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Abstract

We present a model of endogenous formation of R&D agreements among �rms in which also the timing of

R&D investments is made endogenous. The purpose is to bridge two usually separate streams of literature,

the endogenous formation of R&D alliances and the endogenous timing literature. This allows to consider the

formation of R&D agreements over time. It is shown that, when both R&D spillovers and investment costs

are su¢ ciently low, �rms may �nd di¢ cult to maintain a stable agreement due to the strong incentive to

invest noncooperatively as leaders. In such a case, the stability of an R&D agreement requires that the joint

investment occurs at the initial stage, thus avoiding any delay. When instead spillovers are su¢ ciently high,

cooperation in R&D constitutes a pro�table option, although �rms also possess an incentive to sequence

their investment over time. Finally, when spillovers are asymmetric and the knowledge mainly leaks from

the leader to the follower, to invest as follower becomes extremely pro�table, making R&D alliances hard to

sustain unless �rms strategically delay their joint investment in R&D.
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1 Introduction

A long-standing theme in the industrial organization literature has been the explanation of

the incentives for �rms to form R&D alliances and the analysis of the e¤ects of cooperation

on innovation and social welfare. A clear understanding of this phenomenon is indeed crucial

to guide technology and industrial policies. In this article we approach this issue by focussing

on the role of strategic timing in shaping the incentive for �rms to engage in R&D cooperative

agreements (or R&D cartels).

As is well known, a research agreement is an alliance between �rms in order to coordinate

their research and development activities in a joint project, and to share, to some extent,

the knowledge obtained from this common e¤ort. Therefore, the creation of such research

agreements allows the �rms not only to coordinate their research e¤orts but also to improve

information-sharing. Many reasons may induce �rms to form research cartels. First, in-

novation is expensive, and the possibility of cost sharing and avoidance of duplication can

strongly diminish the expenses to each member. Second, the risk for a �rm that its own

innovation programmes will not produce valuable results is reduced, since a research agree-

ment has greater possibilities of diversi�cation and each member can share risks with the

other members. Third, the members of a research alliance can acquire a greater competitive

advantage than nonmembers, which implies that there can be a concrete hazard in being left

out of such cartels (see on this topic, Baumol 1992; see also Katz and Ordover 1990, Hernan

et al. 2003 and Alonso and Marin 2004 for empirical studies).

The IO literature has also stressed the role of knowledge �ows (or spillovers) for R&D co-

operation. On one side, both theoretical and empirical studies emphasize how spillovers may

enhance the bene�ts stemming from R&D cooperation. When spillovers are high enough,

internalizing them produces an increase in the aggregate level of R&D, and the elimination of

duplication e¤orts, which clearly leads to a reduction in research expenditures. On the other

hand, high spillovers - typical of loose appropriability regimes - also increase the incentive

to cheat by partners in research alliances and pro�t from free-riding, thus threatening the

stability of the research cartel (Kesteloot and Veugelers 1995, Cassiman and Veugelers 2002,

Belderbos et al. 2004).

Let us consider, as an example, the pharmaceutical sector. While this sector has witnessed

a plethora of research agreements over the last years, probably also in light of the substantial
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technical and market uncertainty inherent in pharmaceutical R&D, only about one third

of all alliances between pharmaceutical and biotechnology �rms are formed at the initial

development stage of the new drug (see Rogers et al. 2005 and Recombinant Capital web

site).1 Even though the management literature stresses mainly the role of market uncertainty

and risk aversion by �rms in committing capital to highly uncertain developmental projects,

we argue that there could be an interplay between the choice of signing a research agreement

at a given time and the di¤erent strategies to appropriate innovation rents, such as patenting,

exploitation of �rst mover advantage, internalization of information �ows, and so on. In

this paper we emphasize the strategic use of the timing of R&D investment made by the

participants to an R&D collaboration. In particular, a research agreement can strategically

be anticipated or postponed to prevent some of its participants from unilaterally exploting

a �rst or second mover advantage in the noncooperative scenario.

With the exception of a few papers, very scant attention is paid to strategic timing issues

in both theoretical and empirical studies. among the others, Duso et al (2010), analyze the

drivers of alliance dynamics across heterogeneous industrial sectors, and observe that �rms

may prefer to wait and enter a research coalition at a subsequent moment of time, since, in

each period of time they weight the bene�ts against the costs of being a research cartel mem-

ber. This study �nds that, on average, four �rms enter a research joint venture (RJV) yearly,

while the average entry decreases with the age of these RJVs. In the theoretical literature,

a number of papers, departing from d�Aspremont and Jacquemin�s (1988) pioneering work,

have analyzed the e¤ects of research alliances in models with endogenous R&D (see, among

others, Katz and Ordover 1990, Kamien et al. 1992, Suzumura 1992, Petit and Tolwinski,

1997, 1999). However, in these models, the creation of research agreements is exogenously

assumed.

More recently, the endogenous coalition formation literature has attempted to endogenize

the formation of R&D cartels by applying noncooperative models of coalition formation (see

Bloch 2003 and 2004 and Yi and Shin 2000). Here a crucial aspect to assess the stability

of a given structure of agreements among �rms is the sign of the externalities of R&D

investments which, in turn, depend on the level of spillovers. For su¢ ciently high spillovers,

forming a research cartel reduces the underinvestment in R&D, since the externalities due

1These stylized facts are consistent with what emerges from the R&D Insight database employed by
Danzon et al. 2005, insofar as they assess the propensity to strategically delay some of the agreements over
time.
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to the public-good nature of R&D investments are internalized. Thus, alliances of �rms

can invest more than small groups, and this, in turn, may trigger some �rms to leave the

coalition and free ride on the existing cartels. Moreover, di¤erent R&D alliance formation

rules may yield di¤erent outcomes in terms of stability of cooperation (see, for instance, Yi

& Shin 2000). In some cases, the whole industry alliance of �rms investing in R&D can be

stable, especially if there are no synergies and, after breaking the agreement, all �rms end up

investing as singletons (see, for instance, Yi 2003, Bloch 2003 and Marini 2008 for surveys).

However, the stability of alliances is no longer guaranteed if �rms are assumed to decide

endogenously their timing of investment.

The endogenous-timing approach was �rstly introduced by Hamilton and Slutsky�s (1990)

within a duopoly game. In their extensive game with observable delay, the authors describe

a two stage setup in which, at a preplay stage, two players (duopolists) decide independently

whether to move early or late in the basic game (e.g., a duopoly quantity game). If both

players announce the same timing, that is (early, early) or (late, late), the basic game is

played simultaneously. If the players�time-announcements di¤er, the basic game is played

sequentially, with the order of moves as announced by the players. It is shown that the two

leader-follower con�gurations (with either order of play) constitute pure subgame perfect

equilibria of the extended game only if at least one player�s payo¤ as follower weakly domi-

nates her corresponding payo¤ in the simultaneous game. When, conversely, the payo¤ of a

follower is lower than in the simultaneous case, the only pure strategy subgame perfect Nash

equilibrium prescribes that both players play simultaneously.

A few recent papers have introduced the possibility for �rms to sequence their R&D activities

in a model à la d�Aspremont & Jacquemin (1988) with asymmetric spillovers. While some of

these works assume a given exogenous timing for the investment game (Goel 1990, Crampes

and Langinier 2003, Halmenschlager 2004, Atallah 2005, De Bondt 2007) some others endo-

genize the timing of investment (Amir et al. 2000, Tesoriere 2008) by adopting a framework

à la Hamilton and Slutsky (1990). The degree of technological spillovers is shown to be

crucial for these games to possess strategic substitutes vs. strategic complements attributes

and, thus, to give rise to simultaneous vs. sequential endogenous timing R&D equilibria (see

Amir et al., 2000). Nevertheless, these models, comparing sequential versus simultaneous

move games, do not consider explicitly the possibility for �rms to form research agreements.

Our purpose in this paper is to bridge these two otherwise separate streams of literature,
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the noncooperative formation of R&D agreements and the endogenous timing approach, with

the aim to study the formation of research alliances when the timing of R&D investments

is endogenous. This allows for a far more complete picture of R&D agreements, by consid-

ering the possible formation of these agreements over time. It is shown that, when both

R&D spillovers and investment costs are su¢ ciently low, �rms may �nd di¢ cult to maintain

a stable agreement due to the strong incentive to invest noncooperatively as leaders. In

such a case, the stability of an R&D agreement requires that the joint investment occurs

at the initial stage, thus avoiding any delay. When instead spillovers are su¢ ciently high,

cooperation in R&D constitutes a pro�table option, although �rms also possess an incen-

tive to sequence their investment over time. Finally, when spillovers are asymmetric and

the knowledge mainly leaks from the leader to the follower, to invest as follower becomes

extremely pro�table, making R&D alliances hard to sustain unless �rms strategically delay

their joint investment in R&D. Some of these results can provide an explanation to various

stylized facts, such as the tendency of �rms to strategically anticipate or postpone their R&D

agreements as due to di¤erent levels of their R&D investment costs and spillover rates.

This paper is organized as follows. Section 2 lays out the notation and introduces

the setup adopted in the paper. Section 3 and 4 apply this setup by building a model à

la d�Aspremont & Jacquemin (1988) with symmetric and asymmetric R&D spillovers and

present the main results. Section 5 concludes.

2 The Setup

The typical modelling approach to R&D collaboration among �rms usually assumes that,

at a �rst stage, �rms can form an R&D alliance with their competitors and, at a second

stage, the formed alliance decides cooperatively its joint level of investment in R&D. At a

third and �nal stage, every �rm sets noncooperatively its strategic market variable, typically

quantity or price, to compete oligopolistically with all other �rms. Our aim is to introduce

a variant of this setup assuming that at the �rst stage each �rm decides not only whether

to form or not an R&D agreement, but also the timing of its investment in R&D. More

speci�cally, both the R&D agreement formation process and the timing of the investment

are made endogenous. Introducing endogenous timing basically determines at which stage of

the game a single �rm or an R&D cartel will play its investment in R&D. This feature of the

model aims to capture the complementarity between the timing of �rm R&D investments
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and the formation of a research cartels. We here focus our analysis on the two-�rm case.

