Working Paper n. 158
Eleonora Cavallaro, Piero Esposito, Alessia Matano and Marcella Mulino
Technological catching up, quality of exports and competitiveness: a sectoral perspective

Roma, Novembre 2012
Technological catching up, quality of exports and competitiveness: a sectoral perspective*

Eleonora Cavallaro*, Piero Esposito**, Alessia Matano*** and Marcella Mulino****

Abstract

In the paper we focus on emerging market economies’ pattern of trade, with a view to explaining the different features of competitiveness for high skill- and low skill-intensive firms. We consider a theoretical dynamical setup where high-skill firms engage in innovation activity and gain market shares in high-income “quality dominated” markets thanks to technological catching up, whereas low-skill firms face price competition for their exports. On the basis of the theoretical model, we run econometric estimations for trade between CEECs and EU economies over the period 2000-2007. In the econometric analysis we first test the assumption that UVR is an adequate indicator of quality in trade, showing that in high skill-intensive firms it is systematically correlated to domestic and foreign technological variables; we then use the fitted UVR in the estimation of the role of preference for quality in the evolution of CEECs’ market shares. The estimations support the results of the theoretical model as to the role of non-price competitiveness stemming from quality-supply as well as quality-demand factors.

Keywords: Vertical innovation, Knowledge spillovers, Product quality, International competitiveness.

JEL: F120, F140, F150, O320

* We wish to thank S. De Nardis, B. Maggi, the participants in the 11th Bi-Annual EACES Conference (Tartu, 26-28 August 2010), the 51 SIE Conference (Catania, 15-16 October 2010), the international workshop “The Role of Business Services for Innovation, Internationalization and Growth” (Sapienza University of Rome, 2-3 December 2010) and an anonymous referee for helpful comments and suggestions. The usual disclaimer applies. Financial support by the Sapienza University of Rome and the University of L’Aquila is gratefully acknowledged.

** Sapienza University of Rome, Department of Economics and Law, Via del Castro Laurenziano 9, 00161, Roma. Email: eleonora.cavallaro@uniroma1.it (corresponding author).

*** Scuola Superiore Sant’Anna, DIRPOLIS, Pisa. Email: p.esposito@sssup.it

**** Università dell’Aquila, Dipartimento di Ingegneria Industriale e dell’Informazione e di Economia. Email: marcella.mulino@univaq.it
1. Introduction

In explaining patterns of international specialisation economists commonly refer to the benchmark cases of North-North and North-South trade. In North-North trade frameworks, economies manufacture and export similar products, and market competition is ruled by the ability to introduce a new variety or to step up the quality ladder. In North-South trade cases, high-skill endowed economies manufacture and export innovative products, whereas low-skill endowed countries specialize in low-cost, imitated products. Very little is said about emerging market economies (EMEs) that are placed in between the two cases above. In fact, despite their lower level of per-capita income compared to the rich countries of the North, EMEs generally feature high growth rates of output and a catching-up process on the run; notwithstanding the differences with respect to advanced economies, these economies show a tendency towards a convergence in trade patterns. All this makes EMEs an attractive case study for international economists. Of special interest is the case of the Central and Eastern European countries (CEECs) that have recently joined the European Union (EU). Understanding the evolution of CEECs’ structure of trade and export competitiveness is particularly highlighting in the debate on the European enlargement process as a driver of economic convergence. Indeed, economic integration has fostered the exchange in goods and services, business contacts, and so on, and is thus expected to have promoted the dissemination of knowledge which provides the mechanism for accelerating the economic catching-up.\(^2\) The enlargement process is thus likely to have induced an increasing economic similarity between CEECs and the more advanced EU countries, which ought to be reflected in the evolution of trade patterns. A number of contributions in the literature addresses the issue of CEECs’ trade structure convergence towards EU’s patterns; yet, limited attention has been drawn to the role of the

\(^2\) Yet, economic integration \textit{per se} is not sufficient for a successful catching up; the so-called “advantage of relative backwardness” takes place only in the presence of “absorptive capacity” (Abramovitz 1986), i.e., the availability of technological capabilities, particularly in terms of skilled workers. This factor ultimately determines the ability or inability of any given country to exploit the dynamical gains from trade.
enlargement process as a driver of CEECs’ technological catching up and export performance.\(^3\) With this paper we add to the above strand of literature, by providing a theoretical and empirical contribution to the analysis of the relationship between the evolution of CEECs’ competitiveness at the industry-level and the process of technological catching up induced by economic integration with more advanced EU economies. The novelty of our paper is the explanation of sectoral differences in export competitiveness and market shares’ growth as the result of a skill endowment-driven specialization that makes high skill-intensive (HS) firms able to benefit by economic integration, catch up technologically with more advanced European foreign firms, and succeed in “quality-dominated” market”.

In view of validating the idea pursued in the paper, we develop a theoretical setup where we explicitly take into account sectoral differences in technological capabilities and skill intensities. This allows us to explain the different features of competitiveness in trade: HS firms face a “non-price” competition in European markets based on the ability to succeed in the quality upgrading of manufactured products, whereas low-skill (LS) firms face a traditional price competition, fundamentally centred on the ability to preserve a lower labour cost dynamics. Hence, our analysis is set in a dynamical perspective, with a view to explaining market penetration for HS firms as the result of an innovation-driven quality upgrading process. To this end, we first derive analytically export functions where the relative quality content of any product determines its share in importer’s expenditure; we then explain market shares’ growth with firms’ ability to improve the relative quality content of their exports. In this respect, we differ from Hallak (2006), since we model analytically the technological catching-up fuelled by economic integration as the engine of a dynamical process of increasing competitiveness in “quality-dominated markets”. To our knowledge, this aspect is completely new in the literature.

As to the empirical analysis of the paper, we first test at the sectoral level the assumption that unit value ratios (\(UVR\)) provide an adequate proxy for quality in trade; we then assess the role

\(^3\) Among the most recent contributions on this topic are the works by Cavallaro and Mulino (2008 and 2009a), Caporale et al. (2009).
of preference for quality in explaining trends in market shares. In the empirical literature the use of UVR to proxy quality is not new (Schott 2004, Hummels and Klenow 2005, Hallak 2006, Hallak and Schott 2011), but the appropriateness of such a choice could well be questioned. We thus preliminary regress UVR changes against several variables measuring domestic and foreign knowledge that in our theoretical setup drive the process of quality upgrading. In a second step, on the basis of the estimation results that validate our assumption for HS industries, we use the fitted UVR changes to proxy product quality changes in the estimation of the evolution of HS’s market shares. Our econometric procedure differs from Hallak (2010) that uses per-capita income to measure exports’ quality content. Indeed, here we are interested in emphasizing the evolution of CEECs’ trade patterns and understanding its determinants, and for this purpose the use of a sectoral UVR is more appropriate, given that CEECs’ level of per-capita income is lower than EU members’, even though the quality content of their advanced products is comparable to EU’s.

The paper is organized as follows. Section 2 presents an overview of the literature on product quality and trade; section 3 develops the basic relationships of the theoretical model, and derives export functions for HS and LS industries. Section 4 analyses the dynamical implications for market penetration of price or quality competitiveness, and formalizes the role of international knowledge diffusion as driver of a successful competitiveness in “quality-dominated” markets. Sections 5 develops the empirical analysis of the paper with reference to the CEECs. We first provide empirical evidence related to market penetration and price and non-price competitiveness, at the industry level, for the period 2000-2007; we then test at the sectoral level the assumption that UVR provides an adequate proxy for quality in trade and finally estimate the role of quality upgrading in HS firms’ market shares changes over the period considered. Section 6 draws some final conclusions.
2. Product quality and trade: a survey of the literature

This paper contributes to the existing theoretical and empirical literature on the role of product quality in trade, pioneered by Linder (1961). Linder predicted that similar countries would trade more intensely with one another, as they share similar production and consumption patterns. Since firms in the manufacturing sector respond primarily to domestic demand, high-income countries specialize in high-quality goods for the domestic market, and then become exporters of such goods to countries with similar per-capita income.

