substitutes. As a �rst step we focus our attention on
games with strategic complements.

3.1. Games with Strategic Complements. We present here some results on the rela-
tionship between players�equilibrium strategies and their payo¤s when actions are strategic
complements. The next result provides a su¢ cient condition for the follower�s payo¤ to
overcome the symmetric collusive payo¤.

Proposition 2. In all symmetric duopoly games with strategic complements and negative
(NS) (positive (PS)) spillovers, if at the Stackelberg equilibrium the leader plays a strategy
that is lower (higher) than that played under collusion, namely, xsi < xc(xsi > xc), the
following payo¤ ranking arises: uF > uC > uL > uN .
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Proof. If, at the Stackelberg equilibrium, player i (i = 1; 2) as leader plays a strategy such
as xsi < x

c (under NS) and xsi > x
c (under PS), thus, for the follower

uj (x
s
i ; rj (x

s
i )) � uj(xsi ; xc) > uj(xc; xc);

where the �rst inequality stems from the Nash property of best-reply rj (:) and the second

from the property of monotone spillovers and the fact that xc > xsi under NS and x
c < xsi

under PS. Thus, by symmetry, uj (xsi ; rj (x
s
i )) = u

F and uj(xc; xc) = uC and, by Proposition
1, it follows that uF > uC > uL > uN . Example 1 below shows that the condition is only
su¢ cient and, by no means necessary for the result. Figure 1 and 2 illustrate the two cases
of proposition under NS and PS. �

[FIGURE 1 AND 2 APPROXIMATELY HERE]

Example 1. (Cournot with strategic complements) Let two �rms face an inverse demand
function P (Q) = (1 +Q)�b, where Q = (q1 + q2) and b > 1, and, for simplicity, production
costs set to zero. Every �rm payo¤ is ui(qi; Q) = (1+Q)�bqi, i = 1; 2 and it is easy to see that
spillovers are negative and quantities act as strategic complements, yielding increasing best-
replies. Simple computations show that the equilibrium quantities are, respectively, qn = 1

b�2 ,

qsi =
1
b�1 , q

s
j =

b
(b�1)2 and q

c = 1
2(b�1) . Equilibrium payo¤s are: uN = (b � 2)�1

�
b
b�2
��b
,

uL = (b � 1)�1
�

b2

(b�1)2

��b
, uF = (b� 1)�2 b

�
b2

(b�1)2

��b
and uC = (2b� 2)�1

�
b

(b�1)

��b
. It

is straightforward to see that, for b > 2, qn > qsj > qsi > qc and uC � uF > uL > uN .
Figure 4 illustrates this case. For 1 < b < 2; there is a switch in the ranking of payo¤s and
uF > uC > uL > uN :4 However, since qsi =

1
b�1 and q

c = 1
2(b�1) , q

c < qsi holds for any level
of b. This proves that the condition of Proposition 2 is only su¢ cient and not necessary for
inequality uF > uC to arise. This is illustrated in Figure 4.5

[FIGURE 3 AND 4 APPROXIMATELY HERE]

The next proposition illustrates the relation between leader�s and follower�s strategy at any
Stackelberg equilibrium in which the follower obtains a higher payo¤ than under collusion.
Together with Proposition 2, it helps to see that, when strategies are complements (and
best-replies increasing), a Stackelberg equilibrium always lies below the 45 degree line under
negative externalities and above the 45 degree line under positive spillovers (see, for instance,
Figure 2, 3 and 4 above).

4Note that, for 1 < b � 2; �rm best-replies are not contraction and, within this range of parameters, a
simultaneous (Cournot) pure strategy Nash equilibrium does not exist.

5As in the standard Cournot duopoly, lower isopro�t curves for �rm 1 (or isopro�t curves more on the
left for �rm 2) correspond to higher pro�t levels.
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Proposition 3. In all symmetric duopoly games with strategic complements, if the follower�s
payo¤ at the Stackelberg equilibrium is higher than the payo¤ obtained at the symmetric
cooperative equilibrium, namely, uF > uC ; the strategy level of the follower is higher (lower)
than the leader�s under negative (positive) externalities, namely, xsj > xsi under NS and
xsj < x

s
i under PS, where x

s
j = rj (x

s
i ).