2.1 R&D Alliances & Timing Formation Game

We assume that, at a pre-play stage, denoted with t0, each �rm i (i = 1; 2) sends simul-

taneously a message to its rival announcing both its intention to form irrevocably an R&D

alliance or stay as singleton as well as its intention to commit to a speci�c timing for its

R&D investment. Every �rm message set Mi can be denoted as:

(1) Mi = [(fi; jg ; t1) ; (fi; jg ; t2) ; (fig ; t1) ; (fig ; t2)] i = 1; 2 and j 6= i.

The message space M contains 16 di¤erent message pro�les m 2 M1 �M2, which, in turn,

can induce the following set of nonempty R&D timing-partitions P (m),

P = [
�
f1; 2gt1

�
;
�
f1; 2gt2

�
;
�
f1gt1 ; f2gt1

�
;
�
f1gt2 ; f2gt2

�
;
�
f1gt1 ; f2gt2

�
;
�
f1gt2 ; f2gt1

�
]:

Di¤erently from the Hamilton and Slutsky�s (1990) endogenous timing game applied to the

R&D investment game (see, for instance, Amir et al. 2000), here the two �rms may also form

a research cartel either at period t1 or t2.2 In our model the temporal choice of an R&D

cartel is purely strategic and is made to prevent the rival �rm to exploit noncooperatively

a �rst or second mover advantage. We will assume that, in order to be formed, a research

alliance with a given timing of investment in R&D requires the unanimity of �rms decisions.

If �rms send messages indicating both the same R&D alliance and the same investment

timing, then they will sign a binding agreement to invest at the prescribed time. Otherwise,

if one �rm disagrees, either on the alliance or on the timing of investment, both �rms will play

as singletons the R&D investment game, with the timing indicated by their own messages.

Formally, for i; j = 1; 2 and j 6= i

�
P (m) = f1; 2g� if mi = mj = (fi; jg ; �) and

P (m) = (fig� i ; fjg�j) if mi 6= mj.

Note that this R&D agreement formation rule re�ects an exclusive membership rule, i.e. one

in which the consensus of all members is required to complete the agreement.3

2Note that by allowing the two �rms to cooperate across time, one playing cooperatively at time t1 and
the other at timet2, does not alter the basic results of the analysis.

3For a discussion on which coalition formation rule may be more appropriate according to the speci�c
context, see the discussion contained in Hart & Kurz (1983), Yi (2003) and Ray (2007).
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2.2 The Investment Game

Once a message pro�le has been sent and a timing-partition, denoted P (m) 2 P, has been
induced, each �rm will optimally choose its cooperative or noncooperative investment level

according to the timing prescribed by P (m). At this stage, as well as at the following stages,

it is assumed that a �rm cannot manipulate its level of investment to convince the rival to

renege the timing-partition decided at t0.

As in d�Aspremont & Jacquemin (1988), each �rm i, with i = 1; 2, is assumed to set a

�nite level of investment xi 2 Xi � R+ a¤ecting its pro�t via its production cost ci(x1; x2)
which, in turn, in�uences the market competition between individual �rms. Denoting with

qi 2 [0;1) the market competition variable (here quantity), a �rm pro�t function can be

denoted as �i(q (x)), where q (x) = (q1(x1; x2); q2(x1; x2)).

In a research agreement f1; 2g� �rms will therefore set cooperatively their level of invest-
ment at stage � = t1 or t2, i.e.

(2) xc
�

=
�
xc

�

1 ; x
c�

2

�
such that, for every i; j = 1; 2 and j 6= i

xc
�

i = argmax
xi

X
i=1;2

�i
�
q
�
xi; x

c�

j

��
;

given the pro�le of quantities optimally chosen at the market stage.

If the �rms play simultaneously as singletons at time � = t1 or t2, the appropriate

equilibrium concept will be the Nash equilibrium x�� of the simultaneous investment game

played at stage � , i.e.

(3) x�� = (x��1 ; x
��
2 )

such that, for every i = 1; 2 and j 6= i

x��i = argmax
xi

�i
�
q
�
xi; x

��
j

��
:

Finally, if the �rms play sequentially, the relevant equilibrium will be a Stackelberg

(subgame perfect Nash) equilibrium, i.e. the pro�le

(4) x�� =
�
x��i ; x

��
j

�
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such that, for the leader (henceforth �rm i)

x��i = argmax
xi
�i (q (xi; gj (xi))) ;

and for the follower (�rm j) x��j = gj (x
��
i ), where gj : Xi ! Xj is the best-reply mapping:

gj (xi) = argmax
xj
�j (q (xi; xj)) :

Note that for the investment game to be well-de�ned, all equilibria in (2), (3) and (4) must

exist and be unique.

2.3 The Market Game

Once the two �rms have either formed a research cartel or chosen their R&D investment

as singletons at t1 or t2, they will set their market variable at the last stage of the game

(denoted with t3). We assume competition in quantities and a unique Cournot equilibrium

among �rms, given the equilibrium level of investment xc
�
, or x�� or x�� decided at stages

t1, t2 or both. In particular, the Cournot quantity pro�le is simply the vector

q� = (q�1; q
�
2)

such that, for every �rm i = 1; 2 and j 6= i;

q�i = argmax
qi

�i(qi; q
�
j ):

2.4 Stable R&D Agreements

Given the equilibrium quantities decided by �rms at stage t3, and given the level of investment

decided simultaneously or sequentially at stages t1 and/or t2 either by the research cartel

or by individual �rms, �rms payo¤s can, with a slight abuse of notation, be denoted as

�i(q
� (x�(P (m))), where q� (x�(P (m)) indicates the equilibrium quantity pro�le when an

investment pro�le, as de�ned by (2), or by (3) or �nally by (4) is chosen by the �rms in a

given partition P (m) induced by the message pro�le m sent at stage t0.

Henceforth we make explicit a concept of equilibrium for the message game played at stage

t0. For this purpose, we introduce two di¤erent equilibrium concepts. The �rst is a standard

Nash equilibrium of the R&D partition-timing game. The second introduces a social stability

requirement, implying that a structure P (m) is stable if and only if the message pro�lem is a

7



strong Nash equilibrium, i.e., cannot be improved upon by an alternative message announced

by a single �rm or by the two �rms together. This concept is useful to re�ne over the set of

outcome generated by our model. Formally, when a given timing-partition P 2 P is Nash

stable, the pro�le �� = (m�;x�;q�) is a subgame perfect Nash equilibrium (SPNE) of the

entire game. When, in addition, the message pro�le m played at t0 is also strong Nash, �
�

IS again a SPNE, with the additional property to be Pareto-optimal for the �rms.

De�nition 1 (Nash stability) A feasible R&D timing-partition P 2 P is Nash stable if

P = P (m�), for some m� with the following property:

�i (q
� (x�(P (m�))) � �i(q�(x�(P (m

0

i;m
�
j)))

for every m
0
i 2Mi and every �rm i = 1; 2 with j 6= i.

De�nition 2 (Strong Nash stability) A feasible R&D timing-partition P 2 P is strongly

stable if P = P ( bm), for some bm with the following property: there not exists an alternative

message pro�le m0 2M1 �M2 such that

�i(q
�(x�(P (m0))) � �i(q�(x�(P ( bm)))

for all i = 1; 2 and

�h(q
�(x�(P (m0))) > �h(q

�(x�(P ( bm)))
for at least one h = 1; 2.

A strong stable Nash equilibrium is at once a Nash equilibrium and a Pareto-optimal

message pro�le.

3 A Duopoly Model with Symmetric Spillovers

We are now ready to apply our framework to the d�Aspremont & Jacquemin�s (1988) model.

We therefore consider a symmetric duopoly with �rms producing a homogeneous good. Along

these lines, we assume a linear inverse market demand function

P (Q) = max f0; a� bQg ;
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withQ =
P2

i=1 qi and a linear cost function for each �rm i decreasing in own R&D investment

and in a fraction of the rival�s e¤ort,

(5) ci(xi; xj) = (c� xi � �xj)

for j 6= i, and c � xi � �xj. In this setup, learning resulting from investment in R&D

characterizes the production process, implying that marginal and unit costs decrease as the

investment in R&D increases. We allow for the possibility of imperfect appropriability (i.e.

for the existence of a technological spillovers between the �rms), by introducing a spillover

parameter � 2 [0; 1]. Obviously the case of no spillovers (� = 0) may only arise in a situation
of complete intellectual protection. More frequently, however, involuntary information leaks

occur due to reverse engineering, industrial espionage or by hiring away employees of an

innovative �rm. The cases of partial to full spillovers can be modelled by setting 0 < � � 1.
Here, the parameter � in (5) is assumed to be identical for all �rms. However, in Section

4, this parameter, though exogenously given, will di¤er as due to the cooperative versus

non-cooperative nature and to the timing properties of the R&D investment game.

Moreover, we assume a simple quadratic cost function for the investment in R&D given

by

Ii(xi) = 

x2i
2
;

with 
 > 0. This guarantees decreasing returns to R&D expenditure (see e.g. Cheng 1984

and d�Aspremont and Jacquemin 1988). As a result, under Cournot competition in the

product market, and setting for simplicity b = 1, the last stage pro�t function for each �rm

i = 1; 2 can be obtained as a function of (xi; xj):

(6) �i (q
� (xi; xj)) =

(a� c+ (2� �)xi + (2� � 1)xj)2

9
� 

2
x2i :

3.1 Main Assumptions

Some assumptions are now introduced to ensure the existence and uniqueness of all stages

equilibria as well as to simplify the comparative statics.

A.1 Quantity stage constraint : (a=c) > 2.

A.2 Pro�t concavity and best-reply contraction: 
 > 4=3.
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A.3 Boundaries on R&D e¤orts: for every �rm, Xi = [0; c]. Moreover, for � < 1=2, we

assume 
 > a(2��)(�+1)
4:5c

and for � > 1=2, 
 > a(�+1)2

4:5c
.