Although the “Linder hypothesis” encloses both a supply- and a demand-side explanation of the relationship between product quality and trade, research in this area has focused distinctively on the two aspects. As to the production side, some authors point to the relationship between per-capita income and quality production, and find evidence of a strong correlation between export prices and countries’ per-capita income, in that richer countries export higher quality goods at higher prices (Hummels and Klenow, 2005). The explanation, as in Murphy and Shleifer (1997) and Schott (2004), is based on factor endowments considerations: capital- and skill-abundant countries exploit their advantage in the production of higher quality goods, that command a relatively higher market price. In the same vein, but in a North-South context, Flam and Helpman (1987) and Stokey (1991) present a quality-based product cycle model where Northern countries that engage in R&D activity manufacture and export innovative, higher quality products, whereas Southern countries have a comparative advantage in low-cost, labour-intensive productions and export imitated products. As a result, rich countries’ endowment-driven comparative advantage in the production of vertically superior varieties brings about differences in per-capita income, which are reflected in the observed international patterns of consumption. As to the demand-side, most contributions investigate the relationship between per-capita income and demand for quality; evidence of wealthier countries consuming high-quality goods in larger proportions than poorer countries is provided by Bils and Klenow (2001), Brooks (2006), Hallak (2006), Verhoogen (2008). The last two authors offer a
theoretical foundation of the empirical results based on non-homotheticities in the demand for quality, that makes countries differ in their willingness to pay for vertically superior varieties.

Despite the numerous empirical validations of the role of quality in trade, the Linder hypothesis as such has found scarce empirical support. Hallak (2010) shows that the above failure is due to the systematic bias induced by the aggregation across sectors. Hallak’s theoretical framework includes both quality demand and supply: countries’ expenditure shares on different quality products varies with per-capita income, whereas quality supply is assumed to be systematically related to per capita income. The combination of the above demand and supply determinants into a gravitational-type specification leads to the estimation of bilateral trade flows at the sectoral level, where differences in cross-country income per capita represent the Linder term. This turns out to be significant and with the correct sign.

As to the role of quality in trade with specific reference to the CEECs, the contributions in the literature are not numerous. Aturupane et al. (1999) find that trade of similar goods of different quality (vertical intra-industry trade) have been gaining a predominant role in two-way trade between CEECs and richer EU-15, as early as the first half of the 1990s. The authors link the above evolution to inward FDI as well as skill intensity of production and imports of intermediate goods. Subsequent contributions emphasize that CEECs exports’ improvement have been due especially to the specialization in up-market, up-quality products. In fact, with reference to a sub-set of these countries, Dullek et al. (2005) show that over the period 1995-2000 the composition of exports towards EU-15 has shifted towards higher-quality segments within industries. Benkovskis et al. (2010) confirm that the above is an on-going process, showing that a large part of the increase in the prices of CEECs’ exports towards the EU in the period 1999-2009 results from improving quality, albeit the quality level of CEECs’ exports is still lagging behind in comparison with German exports. The link between CEECs’ quality upgrading in manufactured products and competitiveness in EU markets is addressed by Cavallaro and Mulino (2008) who find that CEECs’ success in “quality-dominated” markets is based on technology spillovers linked to deeper economic relations.
among European partners, as well as their capability to absorb foreign technology. The association between CEECs’ quality upgrading and increase of (world) market shares is also highlighted by Fabrizio et al. (2007).

3. The theoretical model

We consider an emerging economy that trades with a technologically more advanced foreign country, where we distinguish between HS firms that engage in research activity and manufacture advanced products, and LS firms that manufacture traditional products. As in recent trade theory, the framework considered is that of a semi-small open economy, where imported goods are purchased at given world prices, and producers of final goods compete monopolistically in international markets, given that traded products substitute imperfectly for each other in households’ demand. We assume no tariffs, transportation costs or other trade barriers, and that all factors of production are immobile.

3.1 The supply side

We distinguish between two types of final products: advanced and traditional. The N differentiated advanced goods - indexed by n, with $n=1, \ldots, i, \ldots, N$ - are manufactured with high-skilled labour and an aggregate of advanced intermediate inputs that embody quality improvements stemming from research activity. As in new-Schumpeterian quality ladder models, firms that manufacture innovative intermediates engage in research activity in order to create blueprints. When they succeed in up-front research they have the ability to gain industry leadership for the innovative product. We characterize the typical HS firm that manufactures the advanced final product, Y_i, by the following technology:

$$Y_i = F_i H_i^a A_i^{1-a}$$

(1)
where H_i is employment of high-skilled labour, A_i the amount of intermediates in the manufacture of the final product by firm i and F_i is an arbitrary constant reflecting the choice of units.\(^4\) We follow Grossman and Helpman (1991) in modeling the intermediate goods sector and assume that firms employ a fixed assortment of vertically differentiated intermediate inputs, indicated by the following index:

$$\log A = \int_0^1 \log \left(\sum_z q_{z \kappa} Z_{z \kappa} \right) dz$$

(2)

where $Z_{z \kappa}$ represents the component z, of the κ^{th} generation, in the index A, whose quality is $q_{z \kappa}$. To simplify we let the innovation process be such that each new intermediate provides γ additional services with respect to the good of the previous generation, that is $q_{z \kappa} = \gamma q_{z (\kappa-1)}$, with $\gamma > 1$.

The research sector is portrayed as in the patent-race literature. Firms target their research effort at the quality upgrading of any leading-edge production process; they issue equity to finance the R&D race and use a constant-return-to-scale technology where skilled labour is the only input. Any firm that engages H_R labour resources in industry z at time t is able to produce the new good with probability t_H.\(^5\) The probability of gaining success in lab activity is proportional to the resources devoted: to achieve a research intensity of t_H, it is necessary to invest $H_R = \ell_H t_H$ units of labour services per unit of time, where ℓ_H is a parameter reflecting the productivity of labour in research. Firms will invest labour in research activity up to the amount for which the cost of R&D activity equals the expected revenues.

As to the manufacture of advanced intermediates A, firms use a constant-return-to-scale technology that employs only labour. Given monopolistic competition and limit pricing outcome,

\(^4\) To save on notation we have omitted the time index.

\(^5\) The arrival of research successes is guided by a Poisson process, with t denoting the parameter of the density function. Although the arrival of research successes among firms is guided by independent Poisson processes, by the law of large numbers, the process of technological advance at the aggregate level is smooth and non-random. See Grossman and Helpman (1991).
all intermediates bear the same price. Since better quality inputs are more productive, in that they allow to produce a higher-quality final good, producers of final goods buy only state-of-the-art varieties. Given that all demanded components Z are employed in equal quantities, the aggregate intermediate A can be expressed as $A = qZ$ where Z denotes the aggregate volume of intermediates and q is an index of the productivity of intermediates which is proportional to the total “number” of R&D successes. Hence, the resulting quality content embodied in advanced final products reflects the country’s state of knowledge, at a given time t.