Proof. Assume that xsj < x
s
i under NS and x

s
j > x

s
i under PS. Thus,

uj(rj (x
s
i ) ; rj (x

s
i )) > uj(x

s
i ; rj (x

s
i )) > uj(x

c; xc)

where the �rst inequality is due to monotone spillovers and the second to the fact that
uF > uC . Since by symmetry uj(x) = ui(x) for any strategy pro�le x in which xni = x

n
j ,

ui(rj (x
s
i ) ; rj (x

s
i )) + uj(rj (x

s
i ) ; rj (x

s
i )) > ui(x

c; xc) + uj(x
c; xc);

which contradicts the e¢ ciency of xc. �

The next proposition characterizes instead the order of strategies in the standard case in
which the collusive agreement yileds a higher payo¤ for a player than playing as follower the
sequential game. Again, to make things simple, we assume that Stackelberg and simultaneous
Nash equilibrium di¤er, i.e. xs 6= xn.

Proposition 4. In all symmetric duopoly games with strategic complements, if the symmet-
ric collusive payo¤ is at least as high as the follower�s payo¤ at the Stackelberg equilibrium,
namely uC � uF , the following ranking between equilibrium strategies arises: xn > xsj > xsi �
xc under NS and xc � xsi > xsj > xn under PS, where xsj = rj(xsi ), for i; j = 1; 2 and j 6= i.

Proof. The fact that xsi � xc under negative spillovers (NS) and xsi � xc under positive
spillovers (PS) whenever uC � uF is directly implied by Proposition 2. The remaining
inequalities are standard (see for instance Amir et al., 2000): taking player i in the role of
leader,

(3.4) ui (x
s
i ; rj (x

s
i )) > ui(x

n; xn) � ui(xsi ; xn);
where the �rst inequality is due to the fact that xs 6= xn and the second by the Nash property
of xn. Thus, (3.4) directly implies that rj (xsi ) = x

s
j < x

n under NS and rj (xsi ) = x
s
j > x

n

under PS. Given that players�actions are strategic complements (and best-replies increasing),
it also follows that xsi < xn under NS and xsi > xni under PS, since both Stackelberg
and simultaneous Nash pro�les lie along the increasing follower�s best-reply. Finally, since
the simultaneous Nash equilibrium is symmetric and lies on the 45 degree line, the latter
inequalities (xsi < x

n under NS and xsi > x
n
i under PS) forcely imply that x

s lies above the
45 degree line under NS and below this line under PS. Hence, xsj > x

s
i under NS and x

s
j < x

s
i

under PS, and this concludes the proof. �

So far, we have shown that, in duopoly games with strategic complements two main
strategy-payo¤equilibrium combinations are possible in the non trivial case in which xs 6= xn.

Proposition 5. In all symmetric duopoly games with strategic complements (i) under neg-
ative spillovers (NS), if xn > xsj > xsi � xc, both payo¤ rankings may arise uC � uF >

uL > uN or uF > uC > uL > uN , while for xn > xsj � xc > xsi , it follows that
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uF > uC > uL > uN . (ii) Under positive spillovers (PS), if xc � xsi > xsj > xn both payo¤-
rankings uC � uF > uL > uN or uF > uC > uL > uN may arise, while if xsi > xc � xsj > xn,
the only possible payo¤-ranking is uF > uC > uL > uN .

Proof. It follows straightforwardly by Corollary 1 and Proposition 1, 2 and 3. �

However, as the next example illustrates, in duopoly games with strategic complements
(as, for instance, the classical price duopoly game), the case in which the follower�s payo¤
overcomes the collusive payo¤ remains a rather unusual event. When the follower�s best
reply is a contraction, it is unlikely that the leader�s equilibrium strategy is so low (high)
under NS (PS) for the follower to overcome the symmetric collusive payo¤. To obtain this,
the (increasing) best-replies have to be very �at under NS (see Example 1) and very steep
under PS.