As explained in detail in the Appendix, assumption A.1 simply ensures that the last

stage Cournot equilibrium is unique and interior, with associated positive pro�ts.

Assumption A.2 guarantees both the strict concavity of every �rm non-cooperative payo¤

(6) in its own investment xi (guaranteed for 
 > 8
9
) as well as a contraction property on

every �rm best-replies gi(xj), which requires that 
 > 4
3
.

Assumption A.3 ensures a compact R&D investment set for every �rm and imposes

some Inada-type conditions to obtain interior investment equilibria in all non-cooperative

(simultaneous or sequential) and cooperative R&D games (see also Amir et al. 2000, Amir

et al. 2011a, Tesoriere 2008 and Stepanova and Tesoriere 2011).4

Note that by assumption A.2 every �rm payo¤ is strictly concave in its own investment

choice and thus best-replies are single-valued and continuous. Investment sets are compact by

A.3 and therefore a Nash equilibrium exists by Brower �xed-point theorem. The contraction

property implied by A.2 ensures uniqueness of the Nash equilibrium x��. The existence of a

Stackelberg equilibrium x�� - a subgame perfect Nash equilibrium (SPNE) of the sequential

R&D game - is guaranteed by both �rms continuous payo¤s and continuous best-replies,

thus implying that a �rm as leader faces a continuous maximization problem over a closed

set. Then, by the Weierstrass theorem, such a SPNE equilibrium exists. Its uniqueness

is guaranteed here by A.3 and by the fact that �rms best-replies are single-valued and

monotone. Relatively to the cooperative investment level, the strict concavity of every �rm

pro�t, under the additional constraint that the two �rms select the same collusive investment,

implies that also the joint R&D cartel pro�t is strictly concave. Hence, this will be maximized

by a unique investment pro�le x.

In the next section we characterize all stable R&D agreements with endogenous timing

reached by the two �rms. As in Hamilton and Slutsky (1990) the �rms timing decision

is taken conditional on the subgame equilibrium pro�le induced by the resulting timing

structure. So, solving the game amounts to comparing the di¤erent basic games associated

to all possible scenarios. After a complete analysis of the symmetric case, we extend the

setup to the case of asymmetric spillovers. This can o¤er a broader view on a recent stream
4For a detailed description of the consequences occurring to the simultaneous investment game when

these boundaries are violated, see, for instance, Amir et al 2011b.
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of literature concerning endogenous timing under asymmetric spillovers (see, e.g., Amir et

al, 2000, De Bondt and Vandekerckhove 2008, Tesoriere 2008).

3.2 Cooperative R&D

The R&D cartel made of the two �rms investing cooperatively in R&D is assumed to maxi-

mize the sum of �rms pro�ts, i.e.

(7)
2P
i=1

�i (q
� (x (f1; 2g� ))) =

2P
i=1

�
1

9
[a� c+ (2� �)xi + (2� � 1)xj]2 � 


x2i
2

�
:

where x =(xi; xj) is any arbitrary pro�le of R&D investment carried out simultaneously by

the two �rms either at � = t1 or at � = t2, for i = 1; 2 and j 6= i. Following most of the

literature, we will assume henceforth that the level of investment that maximizes (7) is equal

for every �rm, i.e., is such that xc
�

i = x
c�

j .
5

By (7) a �rm cooperative investment can be easily obtained as

(8) xc
�

i (f1; 2g
� ) =

2(a� c)(1 + �)
9
 � 2(1 + �)2

with an associated equilibrium pro�t for each �rm

(9) �Ci
�
q�
�
xc

�

(f1; 2g� )
��
=


(a� c)2
9
 � 2(1 + �)2 :

3.3 Noncooperative Simultaneous R&D

Di¤erentiating (6) and exploiting the symmetry of �rms payo¤s, the noncooperative level of

investment is obtained as

(10) x��i (f1g
� ; f2g� ) = 2(a� c)(2� �)

9
 � 2(2� �)(1 + �)

for � = 1; 2, with associated a pro�t given by:

�Ni (q
� (x�� (f1g� ; f2g� ))) = 
(a� c)2(9
 � 2(� � 2)2)

(9
 � 2(2� �)(1 + �))2 :

5As shown by Salant and Sha¤er (1998,1999), for certain values of the parameters, the joint pro�t maxi-
mization may easily imply unequal R&D investments for the two �rms.
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3.4 Sequential R&D Investment Game

Using again (6) we can easily obtain the best-reply of the j-th �rm playing as follower the

investment game:

(11) gj(xi) =
2(2� �)(a� c� (1� 2�)xi)

9
 � 2(� � 2)2 :

Therefore the leader and the follower equilibrium investment levels are given by

x��i
�
figt1 ; fjgt2

�
=
2 (2� �) (a� c)

�
3
 + 2�2 � 2

� �
6� + 3
 � 2�2 � 4

�
�

x��j
�
figt1 ; fjgt2

�
=
2 (2� �) (a� c) �

�

where

� =
�
26�
 � 20
 � 12� � 4�2 + 12�3 + 9
2 � 4�4 � 8�2
 + 8

�
and

�= 160
 � 216
2+81
3+32�5�8�6��4 (20
 + 16)+�3 (64
 � 64)

+�
�
216
2 � 224
 + 32

�
+�2

�
24
 � 54
2 + 56

�
�32

with associated equilibrium pro�ts given by

�Li
�
q�
�
x��

�
figt1 ; fjgt2

���
=
(a� c)2 


�
6� + 3
 � 2�2 � 4

�2
�

�Fj
�
q�
�
x��

�
figt1 ; fjgt2

���
=
(a� c)2
(9
 + 8� � 2�2 � 8)�2

�2

Comparing R&D equilibrium investment levels under assumptions A.1-A.3, we can state

the following:

Proposition 1 (i) When �rms R&D investments are strategic substitutes (� < 1
2
) there

exists a ��(
) and a 
 such that, for � < ��(
) and 
 < 
,

x��i > x��i > xc
�

i > x
��
j :

12



(ii) When �rms R&D investments are strategic substitutes (� < 1
2
) and � � ��(
) or 
 � 


x��i > x��i > x��j � xc�i :

(iii) When �rms R&D investments are strategic complements (� > 1
2
),

xc
�

i > x
��
i > x��j > x��i

for i = 1; 2 and j 6= i.

Proof. See the Appendix.

The above proposition provides a full ranking of �rms equilibrium investment levels, as

it combines the well-known results by d�Aspremont and Jacquemin (1988), who compare

cooperative and simultaneous non-cooperative R&D levels, with Amir et al. (2000) analysis,

focussing on sequential vs. simultaneous non-cooperative outcomes. In particular, the former

study proved that, under high (low) spillovers, i.e. with � > 1
2
(� < 1

2
) the cooperative

investment level is higher (lower) than the simultaneous Nash investment level, that is xc
�

i

> x��i (xc
�

i < x��i ). This �nding, if combined with Amir�s et al. (2000) results, implies that

x��i > x��i > xc
�

i (xc
�

i > x
��
i and x��i > x��j > x��i ). Proposition 1 completes this ranking by

also including the cooperative investment levels. It can be noticed (see (11)) that the level of

spillover is crucial to determine the slope of the follower�s best-reply in the investment game.

That is, when the spillover rate is very low (case (i)), the follower�s best-reply is extremely

steep (and negatively sloped) and this player strongly contracts its equilibrium investment,

which is thus even lower than that resulting under a cooperative agreement. A �rm investing

noncooperatively as leader at stage t1 can therefore pro�tably expand its investment, and

this may occur in particular when the unit cost of investment in R&D (i.e. 
) is very low and

the investor is unlikely to be imitated (low �). Under such circumstances, being a leader can

be more pro�table than participating to an R&D agreement. When, instead, the spillover

rates start to increase, the cooperative investment overcomes that of the follower, although

the leader�s investment remains very high. Finally, for � > 1=2, cooperation implies the

e¢ cient and highest level of R&D investment, regardless of the level of investment costs.

In what follows, we perform some comparisons of the �rms payo¤s obtained in the di¤er-

ent investment games.6 First, notice that, by the e¢ ciency of pro�le xc
�
, we already know

6We recall that in Amir�s et al. (2000) paper, the following ranking is established for simultaneous
and sequential payo¤s in the symmetric case: �Li (x

��) > �Ni (x
��) > �Fj (x

��) for � < 1
2 and �

F
j (x

��) >

�Li (x
��) > �Ni (x

��) for � > 1
2 , where L, N and F denote the leader/Nash simultaneous/follower roles,

respectively, in the di¤erent R&D investment games.
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that �Ci
�
xc

� �
> �Ni (x

��). Moreover, the following lemma proves that for � < 1
2
(� > 1

2
) a

follower (leader) payo¤ can never be greater than that of a �rm in a cooperative agreement.7

Lemma 1 Under high (low) spillovers � > 1
2
(� < 1

2
) the pro�t of each �rm in an R&D

agreement is always higher than the pro�t of a leader (follower), namely, �Ci > �
L
i (�

C
i > �

F
j ).

Proof. See the Appendix.

The following two propositions complete the full ranking of �rm payo¤s in all di¤erent

scenarios and for all levels of spillover rates.

Proposition 2 When �rms R&D investments are strategic substitutes (� < 1
2
): (i) there

exists a ��(
) and a 
 such that, for � < ��(
) and 
 < 
, the pro�t obtained by a �rm

playing as leader in a sequential investment game is higher than that obtained in a cooperative

R&D agreement, and the following ranking arises

�Li > �
C
i > �

N
i > �

F
j .

(ii) When, instead � � ��(
) or 
 � 
 or both, the following ranking arises:

�Ci � �Li > �Ni > �Fj :

Proof. See the Appendix.

Figure 1 and 2 illustrate the e¤ect of � on the investment levels and on payo¤s, respec-

tively. When �rm investments are strategic substitutes (� < 1=2) there exists a narrow range

of the spillover rate (between 0 and ��(
)) for which being leader, and thus expanding the

investment, turns out to be extremely pro�table. This occurs only when the cost to invest

in R&D is extremely low (
 < 
).