In addition, in the economy there are M differentiated traditional products - indexed by m, with $m = 1,\ldots, j,\ldots, M$ - that are manufactured with low-skilled workers. The representative LS firm that manufactures a traditional product j is characterized by the following technology:

$$Y_j = F_j(L_j B)^\theta$$ \hspace{1cm} (3)

where F_j is an arbitrary constant reflecting the choice of units, L_j is employment of low-skilled labour and B denotes a learning-by-doing process that increases workers’ productivity. In particular, we assume learning by doing to be linked to the stock of knowledge accumulated in the economy. The idea is that the innovative activity taking place in the HS industry leads to the spread of general knowledge that may be partly seized by LS firms. Since domestic knowledge is embodied in advanced intermediate inputs, we assume the learning-by-doing process to be linked to the production of these intermediates. At the same time, economic integration with more advanced economies favours the diffusion of foreign knowledge, in particular through the channel of foreign direct investments. We thus posit $B = \mu(A^*A^{\mu(1-\varepsilon)})$, with $\mu', \mu'' < 0$, where μ is a function denoting the LS firm’s ability to absorb externally generated knowledge present in the public domain. We assume that the contribution of the accumulated knowledge to LS firms’ productivity growth exhibits decreasing returns due to the difficulties of learning in the presence of growing complexity of advanced intermediates and sectoral specificities. Parameters ε and $(1-\varepsilon)$ are the weights of the domestic and foreign sources of learning, that is, A and A^*, respectively.
3.2 The demand side

Preferences of any domestic household h are described by the following intertemporal utility function

$$U^h_t = \int_{t}^{\infty} e^{-\rho(t-t')} \log u^h_t dt$$ \hspace{1cm} (4)

where ρ represents the subjective discount rate and u^h_t the following instantaneous utility function:

$$u^h_t = \left(C_A^h\right)^{\alpha} \left(C_T^h\right)^{1-\alpha}$$ \hspace{1cm} (5)

where

$$C_A^h = \left\{ \sum_n \left[\sum_{\kappa} (q_{H(\kappa)})^\rho C_{H(\kappa,n)} \right]^{\sigma_A} \sum_n \left[\sum_{\kappa'} (q_{F(\kappa')})^\rho C_{F(\kappa',n^*)} \right]^{\sigma_A} \right\}^{1/\sigma_A}$$ \hspace{1cm} (6)

and

$$C_T^h = (M + M^*)^{1-\sigma_T} \left(\sum_m (C_{Hm})^{\sigma_T} + \sum_m (C_{Fm})^{\sigma_T} \right)^1$$ \hspace{1cm} (7)

In equation (5) C_A^h denotes consumption of advanced goods and C_T^h of traditional products. Equation (6) states that C_A^h is a function of the level of consumption of each domestic advanced good n, $C_{H(\kappa,n)}$, and of each foreign advanced good n^*, $C_{F(\kappa',n^*)}$, where $n^* = 1, \ldots, n^*, \ldots, N^*$. Each distinct advanced product may be manufactured in an infinite number of ways, corresponding to a different vintage κ; different vintages of a given product substitute perfectly for one other, once the appropriate adjustment is made for the different quality levels; $q_{H(\kappa)}$ is the quality level embodied in vintage κ of any domestic advanced good, and analogously $q_{F(\kappa')}^*$ is the quality level embodied in vintage κ^* of any foreign high-tech good. Equations (5)-(7) state that each consumer maximizes static utility by devoting a fraction α of her expenditure to the set of advanced goods and the remaining fraction to the set of traditional goods; within the advanced set, preferences over home and foreign products are modelled according to a quality-adjusted CES function, so that the whole set of the N domestic and N^* foreign varieties, are
demanded. Thus, once the distribution of expenditure across advanced and traditional goods has been set, the consumer first selects among generations of any available domestic and foreign product, \(n \) and \(n^* \), the brand of vintage \(\hat{k} \) and \(\hat{k}^* \) that carries the lowest quality-adjusted price; she then allocates expenditure among the whole set of \(N + N^* \) products according to the relative prices and relative quality content.\(^6\) The functional form (6) implies a constant elasticity of substitution between advanced goods, given that \(\sigma_A = \frac{\theta_A - 1}{\theta_A} \), where \(\theta_A \) is the constant elasticity of substitution between each pair of advanced goods. The weight of each good in the consumption of the advanced bundle is proportional to its quality level \(q_{H(k)} \) or \(q_{F(k^*)} \); \(\omega \) is a positive parameter that measures the household’s intensity of preference for quality, as in Crinò and Epifani (2008), Hallak (2006).

As to traditional goods, \(C^h_T \) is a function of the level of consumption of each traditional domestic good \(m \), \(C_{hm} \), and each foreign good \(m^* \), \(C_{hm^*} \), where \(m^* = 1, ..., j^*, ..., M^* \). Equation (7) assumes a constant elasticity of substitution between traditional goods, given that \(\sigma_T = \frac{\theta_T - 1}{\theta_T} \), where \(\theta_T \) is the constant elasticity of substitution between each pair of traditional goods; moreover, all traditional goods enter \(C^h_T \) symmetrically.

Optimal allocation of expenditure across the \(N \) domestic and \(N^* \) foreign (state-of-the-art) products implies the following demand function for domestic advanced consumption good \(i \), \(C_{Hi} \), with quality \(q_H \) and price \(P_{Hi} \) (see Appendix for details):

\[
C_{Hi}^h = \left(\frac{P_{Hi}}{P_A} \right)^{-\theta_A} \left(Q_H \right)^{\theta_A - 1} \frac{\alpha E^h}{D^A} \tag{8}
\]

\(^{6}\) Once the above two static maximization problems have been solved, the optimal allocation of expenditure across time is readily obtained as the solution to a standard intertemporal maximization problem. The occurrence of a two-stage static optimization problem stems from the presence of both a vertical and a horizontal dimension in consumer’s preferences. See Grossman and Helpman (1991).
where αE^h denotes the representative consumer’s share of expenditure over advanced goods, P^A the advanced goods price index consistent with the quality-adjusted CES type of preferences, and where $Q_h = \frac{\sum_{n=1}^{N} (q_H)^{\omega}}{\sum_{n=1}^{N'} (q_F)^{\omega} + \sum_{n=1}^{N'} (q_F)^{\omega}}$. Equation (8) shows the role of the relative quality content of goods in the structure of demand for advanced products. In fact, Q_h is a “distribution” parameter in that it gives the share of the (advanced goods) expenditure devoted to domestic good i, for given relative prices.

Analogously, with respect to the demand for any domestic traditional good j, we obtain a demand function of the form:

$$C^h_{Hj} = \left(\frac{P_{Hj}}{P^T} \right)^{-\theta_T} \frac{(1-\alpha)E^h}{(M + M^*)P^T}$$

where $(1-\alpha)E^h$ represents the representative consumer’s share of expenditure over traditional goods and P^T is the traditional goods price index consistent with the CES-type of preferences.

Comparison of equations (8) and (9) makes clear the implications of the inclusion of the quality dimension in consumers’ preferences. To see this clearly, we re-express relative demand between any domestic and foreign advanced product and between any domestic and foreign traditional product, respectively, as:

$$\frac{C^h_{Hi}}{C^h_{Fi'}} = \left(\frac{P_{Hi}}{P_{Fi'}} \right)^{-\theta_T} \left(\frac{q_H}{q_F} \right)^{\omega (\theta_A - 1)}$$

$$\frac{C^h_{Hj}}{C^h_{Fj'}} = \left(\frac{P_{Hj}}{P_{Fj'}} \right)^{-\theta_T}$$

The above equations show that for given relative prices and elasticity of substitution, relative demand for advanced goods depends on products’ quality ratio; moreover the higher is the intensity of quality preference, ω, the more relative quality matters. Our result is in line with Hallak (2006) that argues that high-quality products have easy access to rich markets where high-income consumers are more quality oriented. On the contrary, relative demand for traditional products
depends only on relative prices, for any given elasticity of substitution, just as in traditional CES-type preferences.