Example 2. (Bertrand with di¤erentiated products and strategic complements) Let �rm
i�s (i = 1; 2) market demand be qi(pi; pj) = (1 � pi + �pj)b, where pi and pj denote the
prices charged by the two �rms. Let also b > 0, 0 < � < 1; and production costs be
normalized to zero for both �rms. Payo¤s are, therefore, simply given by ui(pi; pj) = (1 �
pi + �pj)

bpi. Note that, for � > 0, these payo¤s exhibit increasing di¤erences and best-
replies are increasing (prices act as strategic complements). Externalities are positive. When
the game is played simultaneously and noncooperatively, the equilibrium payo¤s are uN =
(b� � + 1)�1�b (� � 1 + b� � + 1)b, while, when the game is played sequentially the leader
obtains

uL =
�
b� �2 + 1

��1
(b+ 1)�1 (b+ � + 1)�;

for

� = (
�(b�2���b��b2�2b�1)

(b+1)2(�2�b�1) � b+�+1
2b+b2��2�b�2+1 + 1)

b;

and the follower

uF = (b+ 1)�2
�
�2 � b� 1

��1 �
b�2 � � � b� � b2 � 2b� 1

�
�

for

� = ( �(b+�+1)
2b+b2��2�b�2+1 �

(b�2���b��b2�2b�1)
(b+1)2(�2�b�1) + 1)b:

Finally, when the two �rms decide to merge and act as a monopolist, every �rm obtains

uC = ((� � 1) + (b+ 1) (1� �))b ((b+ 1) (1� �))b�1 :

Simple calculations show that for all reasonable values of the parameters, the typical payo¤-
ranking is: uC > uF > uL > uN . Moreover, the following ranking of players�actions (prices)
obtains: pc > psi > p

s
j > p

n. Figure 5 depicts this case for � = :5 and b = 1. No substantial
modi�cations of the above rankings are obtained by manipulating parameters of the model

[FIGURE 5 APPROXIMATELY HERE]
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3.2. Games with Strategic Substitutes. When players�actions are strategic substitutes,
it can be shown that there are only two possible rankings of equilibrium strategies and
payo¤s under either negative or positive externalities. These are characterized in the next
proposition.

Proposition 6. (i) In all symmetric duopoly games with strategic substitutes, the following
rankings between equilibrium strategies can arise: either xsi > xni > xsj � xc or xsi > xn �
xc � xsj under NS and x

s
j � xc � xni > xsi or x

c > xsj > xn > xsi under PS, where
xsj = rj(x

s
i ), i; j = 1; 2. (ii) Moreover, only two alternative payo¤ rankings are possible:

either uC � uL > uN > uF or uL > uC � uN > uF .

Proof. (i) Similarly to Proposition 4 we can write, for player i acting as leader,

ui (x
s
i ; rj (x

s
i )) > ui(x

n
i ; x

n) � ui(xsi ; xn);

where the �rst inequality stems from the fact that xs 6= xn and the second from the property
of the Nash equilibrium. Therefore, it follows that rj (xsi ) = x

s
j < x

n under NS and rj (xsi ) =
xsj > x

n under PS. Moreover, since actions are strategic substitutes, xsi > x
n under NS and

xsi < xn under PS, given that both pro�les xs and xn lie along the follower�s (decreasing)
best-reply. Thus, xsi > xn > xsj under NS and x

s
j > xn > xsi under PS. By the symmetry

and monotonicity of players�payo¤s and by the e¢ ciency of the cooperative strategy pro�le,
we obtain also that xc � xni under NS and x

c � xni under PS. We remain, therefore, with
the following two inequalities: either xsi > x

n > xsj � xc or xsi > x
n > xc � xsj under NS,

and xsj � xc � xn > xsi or xc � xsj > x
n > xsi under PS. Both cases may arise. (ii) From

Proposition 1 we know that uC � uN > uF when actions are strategic substitutes. Given
that uL > uN , it follows that only two rankings are possible: either uC � uL > uN > uF or
uL > uC � uN > uF , as also the numerical example below illustrates. �

