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Summary

Vitamin D/Vitamin D Receptor (VDR) endocrine system plays
an essential role in regulation of calcium homeostasis and
bone metabolism together with other calciotropic hormones.
However recent studies evidenced further unexpected roles
for this complex system ranging from control of cell prolifera-
tion and differentiation to modulation of the immune system.
Similarly to other proteins, belonging to the family of nuclear
hormone receptors, VDR shows different molecular mecha-
nisms supporting the wide range of its biological actions.
Among them the regulation of transcription of vitamin D-de-
pendent genes is the most important one. This paper is a
comprehensive review of the biological actions of VDR but for
each of them an attempt to give details of the molecular mech-
anism has been made. Special attention has been paid in evi-
dencing the important role of genomic and proteomic ap-
proaches in the study of such a complex system where differ-
ent signal pathways are involved.

The second part of the paper is dedicated to polymorphic vari-
ants of VDR gene with special care for functional implications,
thus functional studies rather then genetics ones have been
reviewed in this section.
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Introduction

Vitamin D receptor (VDR) (1) is the responsible of much of the vi-
tamin D [1,25-(OH)2D3] signalling. It is a direct regulator of gene
transcription, belonging to the nuclear receptor family. Within this
family, it has sequence and structure resemblance with the sub-
family that includes retinoic acid, thyroid hormone and peroxi-
some proliferator activator receptor (PPAR) receptors (2).

VDR is a protein of 427 amino acids, with a molecular mass of
approximately 48 kDa. Similarly to the other nuclear receptors
VDR consists of several distinct functional domains, namely
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the NH2 terminus A/B domain whose function is still unclear, a
DNA binding domain (DBD), termed C domain, spanning from
amino acid 20 to 90, a hinge or D domain (amino acids 90 to
130) and the ligand binding domain (LBD), or E domain, span-
ning from amino acid 130 to 423 (3). The last one is the most
complex domain of the protein as it is responsible for the spe-
cific binding of VDR ligands, for heterodimerization with
retinoid X receptor (RXR) and for interactions with transcription
factors (Figure 1) (2).

VDR cDNA was firstly cloned from chicken (4) and shortly
thereafter from human (1). Genomic organization of the human
VDR gene, which locates on chromosome 12q13-14, is similar
to other nuclear receptor genes. The gene is made up of 11 ex-
ons spanning approximately 75 kb (Figure 2). The non coding 5’
end of the gene includes several exon 1 isoforms (from 1A to
1E) while exons 2-9 encode the structural portion of the VDR
gene product. Alternative splicing of exon 1 provides at least
five different VDR mRNA transcripts, while the presence of a
polymorphic sequence in exon 2 determines the presence or
absence of an alternative start translation site (5). Most of the
promoter sequence is upstream exon 1 and has high GC con-
tent but does not contain an apparent TATA box. The promoter
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Figure 1 - Schematized linear amino acid sequence illustration of VDR
protein showing the functional domains of protein that mediate ligand
and DNA binding, nuclear localization, heterodimerization with retinoid
X receptor (RXR) and transactivation. COOH-terminal ligand activation
funtion 2 (AF2) is shown in anthracite-grey.
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Figure 2 - Schematic view of the genomic sequence of VDR gene con-
taining Exon (Ex.) — Intron structure and position of known polymorphic
variants.
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is capable to generate multiple tissue-specific transcripts (6)
and is positioned just downstream from collagen type Il alpha 1
gene (7, 8). A unique feature for this gene is the presence of an
additional exon that is not found in other nuclear hormone re-
ceptors family members. It encodes for an insertion peptide of
about 40 amino acid that locates in the LBD of the receptor (5).
VDR binds its physiological ligand 1,25-(OH).D3 with high affin-
ity (about 1071° M) (9, 10) and both hydroxyl groups seem to be
relevant in determining it as the absence of either results in ap-
proximately a 500-fold decrease in affinity (11).

Although widely expressed, VDR protein levels are usually low
and reach relatively high values only in targets tissues such as
bone, kidney and intestine (3,000-6,000 fmol/mg protein) (12).
In contrast to other nuclear receptors which are usually bound
to cytoplasmic proteins before hormone binding (13), VDR is
predominantly nuclear (14).

Similarly to other nuclear receptors VDR is active as a het-
erodimer with members of the RXR family of receptors and the
binding with RXR LBD stabilizes both heterodimerization and
high affinity interaction with DNA (15). VDR regulates target
genes transcription in part by binding specific DNA sequences
known as vitamin D responsive elements (VDRES), located in
the 5’-flanking region of target genes and composed of tandem
hexameric motifs with the consensus PuG(G/T)TCA which are
often arranged as direct repeats separated by 3 bp (DR3-type)
but that occur also as inverted repeats separated by 6 or 9 bp
(16-19).