We now focus on the emerging country’s exports, that is, on foreign demand for advanced and traditional products. To this end we let the structure of foreign preferences to be symmetric to the one given in equation (5) so that, at each time \(t \), the representative foreign household’s demand for any (domestic) advanced product \(i \) is given by substituting her intensity of preference for quality, \(\omega^* \), and her expenditure, \(\alpha E^{h^*} \). Same applies to non-residents’ demand for any domestic traditional product \(j \).

At each time \(t \), exports of high-tech domestic goods are obtained by aggregating the individual demand functions for the whole set of \(N \) domestic advanced goods:

\[
X^A = \sum_{h^{*}} \sum_{m} P_{h^{*}} \left(\frac{P_{h^{*}}}{P^{A}} \right)^{-\theta_A} Q_{h^{*}}^{(\theta_A - 1)} \frac{\alpha E^{h^*}}{P^{A}}
\]

Correspondingly, exports of traditional domestic goods are given by:

\[
X^T = \sum_{h^{*}} \sum_{m} P_{h^{*}} \left(\frac{P_{h^{*}}}{P^{T}} \right)^{-\theta_T} \frac{(1 - \alpha)E^{h^*}}{(M + M^*)P^{T}}
\]

4. Market penetration and quality dynamics

The focus now is on the dynamical implications of the different kind of competitiveness faced by HS and LS firms, as resulting from the two functional forms obtained above (equations 10 and 11). To see this we look at the evolution of HS and LS market shares. We define the market share of domestic HS firms as the ratio of non-residents’ imports, \(X^A \), to non-residents’ purchases of advanced products produced in their country, \(G^A \). Given the monopolistic competition setting, where all domestic firms producing high-tech goods have identical technology and face the same
demand, we have a symmetric equilibrium where all domestic firms of the advanced industries fix the same price, \(P_H = P_H^A \). Thus, we may reformulate equation (10) as

\[
X^A = N \left(\frac{P_H^A}{P^A} \right)^{1-\theta_A} Q_H^{(\theta_A-1)} \alpha E^* \tag{12}
\]

where, now, \(\alpha E^* \) denotes aggregate foreign expenditure over the EME’s advanced products, expressed in terms of the domestic currency. In turn, by assuming \(P_{F^*} = P_{F^A}^* \), the equation for non-residents’ purchases of advanced products manufactured in their own country is

\[
G^A = N^* \left(\frac{P_{F^A}}{P^A} \right)^{1-\theta_A} Q_{F^*}^{(\theta_A-1)} \alpha E^* \tag{13}
\]

The evolution of high-tech products’ market shares is then readily derived by taking the logarithmic differentiation with respect to time of the ratio of equations (12) and (13):

\[
\tilde{X}^A - \tilde{G}^A = \left(1 - \theta_A \right) \left[\left(\tilde{P}_H^A - \tilde{P}_{F^A}^* \right) - \omega^* \left(\tilde{q}_H - \tilde{q}_{F^*} \right) \right] \tag{14}
\]

Same applies to traditional products, where equation (11) for non-residents’ imports is restated as

\[
X^T = \frac{M}{M + M^*} \left(\frac{P_{H}^T}{P^T} \right)^{1-\theta_T} \left(1 - \alpha \right) E^* \tag{15}
\]

where \(P_{H^T} = P_H^T \) and where \(\left(1 - \alpha \right) E^* \) denotes aggregate foreign expenditure over the EME’s traditional products, expressed in terms of the domestic currency. Given \(P_{F^T} = P_{F^T}^* \), the equation for non-residents’ purchases of traditional products manufactured in their own country is

\[
G^T = \frac{M^*}{M + M^*} \left(\frac{P_{F^T}^*}{P^T} \right)^{1-\theta_T} \left(1 - \alpha \right) E^* \tag{16}
\]

so that the evolution of market shares for low-tech products is

\[
\tilde{X}^T - \tilde{G}^T = \left(1 - \theta_T \right) \left(\tilde{P}_{H}^T - \tilde{P}_{F^T}^* \right) \tag{17}
\]

The authors develop the general equilibrium analysis for a similar model in a previous paper (Cavallaro and Mulino, 2009); interested readers may refer to that paper for details.
It appears clearly that, in the case of advanced products, market penetration abroad depends on the evolution of both the pure price term and the quality differential term; the weight of the latter depends on the intensity of foreign consumers’ preference for quality. The implications for competitiveness and export orientation are twofold: firms that well-perform in “quality dominated markets” are able to expand along the “intensive margin”, that is, to gain market shares even at constant or increasing relative prices. Moreover, were the intensity of quality demand related to consumers’ income as stated in Hallak (2006), high-tech innovative goods would find easier markets in high-income countries.

On the other hand, firms of traditional industries can only engage in a traditional “price competition” in order to penetrate foreign markets. In this respect, the learning-by-doing technology brings about labour productivity increases that loosen the pressure on wages which is required to keep market shares constant. It turns out that the innovation activity in the advanced sector has positive external effects on the traditional firms too, and hence the determinants of the pace of innovation in the advanced sector of the economy are important for the overall evolution of the country’s performance in international markets.

As standard in neo-Schumpeterian growth models, we assume that firms step up the quality ladder thanks to innovations resulting from the devotion of labour resources to research activity. In our analysis we consider international spillovers as important factors in the building up of an emerging economy’s stock of knowledge, and hence take as relevant for the process of quality upgrading a concept of knowledge capital that includes both domestic and foreign know-how. Some contributions in the literature include international knowledge spillovers in models where innovation activity is conceived as a horizontal process of increasing varieties. Here, we focus on a vertical innovation process and assume the following technology for quality upgrading (see Cavallaro and Mulino 2008):

8 We consider international R&D spillovers, FDI, business contacts, as the means that may convey technology transfers in our model. As suggested in Keller (2004), the above are among the strongest form of knowledge diffusion.
\[
\frac{dq_H}{dt} = K_H \frac{H_r}{\ell_H} \log \gamma \tag{18}
\]

where \(K_H \) is the economy’s overall stock of knowledge capital, at a given time \(t \), specified as

\(K_H = K[q_H, q_F] \). Equation (18) states that the research intensity in the domestic R&D sector is increased by the overall stock of knowledge capital, as standard in innovation-driven endogenous growth models with international knowledge spillovers. We take \(K(\cdot) \) to be increasing in both arguments and homogeneous of degree one. The latter assumption allows us to define the “intensive” function \(\Psi = K\left[1, (q_F / q_H)\right] \) such that \(K_H = q_H \Psi(q_F / q_H) \). The function \(\Psi(\cdot) \) reflects the existence of international spillovers. The case of no international spillovers is one where \(\Psi(q_F / q_H) = 1 \) or any positive constant.

Rearranging, we can express the growth rate of quality in the research sector as:

\[
\tilde{q}_H = \Psi\left(\frac{q_H}{q_F}\right)^{-1} \frac{H_r}{\ell_H} \log \gamma \tag{19}
\]

where \(\left(\frac{q_H}{q_F}\right) \) is a measure of the knowledge gap between the two countries. Equation (19) emphasizes the convergence pattern of integrated economies: the growth of quality over time is positively related to the technological disadvantage of the laggard country, given its capacity to benefit by the international dissemination of knowledge. The specific functional form adopted for \(\Psi(\cdot) \) represents analytically the country’s absorptive capacity.