Example 3. (Cournot duopoly with strategic substitutes) Let assume an inverse demand
function given by P (Q) = (1�Q)b, with Q = (q1+q2) < 1, b > 0 and zero production costs for
both �rms. The payo¤s can obtained as ui(qi; Q) = (1�Q)bqi, for i = 1; 2: For b > 0 payo¤s
exhibit decreasing di¤erences and, therefore, players� best-replies are decreasing. Spillovers
are negative. When the game is played simultaneously à la Nash �rms�equilibrium payo¤s
are given by uN = bb(b+2)�(b+1). When the game is played à la Stackelberg, the leader obtains
uL = b2b(b+1)�(2b+1) and the follower uF = b(2b+1)(b+1)�(2b+2), respectively. Finally, when
the two �rms collude, they obtain each uC = bb2(b+1)�(b+1). Simple computations show that
for b � 1 (linear or convex demand), uC � uL > uN > uF , with the equal sign holding only
for b = 1. Figure 6 depicts this relation among players�payo¤s. When, instead, 0 < b < 1
(concave demand), the payo¤ ranking is the following: uL > uC > uN > uF . Figure 7
illustrates this case. Figure 8 shows instead that the ranking uL > uC arises when the inverse
demand is strongly concave (which occurs for a very low b) and that the dominance of leader�s
payo¤ over the collusive payo¤ may occur in both cases in which the follower�s strategy is
either higher or lower than the collusive strategy.

[FIGURE 6, 7 AND 8 APPROXIMATELY HERE]
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4. Endogenous Timing and Collusion

In order to check some of the consequences of our results, we introduce here a simple
setting that extends Hamilton and Slutsky�s (1990) endogenous timing game (known as
extended game with observable delay) by including in this game the possibility for players to
commit to full cooperation. The game runs as follows. At an initial stage players announce
simultaneously their purpose to play early or late a duopoly game and their intention to
cooperate or not with the rival. The rules of the game are rather simple: when both players
announce their intention to cooperate, the agreement is binding and players collude at the
selected time. Otherwise, they play independently with the timing as prescribed by their own
announcement.This game basically requires the unanimity of players to cooperate.6 Our aim
is to check for the existence of subgame perfect Nash equilibria (in pure strategies) (SNE)
of such cooperation-timing duopoly game.

Formally, the game can be described as follows. We let, at a pre-play stage denoted t0
the two players announce simultaneously their intention to cooperate or not with the rival,
as well as the timing � = (t1; t2) they intend to play a given duopoly game. Every player�s
announcement set Ai, for i = 1; 2 and j 6= i, can be de�ned as

(4.1) Ai = [(fi; jg ; t1) ; (fi; jg ; t2) ; (fig ; t1) ; (fig ; t2)] ;

where the �rst two announcements express collusive intentions, while the remaining two cor-
respond to the usual (noncooperative) timing choices (early, late) of Hamilton and Slutsky�s
(1990) game. Players�announcement space A = A1�A2 contains 16 di¤erent announcement
pro�les a 2 A which, in turn, induce the following set C of time-cooperation con�gurations
C(a):

C(A) = [(f1; 2gt1); (f1; 2gt2); (
�
1t1 ; 2t2

	
); (
�
1t2 ; 2t1

	
);�

f1gt1 ; f2gt1
�
;
�
f1gt2 ; f2gt2

�
;
�
f1gt1 ; f2gt2

�
;
�
f1gt2 ; f2gt1

�
]:(4.2)

Di¤erently from Hamilton and Slutsky (1990), here the two players are allowed to coop-
erate and form an alliance either at period t1 or t2 or across periods.7 We assume that in
order to form, a binding agreement endowed with a speci�c timing requires the unanimity
of all players. Formally, for i = 1; 2, j 6= i, k = 1; 2 and � = (t1; t2),�

C (a) = (fi�i ; j�jg) i¤ ai = (fi; jg ; �k) for i = 1; 2 and k = 1; 2
C (a) = (fig�h ; fjg�l) otherwise:

The above rule prescribes that, if both players agree to cooperate, they can behave col-
lusively in just one period or alternate their collusive strategy over time. However, if just
one player disagrees on cooperation, both players end up playing independently in their own
preferred time.
The notion used to de�ne the stability of a given time-con�guration C (a) is simply the

Nash equilibrium of the corresponding announcement pro�le.