[FIGURE 1 AND 2 APPROXIMATELY HERE]

7For ease of notation, in what follows �Ci istand for �
C
i

�
xc

� �
. We will use the same notational shortcut

in all noncooperative simultaneous and sequential payo¤s at the di¤erent investment subgames.
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The proposition below completes our �ndings on �rms�pro�tability under di¤erent arrange-

ments assuming that R&D investments are strategic complements:

Proposition 3 When �rms investments are strategic complements (� > 1
2
) the pro�t ob-

tained by a �rm in a cooperative R&D agreement is always higher than the pro�t obtained

by a �rm investing as follower in the sequential investment game, and the following ranking

arises

�Ci > �
F
j > �

L
i > �

N
i :

Proof. See the Appendix.

As it can be observed in �gures 1 and 2, for � > 1=2, the highest level of investment

is selected by the research cartel. Under the sequential game the follower free-rides on the

leader�s investment and gains a higher pro�t.

Finally, the next two propositions characterize all Nash and strong Nash stable timing-

partitions according to De�nitions 1 and 2.

Proposition 4 (Nash stability) (i) When the spillover rate is such that � < ��(
), and


 < 
, the Nash stable timing-partitions are given by

P (m�) = [
�
f1; 2gt1

�
;
�
f1gt1 ; f2gt1

�
]:

(ii) When 1=2 > � � ��(
) or 
 � 
 or both, the Nash stable timing-partitions are instead
given by

P (m�) = [
�
f1; 2gt1

�
;
�
f1; 2gt2

�
;
�
f1gt1 ; f2gt1

�
]:

(iii) Finally, for � 2 (1=2; 1], the Nash stable timing-partitions are given by

P (m�) = [
�
f1; 2gt1

�
;
�
f1; 2gt2

�
;
�
f1gt1 ; f2gt2

�
;
�
f1gt2 ; f2gt1

�
]:

Proof. See the Appendix.

It is obvious that, if we require the strong stability of timing-partitions, by the symmetry

of �rms all noncooperative partitions in which �rms invest simultaneously à la Nash are

Pareto-dominated by the cooperative allainces. Forming a cooperative research agreement to

coordinate costly investments in R&D is clearly more pro�table than playing the symmetric
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investment game à la Nash. If, however, � < ��(
), we have proven that being leader in the

investment game yields a higher pro�t than playing cooperatively, and therefore the only

timing-partition that remains strongly stable is the alliance investing at time t1. Thus, a

cooperative agreement, to be stable, requires that �rms anticipate strategically their joint

investments.

Proposition 5 (Strong stability) (i) when the spillover rate � < ��(
) and 
 < 
, the only

strong Nash stable R&D timing-partition is

P( bm) = ��f1; 2gt1�� :
(ii) - (iii) When 1 � � � ��(
) or 
 � 
 or both, the strong Nash stable R&D timing-

partitions are

P( bm) = ��f1; 2gt1� ; �f1; 2gt2�� :
Proof. See the Appendix.

Our results depart from those obtained in the previous literature. In particular, in our

setup, di¤erently from Amir et al. (2000), �rms can form a strategic alliance to invest coop-

eratively in R&D, and this alliances may be part of a SPNE of the whole game. Moreover,

our model suggests that in forming alliance �rms have to consider carefully the e¤ect of

timing. If �rms procrastinate their cooperative investment, they may risk a defection by a

partner breaking the alliance to invest as leader. To avoid this problem, �rms have to antic-

ipate strategically their joint investment in R&D. As illustrated in detail, this happens only

when investing in R&D is not very costly and spillovers are very low. For higher spillovers,

to discipline the stability of a research cartel might be easier and time-constraints for the

investment less relevant. Our model also shows that, without requiring Pareto-optimality,

even the noncooperative simultaneous (sequential) con�gurations are stable under low (high)

spillovers, i.e with � < 1=2 (� > 1=2), as already established in Amir et al. (2000). To

give an intuition, in a scenario characterized by strategic substitutes, the choice to form a

R&D alliance at a certain time might be also motivated by the need to avoid to play as

follower and singleton. Besides, when both spillovers and unit investment costs are very low,

a deliberate strategy meant to deter the exploitation of the �rst mover advantage (i.e. a

possible strategy to appropriate innovation rents) might be in place. In a regime of high

appropriability - and thus of low outgoing spillovers - the probability for �rms to cooperate
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is enhanced (as shown by Cassiman and Veugelers 2002, Belderbos et al. 2004), and the only

problem potentially a¤ecting stability may stem from the willingness to move �rst. This is

not true any longer for higher spillovers and higher investment costs. In this case, we argue

that the two forces behind spillovers may push to collaborate at time 1, when the need to

internalize high incoming spillovers prevails, or at time 2, to avoid free-riding and potential

defections by partners, typical of low appropriability scenarios.

3.5 An Extension to n-symmetric Firms

Extending our model to n-symmetric �rms would allow to check the stability of more complex

alliances between �rms coordinating their investment in R&D. However, including more than

two �rms into a model with endogenous timing makes the model itself highly unmanageable.

Only intuitive conclusions can be drawn employing our previous analysis and some well-

known existing results. A �rst observation concerns the whole industry R&D agreement (or

the grand coalition of �rms) investing at stage t2, i.e., using the above notation, the timing-

partition P =
�
fNgt2

�
formed when at stage t0 all �rms i = 1; 2; ::; n send the message

mi = (fNg ; t2). This partition can be strongly stable if every individual �rm investing as

follower at stage t2 would be better o¤ than any �rm participating to an R&D agreement

investing at stage t1 as leader. Thus, any coalition S � N of �rms that deviates from the

grand coalition
�
fNgt2

�
by sending one of these alternative messages, m

0
S = (fSg ; t2) or

m
00
S = (fSg ; t1), would induce either the simultaneous partition

(12) P (m
0

S) = (fSg
t2 ; fjgt2j2NnS);

where all �rms outside S are singletons or, analogously, the sequential partition

(13) P (m
00

S) = (fSg
t1 ; fjgt2j2NnS):

However, if �rms in coalition S cannot improve upon partition
�
fNgt2

�
by playing as leaders

as in (13) they would not improve a fortiori by playing simultaneously as in (12). Therefore,

if we show that in the partition (13) all �rms within the research cartel S (regardless of its

size) do not improve upon the cooperative partition
�
fNgt2

�
, the stability of the grand coali-

tion agreement is proved as a result. When investment decisions are strategic complements

(� > 1=2), it can be proved that the payo¤ of a symmetric �rm playing as singleton follower

against the coalition S playing as leader is always higher than the payo¤ of every �rm in S.8

8For a formal proof of this statement see Currarini and Marini (2003, 2004).
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Hence, given the e¢ ciency of the grand coalition, it would be impossible for any coalition

S to improve by deviating as leader, given that followers would improve even more their

payo¤s. Similarly, it can be shown that when R&D investments are strategic substitutes

(� < 1=2) a coalition S � N made of followers is beaten by individual �rms investing as

leaders, and therefore the partition
�
fNgt1

�
- made by the grand coalition of �rms investing

at time t1- is strong Nash. The strong stability of these two cooperative timing-partitions

already observed in our duopoly model thus extends to an analogous endogenous timing

game played by n-symmetric �rms.

4 A Duopoly Model with Asymmetric Spillovers

Including asymmetric spillovers into the model equals to introducing a higher degree of

realism. As is well-known (see e.g. Atallah 2005), asymmetries in knowledge transmission

may derive from di¤erences in protection practices, from geographical localization (e.g. Petit

et al. 2009), from product di¤erentiation (Amir et al. 2000), or from sequential moves in

the R&D game, as in R&D models with endogenous timing (Tesoriere 2008). Other sources

of asymmetry can arise from di¤erent technological capabilities, as in Amir and Wooders

(1999, 2000), where knowledge may leak only from the more R&D-active �rm to the rival,

or from a better absorption capacity in�uencing the outcome of a technological race, as in

De Bondt and Henriques (1995).

The spillover asymmetry arising in our model stems instead from the cooperative versus

the non-cooperative nature of the R&D game and from the timing of the R&D investment

process. The parameter �i, (0 � �i � 1) will represent henceforth the incoming spillover for
�rm i = 1; 2. Moreover, let �Ni denote the �rm spillover rate under simultaneous noncooper-

ative R&D, �Ci the spillover rate under R&D cooperation, and �
L
i , �

F
j the spillover rates for

the leader and the follower, respectively, in the sequential investment game, with i; j = 1; 2,

i 6= j.

Our assumptions on spillovers asymmetry are based on the following considerations:

(i) When the two �rms invest simultaneously and noncooperatively at stage one or two

their spillover rate is assumed to be symmetric and lower than or equal to 0:5 (i.e., �N1 =

�N2 � 0:5). The idea is that the competition in R&D and the simultaneity of �rm decisions

do not allow for a high amount of knowledge transmission.
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(ii) When a noncooperative sequential investment in R&D takes place, the spillover

rate can be though to be favorable to the �rm playing as follower and unfavorable to the

�rm playing as leader (i.e. �Fj > �Li ). In particular we shall set �
F
j > 0:5 and �Li � 0:5.

A sequential order of moves in the R&D investment game implies a greater amount of

knowledge leaking out from the leader to the follower than vice versa. The rationale is that

knowledge leaks also through imitation, thus leading to a strong advantage for the �rm that

is able to observe the �rst mover innovative outcome. Therefore, bene�ts from spillovers

should be lower for a �rst mover (see also Tesoriere 2008). Moreover, we assume that sector-

speci�c features determining the intensity of knowledge di¤usion9a¤ect to the same extent the

incoming spillover for the leader in the sequential game (i.e. �Li ) and the incoming spillovers

for both �rms in the simultaneous noncooperative game (i.e., �Ni i = 1; 2). Therefore we

will set �Li = �
N
i .