In conclusion, economic integration with more advanced countries exerts a twofold positive effect: from the supply side, it facilitates the spread of general scientific knowledge and the diffusion of more product-specific information, thus speeding up the technological catching up; from the demand side, it encourages foreign expansion of domestic firms that, thanks to their engagement in R&D activity, are able to compete in “quality-dominated markets”. The model
predicts that the positive impulses to the modern, dynamic industries are also indirectly beneficial to the traditional sectors of the economy.

5. Export quality, technology and market penetration of CEECs: econometric analysis

In this section we aim at validating equation (14) of the theoretical model, i.e., that CEECs high-tech products’ export penetration in high-income EU markets\(^{10}\) is driven by quality upgrading stemming from the accumulation of knowledge capital.

Given the focus on the role of product quality in trade, our preliminary concern is the appropriate measure of quality to be used in the econometric estimation. The empirical literature suggests two alternative possibilities: the use of either a total factor productivity parameter (Crinò and Epifani, 2010), or the UVR (Schott, 2004, Hummels and Klenow, 2005, Hallak and Schott, 2011). In our analysis we follow the latter approach by assuming the UVR to be an adequate proxy for relative quality. However, despite their common use, UVRs are also affected by factors not related to product quality, such as the unit labour cost, and this may lead to biased results.\(^{11}\) We validate the use of UVR as a proxy measure for product quality by testing the influence on UVR changes of several technological variables lying behind the accumulation of knowledge capital, that in our analysis are at the root of the process of quality upgrading.\(^{12}\) On the basis of the estimation results that confirm our assumption for high-skill industries, we then use the fitted values for UVRs changes in our successive estimation of the role of preference for quality in explaining market shares changes between 2000 and 2007. The choice of performing regressions on the overall changes instead of using panel data techniques is due to the high number of missing sectoral data,

\(^{10}\) For the CEECs we only consider the Czech Republic, Hungary, Poland and Slovenia, because of missing data on technological variables for the other countries, whereas among the EU-15 countries we do not consider Luxembourg, owing to its small dimension.

\(^{11}\) In addition, unit values suffer from measurement errors because values are collected using data from invoices, whereas quantities are often approximated or measured with error. See Deaton (1997) and Nielsen and Lüthje (2002).

\(^{12}\) Differently, Hallak and Schott (2011) deduce countries’ product quality relative to a numeraire country by decomposing observed export prices into quality and pure price components, thanks to the use of information on consumers’ valuation of products inferred from countries’ trade balances.
especially for domestic R&D expenditure. Given our focus on basic long–term trends we leave aside data referring to 2008 onward for the adverse impact of the recent global financial crisis on output growth and the volumes of trade, as well as other important variables considered in our estimation, such as FDI flows and R&D expenditure.

5.1 Data and descriptive evidence

Trade data are taken from Eurostat COMEXT database, which reports values and quantities for industrial products according to the 8-digit level Combined Nomenclature classification (CN8). The breakdown of exports according to skill intensities is based on the NACE (DA-DN) classification that divides manufactured products into 14 industries. Following a standard classification, we consider as high-tech/high-quality industries Chemical Products (DG), Machinery and Equipments (DK), Electrical and Optical Equipments (DL) and Transport Equipments (DM). In addition, some studies (Esposito and Stehrer 2009; Landesmann et al. 2009) suggest that CEECs are relatively skill intensive in Paper, Printing and Publishing (DE) as well as Coke and Refined Petroleum Products (DF) industries, whereas skill-biased technical change has been strongly concentrated in skill-intensive industries (Esposito and Stehrer 2009). Accordingly, we also include these industries among the high quality/high technology ones. All other industries are classified as low-tech/traditional. As common in most empirical contributions, we define the market share of a given industry as the ratio of exports of the reporter country to the total imports of the partner country from the EU-25 area.\footnote{We exclude from the sample Cyprus and Malta due to their small size.} We consider only intra-EU trade because of the strong linkages in manufacturing processes and the relevance of trade relationship for CEECs. We obtain trade at constant values by evaluating 2000 quantities at 2007 unit values; we then aggregate them into high-skill and traditional industries.

Consistently with our definition of market shares, the \(UVR \) is the ratio between reporter \(k \) exports towards partner \(j \) and total intra-EU imports of the partner, for each type of industry \(i \)
(UVR$_{t}^{k,v}$), and is built as a weighted average of the relative unit values at product level,14 where the weights are the shares of each product’s export in the industry’s total exports. We dropped observations belonging to the upper and lower 5% of the distribution, since large differences in unit values point to a composition effect within product categories, that is, to the presence of heterogeneous goods; in this case, it is likely that price differences are not associated with differences in the goods’ quality content. In addition, we consider that aggregate UVR of a fixed-products dataset can change either because of changes in the relative prices of products (within product changes), or because of the changing composition of the basket (between products changes) with the latter denoting changes in the export specialisation towards a different composition of the basket. Therefore, in order to isolate “pure” relative price changes, we purge composition effects by computing the within-product component of the UVR growth (UVR$_{w}$ henceforth) by weighting product-level relative prices with the initial export volume:

$$UVR_{w,t}^{k,v} = \frac{\sum_{r} p_{r,t}^{k,v} \eta_{r,t}^{k,v}}{\sum_{r} p_{r,2000}^{k,v} \eta_{r,2000}^{k,v}} \frac{\sum_{r} p_{r,t}^{EU,v} \eta_{r,t}^{EU,v}}{\sum_{r} p_{r,2000}^{EU,v} \eta_{r,2000}^{EU,v}} \text{ with } \eta_{r} = \frac{p_{r,2000}y_{r,2000}}{\sum_{r} p_{r,2000}y_{r,2000}} \quad (20)$$

where t is the time period, p is the price of the generic product r belonging to industry s, η is the share of each product in total industry’s export value and the superscripts indicate the origin (k, EU) and destination (v) markets.

As to the variables related to the accumulation of knowledge capital, we consider R&D expenditure for both CEECs4 and EU. Data are from Eurostat15 and OECD, respectively. We then use FDI data from the WIIW database on Foreign Direct Investments, that includes FDI stocks and flows in each industry for Central and Eastern European countries. As to the variables referring to the demand side, we include a “Linder term”16 ($QDEM$) where changes in quality, proxied by

14 We consider narrowly defined product categories at the CN8 level.
15 We filled missing values of R&D expenditure by imputing the average value calculated for high-tech and traditional industries separately.
16 In Linder (1961) the demand for high-quality goods depends on the consumer’s level of income.
changes in UVR_w, interact with foreign per-capita GDP in order to capture the intensity of preference for quality. Per-capita GDP is from Eurostat.

In Table 1 we present data on UVR, market shares and prices’ determinants, i.e., unit labour costs and innovation costs, over the period 2000-2007. These trends highlight the different features of competitiveness in trade for HS and LS industries. In particular, the figures related to the UVR, UVR_w and market shares point to a striking different performance between the two kind of industries. It is worth noticing the sizeable increase in market shares for HS industries, slightly below 75%, matched by the positive change in both UVR indexes which is stronger for the within products component (29%). Albeit starting from a lower level, at the end of the period HS industries recorded higher market shares than low-tech industries. The fact that firms in HS industries gain market shares at increasing UVRs is an evidence of the ability to penetrate foreign markets not so much by reducing prices as by innovating. This points to an innovation-driven successful competition in “quality dominated markets” (Aiginger 1997; Cavallaro and Mulino 2008, 2009a).