6There are many real life examples in which the willigness of people to take a joint action and the timing
of their action are highly complementary: friends deciding whether to spend a holiday together, �rms signing
R&D agreements to launch a new products or a new technology, and so on.

7Players are allowed to cooperate either in one period or across time�, i.e. sequencing their cooperative
strategy over time. They are not allowed to cooperate twice, once in period 1 and once in period 2.
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De�nition 1. (Nash-stability) A con�guration C(a) 2 C(A) is Nash-stable if and only if
C = C(a�), with a� possessing the following property:

ui (x(C(a
�)) � ui(x(C(a0i; a�j));

for any a0i 2 Ai, 8i = 1; 2 and j 6= i.
When a timing-con�guration C = C(a�) is Nash-stable, this implies, in turn, that the

pro�le �� = (a�; x�) is a subgame perfect Nash equilibrium (SNE) of the extended game.
The only warning is that, in the equilibrium path in which players decide cooperatively, they
are assumed to behave as a single maximizing entity.8 The next proposition illustates the
main implications of our simple model.

Proposition 7. The endogenous timing-cooperation game played by two symmetric players
can give rise to the following cases: (i) under strategic complements, for uC � uF , the set
of stable con�gurations is given by:

C� = [
�
f1; 2gt1

�
;
�
f1; 2gt2

�
; (
�
1t1 ; 2t2

	
); (
�
1t2 ; 2t1

	
);
�
f1gt1 ; f2gt2

�
;
�
f1gt2 ; f2gt1

�
]:

(ii) Under strategic complements, for uF > uC,

C� = [
�
f1; 2gt2

�
;
�
f1gt1 ; f2gt2

�
;
�
f1gt2 ; f2gt1

�
]:

(iii) Under strategic substitutes, for uC � uL,
C� = [

�
f1; 2gt1

�
;
�
f1; 2gt2

�
; (
�
1t1 ; 2t2

	
); (
�
1t2 ; 2t1

	
);
�
f1gt1 ; f2gt1

�
];

and (iv) under strategic substitutes, for uL > uC,

C� = [
�
f1; 2gt1

�
;
�
f1gt1 ; f2gt1

�
]:

Proof. (i) When players� actions are strategic complements and uC � uF , Proposition 1
proved that the following ranking between players�payo¤s:

(4.3) uC � uF > uL > uN :
Therefore, any cooperative announcement a = (fi; jg ; �) expressed by both players is a Nash
equilibrium of the extended time-cooperation game for any � = (t1; t2), since no player can
deviate pro�tably by announcing either a0i = (fig ; t1) or a00i = (fig ; t2) inducing, in turn, a
duopoly played either simultaneously or sequentially. Therefore, all cooperative con�gura-
tion (fi; jg� ) or (fith ; jtlg) are supported as SNE of the extended game. The noncooperative
sequential con�guration

�
figt1 ; fjgt2

�
is also a Nash equilibrium announcement, since, by

deviating unilaterally, a player can only induce a noncooperative simultaneous play, obtain-
ing, according to (4.3), a lower payo¤. (ii) When uF > uC , the cooperative con�gurations�
fi; jgt1

�
and (fith ; jtlg) are no longer Nash-stable since each player can pro�tably deviate

as follower by announcing a
00
i = (fig ; t2). Both sequential noncooperative con�guration can

instead be supported as SNE, since full collusion (at time two) is in this case pro�table only
for the leader and not for the follower. (iii) When players�actions are strategic substitutes
and uC � uL, by Proposition 1,
(4.4) uC � uL > uN > uF :

8Formally, when the announcement pro�le induces collusion, players sign a binding agreement and no
defections in the subsequent decisions are allowed. This approach is somehow in the tradition of the nonco-
operative coalition formation literature (see Ray and Vohra 1997 and Bloch 2003, Yi 2003, Ray 2007, Marini
2008 for surveys).
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Here all cooperative agreements are Nash equilibrium announcements for any � = (t1; t2).
Also all noncooperative simultaneous con�gurations