(iii) When the two �rms play cooperatively and form a research cartel, they generally

also agree to share to some extent the knowledge obtained from their joint R&D e¤ort. It

seems realistic to assume that they might agree to fully share their knowledge, and therefore

their spillover rates will be symmetric and su¢ ciently high (i.e. �C1 = �
C
2 close or equal to

one). Moreover, we assume that knowledge leaks occurring mainly through imitation and

favouring the follower in a sequential game are less intense if compared with the voluntary

exchange of technological knowledge typical of a research agreement. Thus, we maintain

that �Ci > �
F
j , for i; j = 1; 2, i 6= j:

Taking into account all the above inequalities, our assumptions on the relationship among

spillover values can be summarized as follows:

(14) 1 � �Ci > �Fj > �Li = �Ni � 0 i = 1; 2, j 6= i

with �Li = �
N
i � 0:5 and �Fj > 0:5.

As in the previous section, we introduce here some assumptions needed to ensure the

existence and uniqueness of equilibria at all stages (see the Appendix for further details):

9Empirical literature aiming at distinguishing between knowledge spillovers that occur within or across
di¤erent sectors or technological �elds leads to conclude that spillovers are technology-speci�c and, thus,
mainly intra-sectoral. As much as about sixty percent of the citations are directed to other patents classi�ed
into the same technological �eld (see, e.g., Ja¤e 1985, 1986; Cincera 1997; Malerba et al 2007), while the main
sources of knowledge are represented by competitors, suppliers and plants belonging to the same business
group (Crespi et al, 2008).
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B.1 (quantity stage constraint). As in the case of symmetric spillovers, a=c > 2.

B.2 (Pro�t concavity and best-reply contraction property). Again, 
 > 4=3.

B.3 (Boundaries on R&D e¤orts) For every �rm i = 1; 2, Xi = [0; c] and 
 >
2a(�Ci +1)

2

9c
,

for 0:5 < �Ci � 1.

4.1 Noncooperative Sequential R&D with Asymmetric Spillovers

Since only in the case of sequential moves at the investment stage our calculations di¤er from

the symmetric case analyzed in the previous sections, we shall deal henceforth extensively

with this scenario. Our aim is to investigate whether the asymmetry in the transmission of

knowledge between �rms is relevant for the endogenous formation of research alliances.

Using an asymmetric-spillover speci�cation, every �rm objective function at the market

game stage is given by

�i = (a� (qi + qj))qi �
�
c� xi � �jxj

�
qi � 


x2i
2

with i; j = 1; 2 and i 6= j. Solving the game by backward induction, every �rm payo¤ at the
investment stage can be obtained as:

(15) �i (q
� (xi; xj)) =

1

9

�
(a� c) +

�
2� �j

�
xi + (2�i � 1)xj

�2 � 
x2i
2
:

Di¤erentiating (15) we obtain the best-reply for the follower in the investment game (here

player j):

gj(xi) =
2(2� �Li )[(a� c)� (1� 2�Fj )xi]

9
 � 2(2� �Li )2
The sequential equilibrium investment levels for the two �rms are given by:

x��i
�
figt1 ; fjgt2

�
=
2A (a� c)

�
2
�
�Li
�2 � 6�Li � 3
 + 4�B

(
 + 2AB2)

x��j
�
figt1 ; fjgt2

�
=

2
�
2� �Li

� 
(a� c)�

2(1�2�Fj )A(a�c)
�
2(�Li )

2�6�Li �3
+4
�
B

2A
�
3
�Fj �2�Li �6
�4�Li �Fj +2(�Li )

2
�Fj +4

�2
�


!
9
 � 2

�
2� �Li

�2
where

A =
�
9
 + 8�Li � 2

�
�Li
�2 � 8��2

B =
�
3
�Fj � 2�Li � 6
 � 4�Li �Fj + 2

�
�Li
�2
�Fj + 4

�
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Let equation (14) as well as B.1-B.3 hold. By comparing �rms R&D equilibrium invest-

ment levels under asymmetric spillovers, we can state:

Proposition 6 There exists a ~� 2 (0; 1=2) such that, if �Ni = �Li � ~�, then x��j � xc
�

i >

x��i > x��i . If instead �
N
i = �

L
i � ~�, then xc

�

i � x��j > x��i > x��i , for i; j = 1; 2 and i 6= j.

Proof. See the Appendix.

An illustration of this result is shown in Figure 3. To give an intuition, when (infra-

sectoral) spillovers are low, the asymmetry between the incoming spillover of the leader (�Li )

and that of the follower (�Fj ) is pronounced (since �
F
j is always greater than 0:5). Therefore,

the leader faces the lowest incentive to invest in R&D since the high outgoing spillover e¤ect

overcomes the �rst-mover advantage e¤ect. On the other hand, the follower takes advantage

of a high learning opportunity and of low knowledge leaks. Moreover, in this case, the

R&D investment of the follower overcomes that of the cooperative �rm, since a competive

e¤ect prevails. Conversely, when spillovers become higher, the asymmetry between leader

and follower decreases. In this case a free-riding e¤ect may prevail for both players and the

cooperative outcome may become convenient, since cooperation between �rms succeeds in

internalizing knowledge externalities.

Firms pro�ts could be compared only via numerical simulations. In what follows the

numerical values assigned to the parameters are as follows: a = 38, c = 18, 
 = 2. In

addition, we assume that in the case of cooperation �rms agree to share a high amount of

technological knowledge. Thus we assign a constant value �Ci = 0:8. Moreover we set the

incoming spillover of the follower such that 1 � �Ci > �Fj > 0:5 (for instance �Fj = 0:6 as in
Figures 3 and 4).

As depicted in �gure 4, there exists a value �̂ 2 (0; 1=2), such that the following payo¤s
ranking emerges:

�Fj > �
C
i > �

N
i > �

L
i

for �Li = �
N
i � �̂. As a result, in this case the Nash equilibrium timing-partitions are

P (m�) = [
�
f1; 2gt2

�
;
�
f1gt2 ; f2gt2

�
];

while the only strong Nash partition is given by

P( bm) = ��f1; 2gt2�� :
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When instead �L1 = �
N
i � �̂, the following payo¤ ranking comes out:

�Ci > �
F
j > �

N
i > �

L
i

and, thus,

P (m�) = [
�
f1; 2gt1

�
;
�
f1; 2gt2

�
;
�
f1gt2 ; f2gt2

�
];

P( bm) = ��f1; 2gt1� ; �f1; 2gt2�� :

[FIGURES 3 AND 4 APPROXIMATELY HERE]

These results can be explained by considering that joint cooperative agreements at time t1

are particularly at risk when there is a strong incentive to be follower in the R&D investment

game. As a matter of fact, �rms prefer to wait and observe the rival�s move rather then trying

to reach an agreement. This happens when spillovers are extremely unbalanced (i.e. when

�L1 = �
N
i � �̂) towards the �rms that wait before investing, thus conferring a strong follower-

advantage.These results are also in line with some empirical evidence, showing that �rms

are more likely to choose a follower strategy if they operate in industries with low knowledge

leaks. Therefore, with low infra-sectoral spillovers, the only strongly stable R&D timing

partition is represented by the research cartel investing at time 2. On the other hand, timing

issues become less relevant when spillovers get higher and choosing a �rst mover strategy

may become convenient for the alliance. This is typical of sectors characterized by intensive

knowledge exchanges often coupled with high absorptive capacity by the �rms (Sofka and

Schmidt, 2005).

Our �ndings complement the few existing results (Amir et al., 2000; Tesoriere, 2008)

on endogenous sequencing in R&D investment with asymmetric spillovers. In particu-

lar, Tesoriere (2008) considers only the noncooperative case with certain spillovers values

(�L1 = �Ni = 0 and �Fj 2 (0; 1]). Under these assumptions he proves that the only timing
con�guration that is SPNE involves simultaneous noncooperative play at the R&D stage

(with zero spillovers). In contrast, in our setup the noncooperative simultaneous con�gura-

tion may not be the only Nash stable timing-partition and, in addition, it is never strong

Nash stable, as �rms always prefer to form an R&D cartel than playing (suboptimally) as

singletons the investment game.
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5 Concluding Remarks

This paper represents a �rst attempt to bridge two usually distinct streams of the economic

literature, the endogenous formation of R&D agreements, and the endogenous timing of

R&D investments in a model with spillovers à la d�Aspremont and Jacquemin (1988). This

is done by introducing a new setup in which �rms express both their intention to form or

not an alliance as well as the timing of their e¤ort in R&D. Our approach allows to assess

the stability of research cartels against deviations occurring over time. We show that the

nature of the interaction between the �rms in the investment game plays an important

role. In particular, under symmetric spillovers and when the level of spillovers is extremely

low, both �rms want to play the investment game as leaders and, as a result, they may

easily end up investing simultaneously either cooperatively or noncooperatively. In this

case, any cooperative agreement, to be stable, must contain a commitment to invest at an

initial stage. A cooperative agreement of this sort would remain stable against deviations

by coalitions of �rms even if the number of symmetric �rms gets arbitrarily higher than

two. When spillovers are higher, our model predicts that both sequential (noncooperative)

and simultaneous (cooperative) R&D con�gurations are stable against individual deviations.

However, only cooperative agreements are strongly stable and, in this case, opposite forces,

pushing towards either cooperation at the initial stage or to strategic delay of joint R&D

investment might be in place. We have argued that this approach, by introducing endogenous

timing into the model, may help in explaining some stylized facts, such as the tendency

to postpone a portion of agreements in some industries, as the bio-pharmaceutical sector.

Finally, when spillovers are asymmetric and favourable to the �rm investing as follower,

the model shows that an R&D alliance, to be stable, requires the joint investment to be

strategically delayed in order to avoid that a �rm may break the agreement to exploit the

existing "second-mover advantage". This occurs, in particular, when the incoming spillover

of the leader is much lower then that of the follower, a scenario typical of low knowledge

transmission sectors.