VDR regulates gene transcription by ligand-dependent recruit-
ment of coregulators such as SRC family proteins (20-23) and
transcriptional “integrators” like Calcium binding protein (CBP)
and p300 which, in addition to other functions, have been
demonstrated to act as histone acetylases (24-26). This series
of events leads to DNA structure remodelling through acetyla-
tion of histones and their subsequent release from DNA and
consequently to the opening of the promoter to the transcrip-
tional machinery with the final event of an increased rate of
transcription of that gene. Although not speculative, the pro-
posed mechanism is far from being well characterized, a num-
ber of details and the exact sequence of events remaining un-
clear at this point.

Vitamin D signalling has numerous biological effects affecting
the physiology of a broad range of human tissues (3, 27). First
of all it controls calcium transport in the intestinal epithelia af-
fecting the physiology of bone metabolism; in several studies
vitamin D effects on cellular proliferation and differentiation
have been demonstrated, as well as an antiproliferative action
on several kinds of cancer such as myeloid leukaemia,
melanoma and different carcinomas (reviewed in 3). Moreover
vitamin D analogues have proved to have chemopreventive ac-
tion in animal models of colon, hamster check pouch, hepato-
cellular, gastrointestinal and skin carcinogenesis (28). Consis-
tently with the broad expression of VDR in cells of the immune
system and with its effect on cell differentiation, an important
role as modulator of the immune response has been demon-
strated (29).

Polymorphic sequence variations in VDR gene occur frequent-
ly in the population, but they are less analysed and their effects
on gene function are poorly understood. Most of them consist
of anonymous variations that do not modify the coding region
with unknown functional effects. Several studies using candi-
date gene approach demonstrate that supplementation of 1,25-
(OH)2D3 increases bone mineral density (BMD) and decreases
the risk of osteoporotic fracture (30, 31). Thus, to understand
the mechanisms underlying these associations we need to an-
alyze genomic organisation of VDR locus (polymorphisms, link-
age disequilibrium and haplotypes). Literature regarding VDR
polymorphisms in relation to bone metabolism diseases, and
osteoporosis in particular, is well represented, while studies on
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VDR polymorphisms and other cancer and immune response
diseases are restricted and started later on.

Transcriptional regulation by VDR

Ligand binding, involving the AF2 domain, imparts a conforma-
tional change in the secondary structure of the VDR which trig-
gers the recruitment of motor proteins (32) responsible for cyto-
plasmic VDR transition to the nucleus along microtubules (33).
VDR heterodimerization with its protein partner RXR confers a
conformational structure to the receptor which is critical for
transactivation function (34) by high affinity interaction with
VDREs in the promoter region of vitamin D-responsive genes
(Figure 3). During VDR-RXR interaction with the most common
VDRE type, DR3, RXR binds the 5’ half-site and the VDR oc-
cupies the 3’ one (35). According to mutagenesis experiments
in the VDRE of avian parathyroid hormone (PTH) gene promot-
er, the switch between VDR-RXR-activated or -repressed gene
transcription depends on the polarity of the VDR/RXR-VDRE
complex (35). However recent experimental evidences regard-
ing VDR interactions with nuclear coregulator molecules and
their action on VDR-mediated regulation of gene transcription
have provided further complexity to the entire mechanism. In
fact RXR heterodimerization and AF2 domains are both in-
volved in interactions with nuclear proteins which serves as
VDR-coregulators (36). In details the ligand-induced conforma-
tional change in AF2 domain is critical for the receptor to inter-
act with components of the transcription initiation complex,
RNA polymerase Il and nuclear transcription coactivators
which promote chromatin remodelling necessary to gene tran-
scription. Some of them in fact, such as SRC-1 and CBP/p300
are histone acetylases which determines the recruitment of a
second complement of transcription coactivators, the DRIP-
TRAP complex. This is a 15 proteins-complex which facilitates
the assembly of the preinitiation complex thus strengthening
VDR-induced gene transcription. Binding of VDR-RXR complex
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Figure 3 - Proposed model for the control of VDR-mediated transactiva-
tion. Vitamin D (represented by black triangle) - VDR complex het-
erodimerizes with RXR. The resultant heterodimer binds specific se-
quences in the promoter region of target genes. The DNA - bound het-
erodimer recruits components of the RNA polymerase Il (Pol Il) preiniti-
ation complex and nuclear transcription regulators, thereby altering the
rate of gene transcription.
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to a negative VDRE promotes recruitment of corepressors
which have histone deacetylase activity and then inhibit bind-
ing of proteins promoting the assembly of the transcription ma-
chinery (37, 38). The situation is further complicated by comod-
ulator proteins, such as NCoA62/Skip which can act as core-
pressor or coactivator depending on the specific cell context of
coregulator molecules (39). The NHy-terminal region of Skip
protein is targeted by both nuclear corepressors, such as
NCoR, and coactivators, like CBP/p300, and more importantly
some of them are under VDR-mediated transcriptional regula-
tion (39, 40). Recently an ATP-dependent chromatin remodel-
ling complex has been demonstrated to amplify VDR activation
and repression of transcription (41).