�
figt1 ; fjgt1

�
are stable, since by deviat-

ing unilaterally with an announcement a00i = (fig ; t2), a player ends up playing sequentially
as follower, receiving a lower payo¤. (iv) Finally, when uL > uC the cooperative con�g-
urations

�
fi; jgt2

�
and (fit2 ; jt2g) are not stable since players can deviate by announcing

a0i = (fig ; t1) and obtaining a higher payo¤ as leader. The simultaneous (noncooperative)
con�guration played at time 1 is also stable since no player can deviate as leader, but only
as follower, and the latter deviation is no pro�table. �

Our simple extension of Hamilton and Slutsky (1990) has helped to reach at least one
clear-cut conclusion. This is the following: intertemporal cooperation (or cooperation across
time) is, overall, the most vulnerable form of cooperation among players. This is because
such type of cooperation may be subject to the objections of players in the role of leaders
and followers more frequently than if cooperation takes place just in a single period.

5. Concluding Remarks

This paper has presented a �rst attempt to connect two usually distinct issues concerning
players� strategic interaction, one dealing with their timing of play, the other with their
capacity to collude. We have shown that the nature of interaction between players in the
strategic setting (duopoly game) plays a crucial role for the decision of players to sign or not
a binding agreement and to sequence or not their strategies.

6. Appendix

Lemma 1. (Existence of a symmetric cooperative equilibrium) Let players�payo¤s
be continuous and strictly quasiconcave and their strategy set be compact and convex. Then,
the strategy pro�le xc 2 argmaxx2X2

P
i=1;2 ui(x) is such that x

c
i = x

c
j:

Proof. Compactness of each X implies compactness of X2: Continuity of each player�s payo¤
ui(x) on x implies the continuity of the social payo¤ function

P
i=1;2 ui(x). Existence of an

e¢ cient pro�le xc 2 X2 directly follows. We prove that, under our assumptions, such a
strategy pro�le is symmetric. Suppose xci 6= xcj: By symmetry we can derive from xc a new
vector ex permuting the strategies of players i and j such that
(6.1)

X
i=1;2

ui(ex) = X
i=1;2

ui(x
c)

and hence, by the strict quasiconcavity of all ui(x); for all � 2 (0; 1) we have that:

(6.2)
X
i=1;2

ui(�ex+ (1� �)xc) > X
i=1;2

ui(x
c):

Since, by the convexity of X; the strategy vector (�ex+ (1� �)xc) 2 X2, we obtain a contra-
diction. �
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Figure 2 – Duopoly Game with strategic complements and positive externalites. 

Red  = cooperative  isoprofits; Blu = leader’s isoprofit; Green = follower’s 
isoprofit. 
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Figure 1 – Duopoly Game with strategic complements and negatve externalites. 
Red  = cooperative  isoprofits; Blu = leader’s isoprofit; Green = follower’s isoprofit. 



 
 

-2 -1 1 2 3 4 5 6

-2

-1

1

2

3

4

5

6

q1

q2

C

N

S

q1

q2 r1

r2
2
f

2
c

1
c

1


Figure 3 – Numerical example (Cournot with strategic complements;  Case b=2.5. 
Red = coop. isoprofit; Blu = leader's isoprofit; Green'= follower's isoprofit. 
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Figure 4 – Numerical example (Cournot with strategic complements;  Case b=1.5. 
Red = coop. isoprofit; Blu = leader's isoprofit; Green'= follower's isoprofit. 
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Figure 5 – Numerical example (price competition with strategic complements;  Case b=1, Ƃ= 
0.5.  Red = coop. isoprofit; Blu = leader's isoprofit; Green'= follower's isoprofit. 
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Figure 6 – Numerical example (Cournot with strategic substitutes;  Case b≥1.  Red = coop. 
isoprofit; Blu = leader's isoprofit; Green'= follower's isoprofit. 
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Figure 7 – Numerical example (Cournot competition with strategic substitutes;  Case 
0<b<1,. Ƃ= 0.5.  Red = coop. isoprofit; Blu = leader's isoprofit; Green'= follower's isoprofit. 

Figure 8 – Numerical'example. Red line'= Coop. output - follower's output. 
Black line = Coop. payoff - leader’'s payoff. B = 0.1,..,0.15. 
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