6 Appendix

Proofs of Lemmata and Propositions
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Proof of Proposition 1. (i)-(ii) For � 2 [0; 1=2), the following equation

(16)
�
x��j � xc

�

i

�
=
2(a� c) (2� �) �

�
� 2(a� c)(1 + �)
9
 � 2(1 + �)2 = 0

can be solved for ��(
) = 7
5
� 3

10

p
2
p
5
 + 2, which is strictly positive for 
 � 
, where


 = 16=9. Condition A.3 for � < 1=2 requires that 
 > a(2��)(�+1)
4:5c

and since this constraint

reaches its maximum for � = 1=2, it follows that for 
 2
�
a
2c
; 16
9

�
; there exists a ��(
) 2

[0; 1=2) for which
�
x��j � xc

�

i

�
< 0. It can be checked that this interval for 
 is compatible

with a market size-cost ratio a=c � 32=9. Moreover, by (16) for 1=2 > � > ��(
) and/or for
a 
 > 16=9,

�
x��j � xc

�

i

�
> 0. Combining these facts with Amir�s et al. (2000) ranking on

leader-follower and Nash simultaneous investments, the results follow. (iii) For � 2 (1=2; 1],
by (16), it turns out that

�
x��j � xc

�

i

�
< 0: Moreover it can be easily checked that

sign
�
x��i � x��j

�
= sign 2
 (2� � 1)2 > 0

which holds for any � and, thus, also for � 2 (1=2; 1]. Again, combining the above fact with
Amir�s et al. (2000) results, the ranking between R&D investments is proven. �

Proof of Lemma 1. Suppose by contradiction that for � > 1
2

�Ci < �
L
i

and, following Amir�s et al. (2000) (see footnote 7),

�Ci < �
L
i < �

F
j :

It follows that
2P
i=1

�Ci < �
L
i + �

F
j

contradicting the e¢ ciency of pro�le xc
�

i (q
�). Similarly, for � < 1

2
let

�Ci < �
F
j

and, according to Amir�s et al. (2000) results,

�Ci < �
F
j < �

L
i :

which again implies
2P
i=1

�Ci < �
L
i + �

F
j ;
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which is a contradiction. �

Proof of Proposition 2. (i) By Lemma 1 and employing Amir�s et al. (2000) results

we know that, under low spillover rates, (� < 1
2
), either

(17) �Li > �
C
i > �

N
i > �

F
j .

or

(18) �Ci > �
L
i > �

N
i > �

F
j :

For � 2 [0; 1=2) the following equation

(19) �Ci � �Li =

(a� c)2

9
 � 2(1 + �)2 �

(a� c)2

�
6� + 3
 � 2�2 � 4

�2
�

= 0

has only one root ��(
) = 7
5
� 3
10

p
2
p
5
 + 2, requiring that 
 < 16=9 to be positive. Since, by

A.3, 
 > a(2��)(�+1)
4:5c

and such constraint reaches its maximum for � = 1=2, we conclude that

for 
 2
�
a
2c
; 16
9

�
there exists a ��(
) 2 [0; 1=2) ensuring that the inequality

�
�Ci � �Li

�
< 0

holds true. (ii) For � 2 [0; 1=2), when either � � �� or 
 > 16
9
or both, it can be assessed

that

(20) �Ci � �Li =

(a� c)2

9
 � 2(1 + �)2 �

(a� c)2

�
6� + 3
 � 2�2 � 4

�2
�

� 0:

The payo¤s ranking can therefore be completed using Lemma 1 and Amir�s et al. (2000)

results. �

Proof of Proposition 3. By Lemma 1 and Amir�s et al. (2000), we know that under

high spillover rates (� > 1
2
), either

(21) �Fj > �
C
i > �

L
i > �

N
i

or

(22) �Ci > �
F
j > �

L
i > �

N
i :

For � 2 [1=2; 1] and 
 2
�
a(�+1)2

4:5c
;1
�
, the equation

�
�Ci � �Fj

�
= 
(a�c)2

9
�2(1+�)2 �

(a�c)2(9
+8��2�2�8)(26�
�20
�12��4�2+12�3+9
2�4�4�8�2
+8)

2

�2
= 0
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is solved only for � = 1=2: It can be checked that for any other spillover rate 1 � � > 1=2,

the di¤erence
�
�Ci � �Fj

�
is positive and increases monotonically in �. Only for 
 ! +1, it

occurs that
�
�Ci � �Fj

�
! 0. �

Proof of Proposition 4. (i) By proposition 2, for � 2 [0; ��(
)) < 1=2 and 
 <


, investing as leader at stage t1 is more pro�table for �rms than forming a cooperative

agreement. As a result, the message m =
�
f1; 2gt2

�
cannot be a Nash equilibrium, since

a �rm i can pro�tably deviates with an alternative message m0
i = (fig ; t1) inducing the

timing-partition
�
figt1 ; fjgt2

�
. Similarly, all sequential timing-partitions

�
figt1 ; fjgt2

�
can

pro�tably be objected by the j-th �rm who, instead of playing as follower, would rather

prefer to invest simultaneously. This is feasible if it sends the message m0
j = (fjg ; t1) ; and

induces the timing-partition
�
figt1 ; fjgt1

�
. Therefore, we remain with only two partitions�

f1; 2gt1
�
and

�
f1gt1 ; f2gt1

�
that cannot be pro�tably objected by any �rm. (ii) We know

by proposition 2 that, when � 2 [��(
); 1=2) ; the payo¤ gained in a cooperative agreement
is higher than that obtained by a leader (follower or simultaneous) �rm, and therefore both

cooperative timing-partitions
�
f1; 2gt1

�
and

�
f1; 2gt2

�
are Nash-stable. Also the simultaneous

partition
�
f1gt1 ; f2gt1

�
cannot be objected by individual deviations. (iii) For � 2 (1=2; 1],

by proposition 3 the payo¤ gained in a cooperative agreement is the highest obtainable by a

�rm and, thus, both cooperative timing-partitions
�
f1; 2gt1

�
and

�
f1; 2gt2

�
are Nash-stable.

Also the sequential partitions
�
f1gt1 ; f2gt2

�
and

�
f1gt2 ; f2gt1

�
cannot be pro�tably objected

neither by a leader nor by a follower (see proposition 3), and the result follows. �

Proof of Proposition 5. (i) This result easily follows from proposition 2 and by the

fact that all other timing-partitions are Pareto-dominated by a cooperative agreement, with

the exception of the sequential partition
�
figt1 ; fjgt2

�
. However, since by proposition 2,

�Ni (x
��) > �Fj (x

��) for � < 1=2; the sequential partition
�
figt1 ; fjgt2

�
can pro�tably be

objected by the follower, who prefers to invest simultaneously and, by sending the message

m0
j = (fjg ; t1) can induce the simultaneous partition

�
figt1 ; fjgt1

�
. However, the latter

partition can, in turn, be objected by a message
�
f1; 2gt1

�
sent by both �rms, and therefore,

is not Strong Nash stable. Finally, also the partition
�
f1; 2gt2

�
can be objected by a �rm

sending an alternative message m0
i = (fig ; t1), hence inducing the relatively more pro�table

sequential partition
�
figt1 ; fjgt2

�
. (ii) By proposition 2 and 3 it follows that, for 2 [��(
); 1],

all sequential and simultaneous noncooperative payo¤s are dominated by the cooperative

agreements. As a result, the two message pro�les m = (fi; jg ; t1) ; (fi; jg ; t1)) and m =
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(fi; jg ; t2) ; (fi; jg ; t2)) are both strongly undominated and the two cooperative partitions�
f1; 2gt1

�
;
�
f1; 2gt2

�
are both strongly stable. �

Proof of Proposition 6. Consider �rst the equilibrium investment levels under the

extreme assumptions that �Li = 0, �
N
i = 0, �

F
j = 1, �

C
i = 1, i = 1; 2 with j 6= i. Thus, we

obtain:

(23) x��i
��
�Li =0;�

F
j =1

= 2(a�c)(3
�4)2
(112
�162
2+81
3�32)

and

(24) x��j
��
�Li =0;�

F
j =1

= 4(a�c)(9
�8)

(112
�162
2+81
3�32) :

Moreover, substituting the above values for the spillover parameters into x��i and xc
�

i , as

derived in Section 3, we have that:

(25) x��i
��
�Ni =0

= 4(a�c)
(9
�4)

and

(26) xc
�

i

��
�Ci =1

= 4(a�c)
(9
�8)

for i = 1; 2.

Then,

(a) By simply comparing (25) and (26), we obtain that xc
�

i

��
�Ci =1

> x��i
��
�Ni =0

.

(b) Considering Eqs (24) and (23), it comes out that (x��i �x��j )
��
�Li =0;�

F
j =1

= �9
2�8
+
16 < 0 i¤ 
 > �4=9 + 4

p
10=9. This condition is implied by the SOC of �rm i competing a�

la Stackelberg at the R&D investment stage - evaluated at �Li = 0, �
F
j = 1 - which requires

that (�112
 + 162
2 � 81
3 + 32) < 0.

(c) Also, x��j
��
�Li =0;�

F
j =1

> xc
�

i

��
�Ci =1

i¤ 
 > 4=3, and this is implied by assumption B.2.

(d) Finally, x��i
��
�Ni =0

> x��i
��
�Li =0;�

F
j =1

for 
 > 4=9 + 4
p
2=9, which, as shown above, is

always respected.

Combining all inequalities above, we have

x��j
��
�Li =0;�

F
j =1

> xc
�

i

��
�Ci =1

> x��i
��
�Ni =0

> x��i
��
�Li =0;�

F
j =1
:
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We now examine the ranking of R&D investments when �Li = �
N
i = 0:5, still maintaining

the assumptions that �Fj = �
C
i = 1. We obtain:

(i) xc
�

i

��
�Ci =1

� x��i
��
�Ni =1=2

) = 3(a� c)(3
 + 2) > 0.

(ii) x��i
��
�Ni =1=2

�x��i
��
�Li =1=2;�

F
j =1

= (162
3� 256:5
2+195:75
� 63:875). This expression
is strictly positive for any 
 � 0:35.