On the other hand, firms in LS industries record a modest 16% increase in their market shares, associated with approximately the same price changes.

Table 1 – Unit value ratios, market shares, prices’ determinants: levels and growth rates, CEECs-4

<table>
<thead>
<tr>
<th></th>
<th>High-skill industries</th>
<th>Low-skill industries</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVR^*</td>
<td>1.04</td>
<td>1.20</td>
</tr>
<tr>
<td>UVR_w^*</td>
<td>1.04</td>
<td>1.34</td>
</tr>
<tr>
<td>Market shares</td>
<td>2.15</td>
<td>3.74</td>
</tr>
<tr>
<td>Wages (annual) (€)**</td>
<td>5972</td>
<td>7848</td>
</tr>
<tr>
<td>Lab Prod. (€)**</td>
<td>57204</td>
<td>94609</td>
</tr>
<tr>
<td>Real R&D (mn€)***</td>
<td>730</td>
<td>1157</td>
</tr>
<tr>
<td>Real FDI (mn€)****</td>
<td>15339</td>
<td>37103</td>
</tr>
</tbody>
</table>

Sources: * Own elaboration on COMEXT data; † WIIW Industrial database on Eastern Europe; ‡ Eurostat; § WIIW Foreign Direct Investment Database.

Wages, productivity, R&D and market shares are expressed in constant (2000) prices.
Table 1 shows the sizeable increases in wages both in HS and LS industries, coupled with a remarkable favourable evolution of labour productivity; overall, over the period considered, the CEECs-4 exports wellperform in terms of traditional price competitiveness. As to innovation costs, R&D expenditure records a noticeable growth in HS industries, and a sizeable fall in traditional industries. In addition, the Table also reports data on the growth rate of inward FDI for both types of industries. As known, this variable acts as a technological vehicle for domestic innovation activity, by means of both “pure” knowledge spillovers and spillovers passing through vertical and horizontal linkages (van Pottelsberghe and Lichtenberg 2001, Keller 2004). The Table shows a faster increase for HS industries than for LS industries. Summing up, data point to a sound evidence of increasing competitiveness in EU markets for CEECs’ high-tech industries. In addition, data provide a clear indication that domestic and foreign technology have played a role in fostering export penetration, thanks to quality improvements, particularly for HS industries.

5.2 The effect of domestic and foreign technology on export unit values

The first estimation aims at capturing the part of the \(UVR_w \) change due to quality upgrading in HS industries. Following equation (19) we assume that this process is positively influenced by both domestic and foreign knowledge.

Among the regressors, we include the initial value of the relative price, in order to test the effect of the initial quality gap: according to equation (19) of the theoretical model, a country’s relative technological disadvantage can be a positive determinant of a catching-up process among integrated economies. As to technological variables, domestic knowledge is proxied by the domestic sectoral R&D expenditure (\(RD \)), whereas foreign knowledge is accounted for by considering the stock of inward FDI and foreign R&D expenditure. Our assumption that knowledge spillovers’ effects are fostered by the absorptive capacity of the exporting industry is tested by including an interaction term between inward \(FDI \) and domestic \(RD \): the expected sign of the coefficient of this interaction term is positive. In addition, we interact inward \(FDI \) with R&D
expenditure of the partner country, as in Léon-Ledesma (2005), in order to take into account the FDI technological content; also the expected influence of the latter interaction term is positive.

The resulting equation is the following:

\[
\Delta \ln UVR_{s,v}^{k,v} = \beta_0 + \beta_1 \ln UVR_{s,v}^{k,v} + \beta_2 \ln FDI_{s,k} + \beta_3 \ln RD_{s,k} + \beta_4 \ln FDI_{s,k}^{*} \ln RD_{s,k} + \beta_5 \ln \sum_{s} \gamma_{s} + \sum_{k} \gamma_{k} + \varepsilon_{s,v}
\]

(21)

where subscript \(s \) refers to the industry while superscripts \(k \) and \(v \) refer to the reporter and partner countries, respectively. We estimate the above equation by carrying out both OLS and Instrumental Variables regressions on the overall changes between 2000 and 2007. The use of the IV estimator is justified by measurement errors and the possibility of a mean-reversion bias arising from symmetric shocks specific to the initial year and from sectoral asymmetric shocks, that would affect the coefficient of the initial \(UVR_w \). In order to address this problem we run IV estimates using the average manufacturing unit value ratio of 1999 as instrument. We include sector- and reporter-specific dummies (\(\gamma_{s} \) and \(\gamma_{k} \)) while partner-specific fixed effects are not included as they are jointly not significant and cause multicollinearity. Obviously, the evolution of relative prices depends also on traditional cost determinants; consequently, we run the above estimation adding the growth rate of real wages and labour productivity. However, the results are not affected by the additional variables, since most of their effects are captured by the reporter- and sector-specific dummies.\(^{17}\) The results are presented in Table 2. As a control, we estimate equation (21) also for the sub-sample of LS industries where, according to our model, quality plays no role, so that changes in relative prices only reflect changes in unit labour costs.

By looking at Table 2, it appears that the instrument works fine, both the weak identification and under identification tests are rejected and the instrument is strongly significant (not shown). With reference to IV estimates for HS industries, from column (3) we see that the stock of inward FDI is not significant even after controlling for both domestic and foreign R&D. Similarly, the latter two variables do not exert a significant impact either. On the contrary, when we add the

\(^{17}\) The results are available upon request.
interaction terms the coefficient for the inward FDI stock (column (4)) turns significant at 1% level and with the expected positive sign. In addition, both the interaction terms are positive and significant. The above result confirms the importance of CEECs-4 absorptive capacity for the effective ability to exploit foreign know how. The positive sign of the interaction term between FDI and the partner’s R&D suggests that spillovers arising from the stock of foreign technology through inward FDI are positively correlated with the partner’s research activity. Overall, UVRw changes respond positively to technological variables, thus validating the hypothesis that changes in product quality may be proxied by changes in the UVRw. Finally, the OLS estimates in columns (1) and (2) do no differ from the corresponding IV ones, indicating that the endogeneity problem does not affect the results.

Table 2 - Technological determinants of “within” relative prices changes.