Calcium homeostasis

Vitamin D metabolism is a classic endocrine system that re-
sponds to changes in serum calcium concentrations. A decrease
in serum calcium concentration, due to low dietary calcium in-
take, causes an increased production and release of PTH which,
among many other functions, stimulates renal 1a-hydroxylase
activity and leads to increased conversion of 25-hydroxyvitamin
Dz [25(OH)Ds3] to its active metabolite 1,25(0OH)2D3. Increased
level of serum 1,25(0OH),D3 activates VDR in a tissue specific
manner and stimulates the expression of vitamin D-responsive
genes in districts that control calcium homeostasis, for example
TRPV6 and calbindin D9k in intestine, osteocalcin and RANKL in
bone, TRPV5 and calbindin D28k in kidney (42).

The traditional reductionist approach used in the past decades,
to understand biological processes, has been undoubtedly
useful for the elucidation of signal transduction pathways and
will certainly continue to be so but it has the fault to deal only
with proteins and functions we already know, testing single hy-

pothesis of their involvement in the biological process, while
the newly born genomic and proteomic approach let us gather
the global changing (at the mRNA or protein levels) accompa-
nying a biological process.

Calcium is critical for a number of life’s essential functions and
probably its employment in so important biological process
(neural transmission, muscle contraction and relaxation, ex-
ocrine secretion, blood clotting and cell adhesion) occurs be-
cause of the constancy and abundance of calcium in seawater
which is the medium where higher animals arose (Figure 4). The
high abundance of calcium in the seawater also explains its use
in the construction of structural elements such as the skeleton.
The important calcium involvement in the biology of higher ani-
mals is the reason for being one of the most tightly regulated
substance in their plasma (43) and make it reasonable that the
evolution of the calcium homeostatic system took place as ani-
mals emerged from the sea into fresh water and further onto
land. This is a very complex system that involves many hor-
mones with the vitamin D endocrine system being the basic one
in managing plasmatic calcium levels, with equally important
roles for PTH and calcitonin (3).

Calciotropic hormones

Role of PTH

The parathyroid gland is the calcium-sensing organ in the body
(43, 44) and in a few seconds it responds to even slight hypocal-
caemia by secreting the 84-amino acid peptide hormone PTH
(45). Its receptor is expressed in the nephron and in osteoblasts
but not in intestine and osteoclasts for example (46). In the kid-
ney PTH acts as a phosphate antireabsorptive agent causing a
phosphate diuresis (47), activates 25-hydroxyvitamin D-1o-hy-
droxylase and inhibits 24-hydroxyvitamin D-1lo-hydoxylases
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Figure 4 - Biological actions of vitamin D in calcium and phosphorus homeostasis in mammals. Vitamin D is mostly synthesized in the dermis under
UV B radiation from its precursor (7-dehydrocholesterol). It is hydroxylated to 25(0OH)D in the liver and then activated to 1,25(OH),Dj3 (calcitriol) in the
kidneys. Calcitriol induces intestinal absorption, controls bone remodelling, suppresses parathyroid function, and renal calcium reabsorption to main-
tain calcium on limit levels for normal cell physiology and skeletal integrity. Renal vitamin D production also serves autocrine and paracrine functions.
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through cAMP increase (48) thus causing an increment in plas-
ma levels of active 1,25(0OH),D3 (49) (Figure 4).

Role of vitamin D

Vitamin D initiates an active intestinal calcium transport in the
small intestine (50). This action has the longer lifetime, mea-
surable in days, while the other actions are shorter (51). The
results of the action of PTH and 1,25(0OH).D3 is the mobiliza-
tion of calcium by the skeleton into the plasma compartment
and this is obtained by either osteoclast stimulation to resorb
bone and to reverse calcium transport from bone fluid compart-
ment to plasma (52-54) (Figure 4). Even in the distal renal
tubule PTH and 1,25(0H),D3 act synergistically to reabsorb the
last 1% of the filtered load of calcium into the plasma compart-
ment (55, 56). Interestingly, through the study of animal mod-
els, defective for either 1,25(0OH)2D3 or PTH, it has become ev-
ident that the presence of both hormones is required for this
system to operate in vivo although the precise mechanism of
the interaction between them is still poorly understood (57). Fi-
nally the rise in serum calcium level resets the sensing point of
the calcium receptor and shuts down the secretion of PTH (3).