(iii) (xc
�

i

��
�Ci =1

� x��j
��
�Li =1=2;�

F
j =1
) = (81
3 � 58:5
2 + 45
 � 18), which is strictly positive

for 
 > 1=2:

(iv) (x��j
��
�Li =1=2;�

F
j =1

� x��i
��
�NCi =1=2

) = 9(3
2 � 3
 + 0:5) > 0 for 
 > 1=2.

It su¢ ces to take into account the conditions under B.2 as to the feasible values of 


to guarantee that all inequalities sub (i)-(iv) hold. Therefore, for �Li = �Ni = 0:5 and

�Fj = �
C
i = 1, the ranking among equilibrium investments is such that:

xc
�

i

��
�Ci =1

> x��j
��
�Li =1=2;�

F
j =1

> x��i
��
�Ni =1=2

> x��i
��
�Li =1=2;�

F
j =1
:

Let now introduce the more general hypotheses that �Li = �
N
i < 0:5 and 1 � �Ci > �Fj >

0:5, i; j = 1; 2 j 6= i. In what follows, we show that the ranking obtained for �Li = �Ni = 0,
�Fj = �

C
i = 1 and the one obtained for �

L
i = �

N
i = 1=2, �

F
j = �

C
i = 1 are general, i.e. they

hold true for all spillover rates assumed.

First, we examine the ranking of R&D investments when �Li = �Ni = 0:5 (and 0:5 <

�Fj < �
C
i = 1). It is easy to see that:

(1) xc
�

i

��
�Ci =1

� x��i
��
�Ni =1=2

= 3(a� c)(3
 + 2) > 0:

(2) Moreover,

x��i
��
�Li =1=2;�

F
j
� x��j

��
�Li =1=2;�

F
j
=
2(1� 2�Fj )(a� c)(�Fj � 
 � 2)
(2
 � 1)(8 + 2�F2j � 8�Fj � 9
)

< 0

due to the SOC for the pro�t maximization problem when �rms compete simultaneously at

the investment stage and the constraints hold on 
 as stated above.

(3) Also,

xc
�

i

��
�Ci =1

� x��j
��
�Li =1=2;�

F
j
=

2(a�c)[9
2+(10�F2j �22�Fj +10)
�16�12�F2j +32�Fj ]

(2
�1)(9
�8)(9
�8�2�F2j +8�Fj )
> 0

due to the SOC and the assumed constraints on 
 (see B.2).
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(4) Then, we obtain that

(x��j
��
�Li =1=2;�

F
j
� x��i

��
�Ni =1=2

) =
4(a� c)(2� �Fj )(2�Fj � 1)

3(2
 � 1)(9
 � 8� 2�F2j + 8�Fj )
> 0

and �nally

x��i
��
�Ni =1=2

� x��i
��
�Li =1=2;�

F
j
=

2(a�c)(2+3
��Fj )(2�Fj �1)
3(2
�1)(9
�8�2�F2j +8�Fj )

> 0:

As a result,

xc
�

i

��
�Ci =1

> x��j
��
�Li =1=2;�

F
j
> x��i

��
�Ni =1=2

> x��i
��
�Li =1=2;�

F
j
:

The same ranking holds also for any value of �Ci such that 0:5 < �
F
j < �

C
i < 1. This can

be proven considering that

(xc
�

i � x��j )
��
�Li =1=2;�

F
j =�

C
i =�>1=2

= 2(a�c)(1�2�)[2�3+2(
�1)�2�(17
�4)�+17
�9
2]
(2
�1)(9
�8�2�+8�) :

The above expression is strictly positive since the term in square brackets at the numer-

ator is negative (and decreasing in �), the second term at the denominator is the SOC for

simultaneous competition at the investment stage (see B.2), and the third term at the denom-

inator is negative for any � > 0:5 due to the constraints on 
 (see B.2). Now, �Ci > �
F
j > 0:5

implies that xCi increases as well. Thus, a fortiori, x
c�

i

��
�Ci
> x��j

��
�Li =1=2;�

F
j
. Therefore:

xc
�

i

��
�Ci
> x��j

��
�Li =1=2;�

F
j
> x��i

��
�Ni =1=2

> x��i
��
�Li =1=2;�

F
j

for any value of �Ci and �
F
j such that 0:5 < �

F
j < �

C
i < 1.

Now we consider the ranking at �Li = �
N
i = 0 and we let 0:5 < �

F
j < �

C
i � 1 Note that

xc
�

i

��
�Ci =1

� x��j
��
�Li =0;�

F
j
=

8(a�c)(3
�4)(2�Fj �1)[(3�Fj �6)
+4]
(9
�8)(72
2�Fj +160
�18�F2j 
2�216
2�32+81
3�48�Fj 
)

= 0

i¤ �Fj = 1=2. Now, let �
C
i = 1� �, with � su¢ ciently small. It is easy to see that

@xc
�

i

@�Ci
> 0.

Therefore, xc
�

i

��
�Ci

< x��j
��
�Li =0;�

F
j =1=2

. Moreover, letting �Fj be greater than 1=2, directly

implies that xc
�

i

��
�Ci
< x��j

��
�Li =0;�

F
j
, since x��j is monotonically increasing in �Fj .

Finally, x��i
��
�Li =0;�

F
j
increases for �Fj such that 0:5 < �Fj < 1. We proceed now by

contradiction, wondering if the ranking x��i
��
�Li =0;�

F
j
> x��i

��
�Ni =0

could ever be feasible. It

is easily found that the inequality x��i > x��i contradicts the above �nding, i.e. that
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x��i
��
�Li =1=2;�

F
j
< x��i

��
�Ni =1=2

at �Li = �Ni = 0:5, and �Fj > 0:5, combined with the fact

that x��i is monotonically increasing in �Li . As a result,

x��j
��
�Li =0;�

F
j
> xc

�

i

��
�Ci
> x��i

��
�Ni =0

> x��i
��
�Li =0;�

F
j
:

The fact that both x��j and x��i are monotonically decreasing in �Li = �Ni , and that,

conversely, x��i is monotonically increasing in �Li completes the proof. Figure 3 illustrates

this proposition by means of a numerical example. �

Assumptions under Symmetric Spillovers

A.1 Straightforward manipulations of �rms�payo¤s at the quantity-stage yield

(27) q�i = q
�
j =

1

3
[(a� c) + (2� �)xi + (2� � 1)xj]

and then

(28) �i (q
� (x)) =

1

9
[(a� c) + (2� �)xi + (2� � 1)xj]2 �




2
x2i :

Since � 2 [0; 1] and xi 2 [0; c], and given that for a �rm the worst investment scenario occurs
when x�i = 0, � = 0 and x

�
j = c, by (27) this yields

(29) q�i (xi = 0; xj = c; � = 0) =
1

3
[(a� 2c)] :

This condition implies that for

a > 2c

a unique interior (positive) Cournot pro�le of quantities, with associated positive equilibrium

pro�ts, always exists.

A.2 It is easily shown that the investment-stage SOCs are respected, for every i = 1; 2;

for
@2�i (x (q

�))

@x2i
=
1

9

�
8 + 2�2 � 8� � 9


�
< 0

which requires that 
 > 2
9
(2� �)2 and then strict-concavity of �i (x (q�)) in xi is guaranteed

for 
 > 8
9
for any � 2 [0; 1]. Firms�best-replies are obtained from (28) and are given by:

xi = gi (xj) =
2 (2� �) (a� c+ (2� � 1)xj)�

9
 + 8� � 2�2 � 8
� :

30



Moreover, since for every �rm

g0i (xj) = �
@2�i (xi (q

�) ; xj (q
�)) =@xi@xj

@2�i (x (q�)) =@x2i
= � 2 (2� � 1) (2� �)�

8 + 2�2 � 8� � 9

�

increasing di¤erences of �i (xi; xj) in (xi; xj) (and then non decreasing best-replies) are im-

plied by � > 1
2
and decreasing di¤erences (and non increasing best-replies) are implied by

� < 1
2
, given that

@2�i (x (q
�))

@xi@xj
=
2

9
(2� � 1) (2� �) :

To guarantee that uniqueness of Nash equilibrium x�� (q�), a contraction condition would

serve the scope. This condition is respected for g0i (xj) < 1 when the function is increasing

and for g0i (xj) > �1; when the function is decreasing, thus requiring

(30) g0i (xj) = �
2 (2� � 1) (2� �)�
8 + 2�2 � 8� � 9


� < 1
for � > 1

2
and

(31) g0i (xj) = �
2 (2� � 1) (2� �)�
8 + 2�2 � 8� � 9


� > �1
for � < 1

2
. Condition (30) implies�

8 + 2�2 � 8� � 9

�
> �2 (2� � 1) (2� �)

which is satis�ed for

(32) 
 >
2

9
(� + 1) (2� �) :

Since the RHS in (32) is monotonically increasing in �, (32) becomes


 >
1

2
:

Condition (31) equals to

(33) �2 (2� � 1) (2� �) > �
�
8 + 2�2 � 8� � 9


�
;

and thus

(34) 
 >
2

3
(� � 1) (� � 2) :

Since the expression on the RHS of (34) is monotonically increasing in �, we obtain the

condition 
 > 4
3
.
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Therefore, for any � 2 [0; 1] the two �rms�investment best-replies gi(xj) are contractions
if 
 > 4

3
.

A.3 In order to obtain interior values for the equilibrium investment level x�under sym-

metric spillovers and in all simultaneous, cooperative and sequential games, some assump-

tions are in order.

(i) Using the FOC for each �rm i = 1; 2 when playing simultaneously the investment

game, we obtain that

@�i (x (q
�))

@xi
=
2 (2� �)

9
[a� c+ (2� �)xi + (2� � 1)xj]� 
xi;

which, setting xi = 0, becomes

(35)
@�i (0; xj)

@xi
=
2 (2� �)

9
[a� c+ (2� � 1)xj] > 0

for every xj 2 [0; c]. As a result, to play xi = 0 is never a best-reply for a �rm .