<table>
<thead>
<tr>
<th></th>
<th>High-skill industries</th>
<th></th>
<th>Low-skill industries</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>OLS</td>
<td>IV</td>
<td>IV</td>
</tr>
<tr>
<td>lnUVRw_{k,v}</td>
<td>-0.727***</td>
<td>-0.738***</td>
<td>-0.785***</td>
<td>-0.768***</td>
</tr>
<tr>
<td></td>
<td>[0.094]</td>
<td>[0.092]</td>
<td>[0.120]</td>
<td>[0.117]</td>
</tr>
<tr>
<td>lnFDI_{k}</td>
<td>0.006</td>
<td>0.100*</td>
<td>0.010</td>
<td>0.103**</td>
</tr>
<tr>
<td></td>
<td>[0.044]</td>
<td>[0.061]</td>
<td>[0.043]</td>
<td>[0.051]</td>
</tr>
<tr>
<td>R&D_{k}</td>
<td>-0.009</td>
<td>-0.022</td>
<td>-0.009</td>
<td>-0.022</td>
</tr>
<tr>
<td></td>
<td>[0.017]</td>
<td>[0.016]</td>
<td>[0.014]</td>
<td>[0.015]</td>
</tr>
<tr>
<td>lnFDI_{k} * lnR&D_{v}</td>
<td>0.017*</td>
<td>0.017*</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>[0.009]</td>
<td>[0.010]</td>
<td>[0.011]</td>
<td>[0.011]</td>
</tr>
<tr>
<td>lnR&D_{v}</td>
<td>0.035</td>
<td>-0.046</td>
<td>0.033</td>
<td>-0.048</td>
</tr>
<tr>
<td></td>
<td>[0.046]</td>
<td>[0.058]</td>
<td>[0.047]</td>
<td>[0.056]</td>
</tr>
<tr>
<td>lnFDI_{k} * lnR&D_{v}</td>
<td>0.502**</td>
<td>0.504**</td>
<td>-0.15</td>
<td>-0.171</td>
</tr>
<tr>
<td></td>
<td>[0.230]</td>
<td>[0.201]</td>
<td>[0.151]</td>
<td>[0.158]</td>
</tr>
<tr>
<td>Dummies</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Obs</td>
<td>263</td>
<td>263</td>
<td>263</td>
<td>263</td>
</tr>
<tr>
<td>R-sq</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.39</td>
</tr>
<tr>
<td>Under-id§</td>
<td>70.0***</td>
<td>71.6***</td>
<td>56.6***</td>
<td>58.8***</td>
</tr>
<tr>
<td>Weak-id§§</td>
<td>90.6</td>
<td>92.7</td>
<td>64.4</td>
<td>67.0</td>
</tr>
</tbody>
</table>

* Standard errors in Brackets; ** significant at 10%; *** significant at 5%; **** significant at 1%.
\(^{\dagger}\)Anderson canonical correlation LM statistic
\(^{\dagger\dagger}\)Cragg-Donald Wald statistic. Instrument used: average unit value.
Turning to LS industries (columns (5) to (8)), we see that none of the regressors exerts a positive and significant impact on the “within” relative unit value, and this confirms that price changes are not systematically related to innovation costs in these industries. The only significant variables are the initial relative price and the stock of inward FDI, both with a negative sign. The negative sign of inward FDI is explainable in terms of the unit-cost reduction effect of this investment activity, a result in line with the theoretical assumption of learning-by-doing driven productivity gains in these industries. Overall, the results obtained for LS industries validate the assumption of market penetration based on a traditional price competition.

Summing up, we find evidence that in high-tech industries UVR_w is positively influenced by technological variables. The estimates confirm the theoretical assumptions that technological spillovers are effective in fostering quality upgrading in CEECs-4’ HS industries and that the former are larger the higher the absorptive capacity. The above results, as expected, do not apply to LS industries.

5.3 Demand for quality and market shares

We are now able to estimate equation (14) of the theoretical model that underlines the relevance of both price and quality competitiveness in the trends of CEECs-4’ market shares with respect to each EU-14 partner country. Given the theoretical assumption, validated by the econometric analysis of section 5.2, that quality matters only for trade in advanced products, we perform the estimates only for HS industries.

We regress the growth rates of market shares on the growth rates of relative prices and on a measure of trade partners’ “preference for quality”. In this respect, as in Hallak (2006 and 2010) and Epifani (2010), we posit that the intensity of preference for quality – represented by ω in equation (14), is a logarithmic function of the importer per-capita income. This amounts to assuming that richer countries spend a larger fraction of their income on goods with a higher quality content. Given the results obtained in the first step, we are able to use the fitted values of
\[\Delta \ln UVRw_{s,t}^{k,v}, \text{ obtained from the full OLS estimates, as the proxy for goods’ quality ratio.} \]

Consequently, in the estimation of the impact of the preference for quality on market share changes we take into account the technological variables through their impact on the \(UVRw \).\(^{18} \)

We now denote the fitted values of \(UVRw \) as \(\Delta \ln \frac{UVRw_{s,t}^{k,v}}{UVRw_{s,t}^{k/v}} \). We thus build a measure of the preference for quality (the ‘Linder term’) by interacting each industry’s \(\Delta \ln \frac{UVRw_{s,t}^{k,v}}{UVRw_{s,t}^{k/v}} \) with the growth rate of per-capita GDP of the partner country. The above specification accounts for the dynamical perspective of our analysis that focuses on the innovation-driven changes in the pattern of trade. This calls for two differences with respect to Hallak (2010). First, we use the fitted values of \(UVRw \) to proxy quality, instead of per-capita income, given our focus on countries that feature a relatively lower per-capita income than EU members’, despite the quality level of HS products is comparable to EU’s. In addition, since we showed that changes in the \(UVRw \) are closely related to the technological catching up of each sector, this variable represents more faithfully the underlying dynamical tendencies taking place in the given sector. Secondly, we consider that the intensity of preference for quality may change between the initial and final year. Consequently, the preference-for-quality term we consider in our estimation of the market shares changes is:

\[
QDEMw_{s,t}^{k,v} = \Delta (\ln GDP^v \ast \ln UVRw_{s,t}^{k,v}) = \ln UVRw_{s,t}^{k,v} \ast \Delta \ln GDP^v + \\
+ \ln GDP^v \ast \Delta \ln UVRw_{s,t}^{k,v} + \Delta \ln GDP^v \ast \Delta \ln UVRw_{s,t}^{k,v}
\]

The first two terms of the RHS are not significant because their impact is captured by the fixed effects; accordingly, we use only the term \(\left(\Delta \ln GDP^v \ast \Delta \ln UVRw_{s,t}^{k,v} \right) \) as a measure of the change in preference for quality.

The equation we estimate is the following:

\[
\Delta \ln MKTSh_{s,t}^{k,v} = \alpha_0 + \alpha_1 \Delta \ln UVRw_{s,t}^{k,v} + \alpha_2 QDEMw_{s,t}^{k,v} + \\
+ \gamma_1 DC_k + \gamma_2 DC_s + \gamma_3 DC_v + \varepsilon_{s,t,v}
\]

\(^{18}\) The use of the fitted values from the first step estimation has the additional advantage to correct the endogeneity bias of the \(UVRw \) coefficient.
where $MKT_{sh_{k,v}}$ is the market share of the reporter country k in the partner country v. In the estimation $\Delta \ln \overline{UVR_{w_{k,v}}}$ captures the traditional price effect,19 $QDEM_{w_{k,v}}$, the preference for quality effect, and DC_k, DC_s and DC_v are dummy variables for reporter countries k, sectors s and partners v, respectively. In particular, partners’ dummies include the impact of the non interacted foreign GDP growth rate which should be included as a main effect in the interaction term. All variables of interest are expressed in logs, and therefore log differences represent growth rates between 2000 and 2007. We carry out OLS regression. It is worth noting that, since we consider fixed goods, i.e., only products traded both in 2000 and 2007, market shares’ changes with respect to EU competitors measure a modification in the “intensive margin”.