Role of calcitonin

To guard against the calcification effects of hypercalcaemia
(dangerous for kidney, heart, aorta and intestine) there is also
the response of parafollicular and C cells of the thyroid which
respond to hypercalcaemia with calcitonin secretion, a 34-
amino acid peptide hormone that causes lowering in serum
calcium level by its action on the skeleton through inhibition of
osteoclasts and osteocytes activities (58). There have been re-
ports of calcitonin effects on kidney and intestine but these are
derisive respect to those on the skeleton (3) and a sort of regu-
lation on 1,25(0OH)2Ds metabolism has been described but this
has been shown to be largely secondary to changes in
parathyroid secretion (59, 60).

Physiological action of VDR

Effects on intestinal calcium

The role of vitamin D in intestinal absorption of calcium is well
known and the vitamin D endocrine system has been finally
identified as the agent that stimulates intestinal calcium ab-
sorption to meet the needs of the skeleton (61) (Figure 4). Ep-
ithelial calcium channel TRPV6 (CaTl or EcaC2) is necessary
for calcium uptake together with TRPV5 (EcaC1l). Then cal-
bindin D shuttles the ion across the cell and finally the plasma
membrane Ca?* ATPase (PMCA1b), and the Na*/Ca®* ex-
changer (NCX1) deliver it into the bloodstream (62). TRPV5
and TRPV6 expression levels depend on VDR regulation as
demonstrated by their reduction in VDR-null mice and their in-
duction by calcitriol supplementation in wild-type mice (62-64).
These two channels confer high Ca?* selectivity and negative
feedback regulation to intestinal Ca?* influx, strictly resembling
that in native distal renal cells (65). Vitamin D has a clear role
even in stimulating intestinal absorption of phosphate which is
another active calcium transport mechanism but which appears
to be completely independent from the direct one (66-68).
VDR-mediated mechanism to maintain the Ca-PO4 ion product
seems to primary involve induction of phosphate translocating
proteins in kidney and perhaps in intestine. Indeed the renal
sodium-phosphate cotransporter-2 (NPT2) is a likely vitamin D-
induced protein containing a VDRE in the promoter region (69,
70). Another role of VDR in phosphate homeostasis is due to
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1,25(0OH)2D3 induction of PEX gene expression. PEX gene,
which harbours a VDRE in its promoter region (71), is a phos-
phate-regulating gene, showing high homologies to endopepti-
dases located on the X-chromosome and postulated to be the
proteolytic agent for inactivation of phosphatonins (72) which in
turn have phosphaturic action through potent inhibitory effects
on NPT2 and lo-hydroxylase (73, 74). From a mechanicistic
point of view, intestinal active phosphate transport is stimulated
by a vitamin D-induced increase of Na- PO4 cotransporter and
plasma membrane fluidity of enterocytes (75, 76). On the con-
trary the mechanism that mediates phosphate transport
through basolateral membrane is still unknown.

Effects on bone calcium mobilization

A vitamin D deficient animal on a zero-calcium diet will adjust
serum calcium level at the expense of skeleton when given
1,25(0OH)2D3 in the presence of PTH (57). A clear stimulatory
effect on osteoclastic bone resorption has been widely demon-
strated for vitamin D (77, 78) although there is no expression of
PTH receptor nor of VDR in osteoclast (79). On the contrary
PTH and vitamin D interact with osteoblast arising a paracrine
signal which facilitates osteoclast differentiation (80-82) and
calcium mobilization from bone fluid compartment to the plas-
ma one (83). Stimulation of osteoclastic bone resorption is,
however, rarely finalized to provide calcium for plasma but
more likely it is coupled to formation in completing the bone-re-
modelling process. Thus 1,25(0OH),Ds results to be involved in
important processes which strengthen bone and repair mi-
crofractures (78, 84).

From a molecular point of view vitamin D/VDR system permits
a regular coupling in bone turnover by controlling the interac-
tion between receptor activator of NF-kB ligand (RANKL) and
receptor activator of NF-kB (RANK). In fact RANKL, expressed
on osteoblast surface, can bind either RANK, inducing a sig-
nalling cascade leading to differentiation and maturation of os-
teoclasts, or to an osteoblast-produced decoy receptor, osteo-
protegerin (OPG), which in turn blocks this signalling (85, 86).
Vitamin D, PTH and prostaglandins stimulate RANKL expres-
sion but the first one also inhibits OPG synthesis (87,88) (Fig-
ure 5).
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Figure 5 - Schematized representation of Vitamin D-regulated osteo-
clastogenesis. Vitamin D regulates this process by transcriptional con-
trol of both receptor activator of NF-kB (RANK) ligand (RANKL) and os-
teoprotegerin (OPG). Vitamin D — VDR complex increases the expres-
sion of RANKL on the surfaces of osteoblast, where it interacts with
RANK promoting maturation of osteoclast progenitor cells to mature os-
teoclasts. Vitamin D — VDR complex also represses the expression of
OPG (a bait receptor that binds RANKL and prevents RANK-mediated
osteoclastogenesis).
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Moreover data obtained from VDR-null mice together with the
ability of a lactose-, calcium-and phosphate-rich diet to reverse
their bone abnormalities, stress the concept that vitamin D
plays its important physiologic effects on intestinal absorption
of calcium and phosphate although some calcium regulating
devices, such as depressed renal calbindin Dgx MRNA expres-
sion in kidney, are not restored under the above diet (89). A
VDRE has in fact been demonstrated to be present in the cal-
bindin Dgk promoter in mammals (90), thus accounting for a di-
rect effect of VDR on its expression.