(ii) Secondly, when a �rm i = 1; 2 participates to a cooperative R&D agreement, its FOC

is

@�i (0; xj)

@xi
+
@�j (0; xj)

@xi
=
2 (2� �)

9
[a� c+ (2� �)xi + (2� � 1)xj]� 
xi+

+
2

9
(2� � 1) (a� c+ (2� �)xj + (2� � 1)xi)

which, evaluated at x =(0; xj), becomes

@�i (0; xj)

@xi
+
@�j (0; xj)

@xi
=
2

9

�
(a� c) (1 + �) + 10�xj � 4xj � 4�2xj

�
> 0

for every xj 2 [0; c]. It is thus never rational for a �rm in a cooperative agreement to play

xi = 0, no matter what the other �rm does.

(iii) Finally, for a �rm i = 1; 2 investing as a leader, the FOC is

(36)
@�i (xi; gj(xi))

@xi
=
@�i (xi; gj(xi))

@xi
+
@�i (xi; gj(xi))

@xj
g0j(xi) = 0:

Notice that for � > 1
2
both @�i(xi; xj)=@xj > 0 and g0j(xi) > 0 while for � <

1
2
; the opposite

holds, given that

@�i (0; gj(0))

@xi
=
(a� c)

�
2�2 + 4� 6� � 3


� �
2� 2�2 � 3


�
(2� �)

2
�
8� + 9
 � 2�2 � 8

�2 > 0
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for 
 > 4
3
, and expression (35) guarantees that a �rm as a leader will always invest a strictly

positive amount at a sequential equilibrium. Moreover, since the FOC for a follower is the

same as in the simultaneous Nash equilibrium, at the sequential equilibrium both �rms will

never play the pro�le x��=(0; 0). To conclude, we want to be sure that both �rms will never

play their full cost reduction investment (corner solution), and that instead either their

best-replies or their cooperative decisions always lie below their maximum rational level

(37) xi = xj =
c

� + 1
:

(i) and (iii) Under noncooperative behaviour and using (37), this is guaranteed if

@�i (x (q
�))

@xi
=
2 (2� �)

9

�
(a� c) + (2� �) c

� + 1
+ (2� � 1) c

� + 1

�
� 
 c

� + 1
< 0

which holds for

(38) 
 >
a (2� �) (� + 1)

4:5c
:

As a result, for

(39) 
 >
a (2� �) (� + 1)

4:5c
, x��i = gi(x

��
j ) and x

�� = (x��i ; gj(x
��
i ))

that is, both simultaneous and sequential investment equilibria are interior and lie below the

boundary points. Instead for

(40) 
 � a (2� �) (� + 1)
4:5c

, x��i =
c

� + 1
and x�� =

�
c

� + 1
;
c

� + 1

�
:

(ii) For a �rm participating to a cooperative R&D agreement, its FOC evaluated at

x =
�

c
�+1
; c
�+1

�
is

@�i (x (q
�))

@xi
+
@�j (x (q

�))

@xi
= 2(2��)

9

h
a� c+ (2� �) c

�+1
+ (2� � 1) c

�+1

i
� 
xi+

+
2

9
(2� � 1)

h
a� c+ (2� �) c

�+1
+ (2� � 1) c

�+1

i
< 0

which holds if

(41) 
 >
a (� + 1)2

4:5c
:

Notice that for � < 1
2
(� > 1

2
) the cooperative constraints on 
 is less (more) demanding than

the noncooperative constraints. Therefore, the constraint used to avoid full cost reductions

for � > 1
2
is (41) while for � < 1

2
we can impose that (38).

33



Assumptions under Asymmetric Spillovers

B.1 It is easily found that equilibrium quantities as function of R&D investments are

given by:

(42) q�i =
1

3

�
(a� c) +

�
2� �j

�
xi + (2�i � 1)xj

�
for i; j = 1; 2 ; i 6= j. Therefore

(43) �i (q
� (x)) =

1

9

�
(a� c) +

�
2� �j

�
xi + (2�i � 1)xj

�2 � 

2
x2i :

Substituting in Eq. (42) or in Eq. (43), x�i = 0, x�j = c, �i = 0 and 0:5 < �j <

1, we obtain that under asymmetric spillovers the condition a > 2c is again needed to

guarantee an interior Cournot pro�le of equilibrium quantities, and hence the strict positivity

of equilibrium pro�ts.

B.2 Given our assumptions on spillovers for the simultaneous noncooperative R&D in-

vestment game, that is, �Ni = �Nj � 0:5, the SOC for the investment game played a� la

Cournot does not vary and requires that, for every i = 1; 2,

(44) 
 >
2

9

�
2� �Ni

�2
:

Being the RHS of (44) decreasing in �Ni , we obtain that the most stringent condition on 


is given by 
 > 8
9
.

Note that this condition also guarantees that the SOC for the maximization problem of

an R&D alliance playing the investment game is respected. In this case the SOC is given by


 >
2

9

�
1 + �Ci

�2
;

and, being increasing in �Ci - and given our assumptions on �
C
i - the above condition is

respected for 
 > 8
9
.

Moreover, when both �rms play simultaneously the investment stage, and given that

�Ni = �
N
j � 0:5, best replies are contractions for 
 > 4

3
.

34



In addition, to guarantee the uniqueness of the sequential equilibrium, the contraction

approach applied to the follower best-reply requires that

(45) g0j (xi) =
2
�
2�j � 1

�
(2� �i)�

9
 + 8�i � 2�2i � 8
� < 1

Since 0:5 < �Fj < 1 and the follower�s best-reply is increasing, (45) requires

(46) 
 >
2

9
(2� �i)

�
1 + 2�j � �i

�
:

As a result, since (46) is increasing in �j and decreasing in �i, the most stringent constraint

on 
 becomes 
 > 4
3
.

B.3 First de�ne as (xi;xj) the point at which the boundary lines given by

xi = c� �ixj

xj = c� �jxi

intersect. It is easily found that:

xi =
c (1� �i)
1� �i�j

xj =
c
�
1� �j

�
1� �i�j

>From the pro�t maximization problem for a �rm under asymmetric spillovers, we have

@�i (x (q
�))

@xi
=
2 (2� �)

9
[(a� c) + (2� �)xi + (2� � 1)xj]� 
xi = 0

from which the following best-reply is obtained:

gi (xj) =
2
�
2� �j

�
(2 (a� c) + (2�i � 1)xj)�

9
 + 8�j � 2�2j � 8
�

In order to show that this best-reply lies underneath the point (xi; xj), it su¢ ces to impose

that, when the incoming spillover �i is greater that 1=2 for at least one �rm,
@�i(xi;xj)

@xi
< 0. If

this condition holds true, then the equilibrium R&D investment pro�le will lie at the interior

of the full cost reduction boundary (xi; xj). More speci�cally,

@�i (x (q
�))

@xi
=
2
�
2� �j

�
9

�
(a� c) +

�
2� �j

�
xi + (2�i � 1)xj

�
� 
 =

=
2
�
2� �j

�
9

"
(a� c) +

�
2� �j

� c (1� �i)
1� �i�j

+ (2�i � 1)
c
�
1� �j

�
1� �i�j

#
� 
 c (1� �i)

1� �i�j
< 0
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and, since
�
(a� c) +

�
2� �j

� c(1��i)
1��i�j

+ (2�i � 1)
c(1��j)
1��i�j

�
= a, the above inequality be-

comes
2a
�
2� �j

�
9

� 
 c (1� �i)
1� �i�j

< 0

requiring that:

(47) 
 >
2

9

a
�
1� �i�j

� �
2� �j

�
c (1� �i)

:

Given that, for a sequential equilibrium, 1 > �Fj > 0:5 and 0 � �Li � 0:5, the constraint
in (47), which is increasing in �i and decreasing in �j, boils down into the following condition

on 
:

(48) 
 >
a

2c

which is the most stringent one for �rm i. The boundary points required for an interior

equilibrium under noncooperative behavior and simultaneous moves were derived in the

previous section. By simply substituting for �Ni ; for i = 1; 2; we have

(49) 
 >
2a
�
2� �Ni

� �
�Ni + 1

�
9c

:

Moreover, since our assumptions assumptions on spillovers imply that �Ni � 0:5, and given
that (49) is increasing in �Ni , the (most stringent) condition on 
 becomes:

(50) 
 >
a

2c
:

For a �rm entering an R&D alliance, the constraint on 
 does not vary with respect to

the case with symmetric spillovers, but for the assumption 0:5 < �Ci � 1. As a result, the
condition

(51) 
 >
2a
�
�Ci + 1

�2
9c

:

boils down into:

(52) 
 >
8a

9c
:
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Also in this case the constraint on 
 required under cooperation (eq. 52) is the most

stringent and thus will be the one to be imposed.

Finally, combining both constraints in B.1 and in B.3 for the sequential investment game,

the most demanding condition on 
 is 
 > 1. Moreover, in the noncooperative simultaneous

investment stage, the same constraint on 
 has to be satis�ed, whilst, under the cooperative

case, it is required that 
 > 16=9.

This is the most stringent condition also employed in the numerical simulations with

asymmetric spillovers.
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Fig.1 - R&D investment for the leader (dashed line), follower (continuous line) and cooperative

�rm (dotted line) for a = 38, c = 18, 
 = 1:7, � 2 [0:1] :
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Fig.2 - Payo¤ for the leader (dashed line), follower (continuous line) and cooperative �rm (dotted

line) for a = 38, c = 18, 
 = 1:7, � 2 [0:1] :
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Fig 3: R&D investment for a leader (dashed line), a follower (solid thick line), a cooperative firm (dotted thick 

line), a non-cooperative firm (solid line) for a=38, c=18, γ = 2, ,6.0=F
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Fig 4: payoffs for a leader (dashed line), a follower (solid thick line), a cooperative firm (dotted thick line), 

a non-cooperative firm (solid line) for a=38, c=18, γ = 2, ,6.0=F
jβ .8.0=C

i
β  

 

Investment 

β
~

 

N
i

L
i ββ ,  


	copertinaTR-7
	Southern Journal R&D-complete