Table 3 - Determinants of CEECs-4 market shares’ changes in EU-14 imports

<table>
<thead>
<tr>
<th></th>
<th>High-skill industries</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \ln \overline{UVR_{w_{k,v}}}$</td>
<td>-0.962*** -0.935*** -1.097*** -1.298***</td>
</tr>
<tr>
<td></td>
<td>[0.207] [0.206] [0.203] [0.225]</td>
</tr>
<tr>
<td>$QDEM_{w_{k,v}}$</td>
<td>5.663* 6.038* 5.592* 8.002**</td>
</tr>
<tr>
<td></td>
<td>[3.112] [3.119] [3.021] [3.159]</td>
</tr>
<tr>
<td>α_0</td>
<td>0.344** 0.147 -0.18 -0.314</td>
</tr>
<tr>
<td></td>
<td>[0.127] [0.171] [0.272] [0.313]</td>
</tr>
<tr>
<td>dummies</td>
<td>no DC_k DC_k DC_s DC_v DC_v</td>
</tr>
<tr>
<td>N</td>
<td>263 263 263 263 263</td>
</tr>
<tr>
<td>R^2</td>
<td>0.0807 0.107 0.194 0.276</td>
</tr>
</tbody>
</table>

Robust standard errors in brackets. * significant at 10%; ** significant at 5%; *** significant at 1%

The results - reported in Table 3- validate our assumption of a successful competitiveness in “quality-dominated markets”: the estimated coefficients are significant and of the expected sign, i.e., negative for the relative price term $\Delta \ln \overline{UVR_{w_{k,v}}}$ and positive for the demand for quality term $QDEM_{w_{k,v}}$. In conclusion, the empirical evidence highlights that quality competitiveness is a

19 As to the price effect, we use the fitted values of UVR_{w} given that the variable has to be included as a main effect in the regression, being it part of the interacted variable $QDEM$.

20 The estimates are robust to the direct inclusion of technological variables, proving that the effect of technology on market shares operates only trough the variable used as a proxy for quality. Results are available upon request.
strong determinant of CEECs market shares changes with respect to high-income EU-14 countries over the period considered.

6. Concluding remarks

In the paper we consider the role of vertical innovation in the evolution of competitiveness in trade for emerging market economies undergoing a process of economic integration with technologically advanced countries. We first address the issue from a theoretical point of view, and then provide some empirical evidence of the main theoretical results by considering trade between CEECs and EU.

In the theoretical part of the work we distinguish between HS industries where firms produce technologically advanced goods, thanks to research activity, and LS industries where firms manufacture traditional products. Households derive utility by consuming both advanced and traditional products, manufactured home and abroad, and preferences are such that relative demand for advanced products depends on relative prices and the relative quality content of domestic and foreign products, whereas relative demand for traditional products depends solely on relative prices. Hence, HS firms compete in “quality dominated markets” and non-price effects stemming from quality differences matter for market penetration, whereas traditional firms rely on a standard cost competition. The model shows the role of supply of and demand for quality in shaping the pattern of trade; this turns out to depend, on one side, on the emerging economy’s ability to reduce its quality gap with respect to rich competitors, also thanks to knowledge spillovers fuelled by economic integration and, on the other side, on the partner’s intensity of quality preference.

Our empirical investigation is carried out with reference to changes in market shares of CEECs products in EU markets over the period 2000-2007. Descriptive evidence suggests that CEECs-4 have engaged successfully in innovation-driven competition in EU “quality dominated markets”. We run an econometric analysis in two successive steps. We first test the assumption that $UVRw$ is an adequate measure of quality, showing the existence of a systematic correlation with
domestic and foreign technological variables. We then use this measure of quality to assess the role of preference for quality in CEECs-4' exports towards EU markets, finding that the increase in advanced products’ market shares is significantly correlated to the intensity of quality preference of high-income EU countries. Our estimations definitely support the conclusions obtained in the theoretical model.

References

Appendix - Solution to the consumer’s static maximization problems.

A) Allocation of expenditure for each product across quality levels

In the first stage of utility maximization each consumer h allocates expenditure within-product quality levels, κ and κ^*, by solving the following static problem:

$$\max_{C_{H^{(\kappa)}}} \sum_{\kappa} q_{H^{(\kappa)}} a^{\kappa} C_{H^{(\kappa,n)}}$$

for $n = 1, \ldots, N$

s.t.

$$E^h_n = \sum_{\kappa} P_{H^{(\kappa,n)}} C_{H^{(\kappa,n)}}$$

and

$$\max_{C_{F^{(\kappa^*)}}} \sum_{\kappa^*} q_{F^{(\kappa^*)}} a^{\kappa^*} C_{F^{(\kappa^*,n^*)}}$$

for $n^* = 1, \ldots, N^*$

s.t.

$$E^h_{n^*} = \sum_{\kappa^*} P_{F^{(\kappa^*,n^*)}} C_{F^{(\kappa^*,n^*)}}$$

where E^h_n and $E^h_{n^*}$ are consumer’s expenditures in advanced domestic and foreign industries n and n^*, respectively, at time t, with $\sum_n E^h_n + \sum_{n^*} E^h_{n^*} = \alpha E^h$, and where $P_{H^{(\kappa,n)}}$ and $P_{F^{(\kappa^*,n^*)}}$ are the prices of the brands κ and κ^*, and αE^h is consumer’s expenditure on advanced products.

For any good n, utility maximization implies a positive demand only for the brand $C^h_{H^{(\hat{\kappa},n)}}$ that carries the lowest quality-adjusted price:

$$C^h_{H^{(\hat{\kappa},n)}} = \frac{E_n}{P_{H^{(\hat{\kappa},n)}}},$$

$$C^h_{H^{(\kappa,n)}} = 0 \text{ for all vintages } \kappa \neq \hat{\kappa}.$$

where $P_{H^{(\hat{\kappa},n)}}$ is the price of the brand $\hat{\kappa}$ that carries the lowest quality-adjusted price.

The consumer is thus indifferent between quality vintages κ and $\kappa - 1$ of any domestic product n if and only if $\frac{P_{H^{(\kappa,n)}}}{P_{H^{(\kappa-1,n)}}} = \gamma^\kappa$, where $\gamma = \frac{q_{H^{(\kappa)}}}{q_{H^{(\kappa-1)}}}$ is the increase in quality between two successive vintages. Same reasoning applies to choice among quality vintages of any foreign product n^*.

32
B) Allocation of expenditure across (state-of-the-art) products

In the second stage, each consumer optimally allocates expenditure across the \(N \) domestic and \(N^* \) foreign (state-of-the-art) advanced products. The demand function in equation (9) follows from the solution to the following static optimization programme:

\[
\max_{c_{n}(\cdot)}\left[\sum_{n} \left(g_{H(n)} \right)^{H(n)_{\tilde{k},n}} + \sum_{n^*} \left(g_{F(n^*)} \right)^{F(n^*)_{\tilde{k}^*,n^*}} \right]^{\frac{1}{\sigma_{a}}}
\]

\[
\alpha E^{h} = \sum_{\tilde{k}} \sum_{n} P_{H(n,\tilde{k})} C_{H(n,\tilde{k})} + \sum_{\tilde{k}^*} \sum_{n^*} P_{F(\tilde{k}^*,n^*)} C_{F(\tilde{k}^*,n^*)}
\]

s.t. where \(C_{F(\tilde{k}^*,n^*)} \) is the demand of the foreign brand \(\tilde{k}^* \) that carries the lowest quality-adjusted price, and \(P_{F(\tilde{k}^*,n^*)} \) its price. The foreign consumer demand function for any domestic advanced product in equation (14) is obtained by solving an optimization problem analogous to the one above.
The Working Papers Series of the Department of Public Economics is an electronic publication intended to allow scholars to present findings of their research activity. Submitted papers contain original, unpublished work, and represent a contribution to economic literature, from any field in economics, in the theoretical, historical and empirical perspectives. Submitted papers are subjected to double blind peer review. The Working Papers Series is catalogued in the Research Papers in Economics (RePEc) Archives, and available under Creative Commons license 3.0, Attribution-Noncommercial-No derivative work. References to the Department's Working Papers must include: the author's name, the title of the working paper and the link to the working paper.