Effects on parathyroid glands

Vitamin D acts in parathyroid tissue through its binding to
VDR and consequent regulation of gene transcription (91,
92) and a VDRE was demonstrated in the promoter region of
the PTH gene (93, 94). Thus 1,25(0OH),D3 exerts a negative
feedback on PTH production in response to PTH-dependent
activation of calcium mobilization from kidney and bone,
through a VDR-mediated silencing of PTH gene transcription
(95-97). Moreover 1,25(0OH)2D3 regulates parathyroid level of
VDR and its response to calcium. The first effect is due to an
increase in VDR mRNA level, possibly secondary to serum
calcium increase (98), as well as to a ligand-dependent VDR
protection from proteosomal degradation (99). The second
one directly involves VDR-mediated regulation of calcium
sensing receptor (CaSR) gene transcription as evoked by
the presence of two VDRES in its promoter region (98, 100).
The other important effect of 1,25(OH),D3 on parathyroid
glands involves cell growth regulation and is described in
other chapter.

Effects on the kidney

One of the major effect of vitamin D in the kidney is its own
homeostasis through inhibition of 1o-hydroxylase and stimula-
tion of 24-hydroxylase expression as well as through induction
of megalin expression in the proximal tubule (101). Moreover it
stimulates renal calcium reabsorption and enhances calbindin
expression, accelerating PTH-dependent calcium transport in
the distal tubule (102) (Figure 4). Finally vitamin D/VDR acts on
TRPV5 promoter to increase its mMRNA and protein levels
which is an important actor in vitamin D-mediated calcium re-
absorption (103).

Regulation of cell proliferation/differentiation
and chemopreventive actions of vitamin D

Vitamin D has been shown to have pro-differentiation action
on preadipocyte cell lines (104), on immature basal layer skin
cells into keratinocytes (105) and on haematopoietic cell lines
along the macrophage/monocyte pathway (106-108). Finally
a potential use of 1,25(0OH)2D3 in the treatment of leukaemia
and other myeloproliferative disorders is suggested by obser-
vations on vitamin D ability to inhibit clonal proliferation and
promote a more differentiated and less aggressive phenotype
in a variety of human leukaemia cell lines (109) (Figure 4).

Suppression of cell growth

A common aspect to different mechanisms through which vita-
min D suppresses cell growth is the arrest at G1-Go transition.
1) Vitamin D induces gene transcription of p21, a cyclin-depen-
dent kinases inhibitor, inducing growth arrest and promoting
cell differentiation of monocyte-macrophage lineage (110). 2)
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Vitamin D induces p27 synthesis through VDR-Sp1 interaction
at the p27 promoter and inhibits p27 degradation rate through
reduction of CDK2 activity and Skip2 protein level (111). 3) In
TGF-o/EGFR-driven tumorigenesis vitamin D sequesters lig-
and-activated EGFR thus reducing growth signal at the cell
membrane and EGFR-mediated activation of cyclin D1 gene
transcription (112). Vitamin D efficacy in inhibiting mitogenic
signals from the TGF-o/EGFR growth loop is also fundamental
in mediating its efficacy in treating psoriasis and scleroderma.
4) Vitamin D is also able to induce C/EBPJ expression with the
consequent suppression of the oncogenic-cyclin D1 signature
in human epithelial tumours (113). Moreover the dominant neg-
ative isoform of C/EBP, LIP, lacking the transactivation do-
main, strengthens cyclin D1 induction of cell growth and the ra-
tio C/EBPB:LIP has been indicated as a major mechanism for
EGFR-induced proliferative action (114). Vitamin D-mediated
induction of C/EBPJ expression should contribute to higher
C/EBPB:LIP ratio and, consequently, to reduce proliferation
rates (115).

Regulation of apoptosis

Vitamin D exerts proapoptotic as well as antiapoptotic effects
which affect both normal tissues growth and function and can-
cerous as well as noncancerous hyperproliferative tissues. Evi-
dences regarding certain VDR alleles association with cancer-
prone phenotypes suggest the involving of VDR in these ef-
fects (116, 117). For instance, in breast cancer cells vitamin D
induces apoptosis through reciprocal modulation of Bcl2 and
Bax content (118). Moreover it causes the calcium-dependent
proapoptotic proteases microcalpain and caspase 12 activation
through intracellular calcium increase (119, 120). Vitamin D
proapoptotic actions have been demonstrated even in glioma
(121) and in melanoma (117), while they are absent in normal
astrocytes, melanocytes and mammary cells (122). Rather, vit-
amin D protects keratinocytes from UV radiation- or
chemotherapy-initiated apoptosis (123) and melanocytes from
TNF-o- and UV irradiation-dependent apoptosis through induc-
tion of sphingosine 1-phosphate (122). Other mechanisms
through which vitamin D affects apoptosis seem to be tissue
specific: for instance in colorectal cancer VDR expression is
negatively influenced by transcription factor Snail, which is re-
cruited to the VDR promoter, with the consequent lowering of
E-cadherin expression which in turn influences cell fate during
colon cancer progression. This mainly influences the efficacy
of vitamin D adjuvant therapy in colon cancer (124). On the
other hand, in prostate cancer, defective nuclear vitamin D lo-
calization and SMRT corepressor altered expression levels,
but not reduced VDR levels, are responsible for resistance to
vitamin D therapy (125).

Regulation of the immune response

Vitamin D endocrine system positively affects infection, autoim-
mune diseases, tolerance in transplantation and this mainly de-
rives from prodifferentiating effects on monocyte-
macrophages, antigen-presenting cells, dendritic cells (DC)
and lymphocytes (126) as evidenced from in vivo and in vitro
studies (Figure 4).

One of the mechanisms mediating vitamin D function in resis-
tance to infections is the already mentioned induction of
C/EBPB which enhances monocyte differentiation to
macrophage, immune function, host defence against bacterial
infection and tumour cell growth and production of IL-12, the
cytokine inducing Thl response (115, 127). On the other hand
v-interferon is a potent inducer of la-hydroxylase in
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macrophage thus increasing vitamin D local production through
a C/EBPB-mediated mechanism (128). Local macrophage-pro-
duced vitamin D is also an inducer of T cell response to cuta-
neous antigens in vivo, including CD4-Th2 cell-mediated and
mucosal antibody responses (129). In contrast to these stimu-
latory effects on monocyte-macrophages, vitamin D is an im-
munosuppressor for lymphocytes (130). This effect is due to a
vitamin D/VDR-mediated inhibition of expression of cytokines
involved in T cell functions, including IL-2 (131). Vitamin D
plays also an important role in the establishment and mainte-
nance of immunological self-tolerance as observed in studies
on animal models demonstrating a vitamin D-induced inhibition
of disease induction in experimental autoimmune en-
cephalomyelitis, thyroiditis, insulin-dependent diabetes melli-
tus, inflammatory bowel disease, systemic lupus erythemato-
sus and both collagen-induced arthritis and Lime arthritis (129,
132). Finally vitamin D inhibits rejection of transplanted tissue
probably through a VDR-mediated mechanism involving
TGFB/Smad3 interactions (133). In conclusion vitamin D
seems to be a modulator of the immune response mainly act-
ing through a paracrine loop which may block inflammation
and/or modulate the differentiation of activated CD4 T cells as
well as the suppressor T cell function (126).

VDR polymorphisms and VDR function

VDR gene polymorphisms are one of the more intriguing and
controversial questions, in terms of genetics and functional un-
derstanding about genetics of bone. Nevertheless, in the last
years the interest about these polymorphisms on other dis-
eases, such as breast, prostate, colon cancer and immune re-
sponse, is growing. The majority of VDR polymorphisms are in
the regulatory areas, such as 5’ promoter and 3'UTR regions,
rather than in coding exons. The reason for this hot-spot loca-
tion is that the variation in the protein sequence could result in
drastic functional effects, such as alterations on ligand and
DNA binding. Therefore, polymorphic variation, that can ex-
plain population variance, exist in areas of gene that mainly af-
fect VDR expression level.

Genetics of VDR polymorphisms

Several polymorphisms have been identified in human VDR
gene locus using various approaches that include the follow-
ing: a) screening with different restriction enzymes for polymor-
phic banding patterns in Southern blot hybridisation experi-
ments (RFLPs); b) VDR sequencing in a number of different in-
dividuals; and c) in silico polymorphism identification through
bio-informatics approaches (Figure 2). Among numerous 0s-
teporosis candidate genes that harbour polymorphic sites, the
gene encoding for VDR was the first to be described (134) and,
according to its functional role, it was proposed as a major lo-
cus for genetic effect on osteoporosis (135-137).

The restriction endonucleases Taql, Apal, Bsml and EcoRV al-
low to recognise the allelic variants due to single nucleotide
polymorphisms (SNPs) at the 3’ region of human VDR gene.
Another polymorphic variant, recognized by Fokl endonucle-
ase, is located in a putative initiation transcription codon of ex-
on 2. The alleles are named T-t, A-a, B-b, E-e and F-f respec-
tively, where the lowercase letter means presence of restriction
site and the uppercase letter indicates absence of restriction
site. PolyA variable number of tandem repeats (VNTR) is pre-
sent in the 3" UTR (138). This polymorphism determines at
least 12 different alleles, with a bimodal distribution. Subjects
can be classified as short or long PolyA carriers. Finally, cau-
dal-related homeodomain (Cdx2) polymorphism was found
through sequence analysis (139). This new VDR polymorphism
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(G to A) is located in Cdx2 binding site at 5 VDR promoter
area.
VDR polymorphisms and association studies

Morrison and co-workers analysed an Australian population
sample and evidenced the presence of association between al-
lelic variants in the 3’ region (for B allele) and osteocalcin bone
turnover marker levels in serum (135). Since 1992, several
studies about correlation of VDR polymorphisms with BMD and
bone turnover markers have been published, generating con-
flicting data (140-163). In order to elucidate these pitfalls, a
more recent meta-analysis study confirmed the contribution of
Bsml allelic variants on variation of BMD values, even if this
analysis showed weaker association than originally claimed
(165). This observation is also supported by another meta-
analysis study, where allele B significant association with spine
BMD was demonstrated, following a supposed recessive mod-
el of transmission, with the BB genotype having lower BMD
than Bb and bb genotypes at the baseline (166). Consequent-
ly, BMD resulted to be associated to VDR gene polymorphisms
with high levels of confidence. Moreover, it is not possible to
completely exclude a presence of linkage disequilibrium be-
tween VDR polymorphisms and other important genes for bone
metabolism, such as ERc. In fact ERa exerts a modulation ef-
fect on VDR in BMD determination, suggesting the existence of
gene-gene interaction (167, 168).

Several studies on population of Mexican-American (169),
Japanese (170), North American (171) and Italian (172) post-
menopausal women, showed an association between low lum-
bar BMD and ff genotype, while no significant association was
found in French (173) and Swiss women (143). These con-
trasting results may be due to ethnic and age differences.
Moreover environmental factors, such as calcium intake, may
conceal Fokl genotype effects on BMD. A recent study on a
Finnish population indicates that the Ff genotype is associated
with higher forearm BMD and calcaneal ultrasound values in
adolescent boys (174).

Cdx2 polymorphism may modulate BMD in postmenopausal
Japanese women (139). In fact, Japanese women who carry
the A allele have higher BMD. Nevertheless, this result was
not confirmed for Caucasian women where this allele resulted
to be associated only with a decrease of fracture risk (175).

It is largely demonstrated that VDR polymorphisms may influ-
ence bone metabolism. Nevertheless, some recent isolated
studies showed the association between VDR polymorphisms
and other diseases risk. It was found a role for VDR polymor-
phisms (Apal and Tagql) increasing the risk of developing mul-
tiple sclerosis (176). Variants of Bsml VDR polymorphism
were associated with increased risk of developing hypercal-
cemia in peritoneal dialysis patients (177). Lower VDR mRNA
levels associated with b, a, and T alleles may affect the cal-
citriol-mediated control of parathyroid function and thereby
contribute to the development of sporadic primary hyper-
parathyroidism (178). Fokl VDR polymorphism may influence
parathyroid response in chronic renal failure (179). Fokl C al-
lele was also found to be associated to high risk for colorectal
cancer (180). Another study found sun exposure and VDR
polymorphisms act synergistically in the aetiology of prostate
cancer (181). And finally, Bsml VDR genotypes in combination
with low Vitamin D circulating levels, may increase risk of
breast cancer in Caucasian population (182). However, these
observations need to be confirmed by further independent
studies.

VDR polymorphisms and haplotyping

Linkage disequilibrium measures the association of alleles of
adjacent polymorphisms (183). Besides, many studies have
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addressed on the relationship between multiple individual poly-
morphisms in VDR gene and bone health, but only few have
analysed VDR gene data in terms of haplotypes. Haplotypes
are blocks of linked alleles of neighbour polymorphisms,
whereby the length of such a block coincides with the strength
of linkage disequilibrium across the area. When a haplotype is
identified as the risk allele it is possible to determinate which
variants on that haplotype allele truly causes this effect.

A meta-analysis study with data on 3' VDR gene polymor-
phisms was performed in order to estimate haplotype fre-
quencies, determine linkage disequilibrium and estimate the
magnitude of the association between haplotypes and osteo-
porosis/ BMD (184). Results show that the most common
haplotype for VDR gene, regardless of ethnicity, is the baT,
followed by BAt and bAT in Caucasians, and bAT followed by
BaT in Asians, indicating strong linkage disequilibrium be-
tween Bsml and Tagl polymorphisms. These observations
demonstrate a gain in the power considering the haplotypes
rather than single polymorphism. In fact, in this study, VDR
gene polymorphisms were not significantly associated with
osteoporosis risk on their own, but Bat and BAt haplotypes
were significantly associated.

PolyA polymorphism showed strong linkage with Bsml poly-
morphism (142), where b allele was associated with long PolyA
allele and B allele with the short one. Combining the results the
following can be deduced: baT haplotype is linked to long
PolyA allele and BAt haplotype to short one.

VDR polymorphisms and its ethnic distribution

Similarly to other genes polymorphisms, significant differ-
ences exist in VDR polymorphisms distribution among differ-
ent ethnic groups. A possible explanation to polymorphism
generation phenomena is DNA damage events in an ancient
small population that grow up in frequency becoming poly-
morphisms in modern populations. VDR haplotypes distribu-
tion reflects out-of-Africa evolution theory that describe hu-
man populations origin and dispersion around the world,
where gene-environment interactions favours the survival of
some allelic variants. Old polymorphisms might show large
population/ethnic variability (Fokl), while new ones are likely
characterized by small population variability (Cdx2). Assum-
ing that a polymorphism should have the same functional ef-
fect in different ethnic groups, different allele frequencies
across these groups may explain differences in the incidence
of pathologies and variability on drug response among them
(i.e. Asians seem to be more vitamin D-sensitive while Cau-
casians appear more oestrogen-sensitive than other ethnic
groups). In the case of non-functional polymorphisms, fre-
quencies of these markers are very different among ethnic
groups. It is also difficult to understand consequences of eth-
nic allele variation in this case, because of environmental fac-
tors interference, such as diet and physical exercise. This
emphasises that an haplotypes map of VDR polymorphisms
in different ethnic groups is necessary (116).

Functionality of VDR polymorphisms

Functional studies are needed to determinate the way certain
haplotypes in a candidate gene affects protein function. Com-
pared to the larger number of genetic association studies,
there has been little published on the mechanism through
which VDR gene polymorphisms might influence VDR receptor
functionality.

Functional studies include in vitro cell biological and molecular
studies and in vivo measurements of biological markers, and
response to treatments (vitamin D, calcium, hormone replace-
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ment therapy and bisphosphonates). Whereas the functionality
cf Cdx2 and Fokl alleles are well known, there are less certain-
ty and some controversies regarding 3’ region RFLPs and VN-
TR polymorphisms effects. As these ones do not involve amino
acid substitutions in the protein, these allelic variants may be
related to regulative differences. The 3'UTR of genes is known
to be involved in regulation of expression and in mMRNA stabili-
ty. Some studies show that the 3'UTR VDR gene polymor-
phisms do not affect abundance of VDR mRNA, nor its stability
(185-189). These findings suggest that these polymorphisms
do not affect VDR function, but rather may be a marker for a
nearby gene that is responsible for the genotype associated
variation.

The case of Fokl polymorphic variant (ATG/ACG) of VDR gene
(169) is something different. It generates a length difference of
3 amino acids in the protein. In vitro studies on Hela cells
showed that FF genotype (short form) gave an approximately
1.7-fold increase in transcription activation (170). Whereas, no
difference was found using GMK-Cos7 and human fibroblasts
(190). More recent data confirmed Arai results using Cos7,
HelLa and ROS 2/3 cell lines (191), and peripheral mononu-
clear cells (192). Jurutka et al. demonstrated the short form in-
teracts more efficiently with transcription factor TFIIB, and Col-
in found that it also had a lower dose effect and thus deter-
mined a more active VDR molecule in inhibiting the (Phyto-
hemagglutin-stimulating) cell growth. In conclusion this poly-
morphism seems to be functional in terms of VDR transactiva-
tion function.

Functional studies showed that Cdx2 polymorphism affects
VDR expression in the small intestine (139). As intestine is
the predominant area for calcium absorption, it is possible
that Cdx2 influences vitamin D-mediated regulation of calci-
um absorption. The allele A, which shows a more efficient
binding to Cdx2 transcription factor, is thought to cause in-
creased VDR expression in intestine with a consequent in-
crease in the transcription of calcium transporting proteins.
This process can enhance calcium absorption resulting in
higher BMD values. However, this increase was only demon-
strated for Japanese women (139), and was not found in
Caucasian ones (174), where A allele correlate with lower
fracture risk independently of BMD values. Despite this con-
troversial results, the functionality of this polymorphism has
been demonstrated but this last issue (fracture risk) requires
further studies. In fact, a recent study (193) regarding haplo-
type alleles of the 5 promoter region and of the 3' UTR re-
gion, strongly associated with increased fracture risk, was
performed. This study demonstrates lower VDR mRNA levels
in an osteoblast cell line harbouring the fracture risk haplo-
type. Low VDR mRNA levels impact on vitamin D signalling
efficiency and might contribute to the increased fracture risk
observed for these risk haplotype alleles.
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