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Summary

General knowledge of the role of vitamin D3 in human physiol-
ogy has been shaped by its discovery as a preventive agent of
nutritional rickets, a defect in bone development due to inade-
quate uptake of dietary calcium.
Studies on the function of the biologically active vitamin D3,
1,25-dihydroxyvitamin D3, have been greatly accelerated by
the molecular cloning and structural analysis of the vitamin
D3 receptor, which is a ligand-activated regulator of gene tran-
scription. Molecular genetic techniques including genomics
have helped to reveal that 1,25-dihydroxyvitamin D3 can con-
trol more than calcium homeostasis. It has effects on cellular
differentiation and proliferation, and can modulate immune re-
sponsiveness, and central nervous system function. More-
over, accumulating epidemiological and molecular evidence
suggests that 1,25-dihydroxyvitamin D3 acts as a chemopre-
ventive agent against several malignancies including cancers
of breast, prostate and colon. 
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Introduction

Vitamin D can be produced in adequate amounts by moderate
exposure of skin to solar ultraviolet X rays. Exposure to sun-
light remains an important source of vitamin D, as many people
in northern countries become deficient in circulating 25(OH)D3
during winter, and therefore deficient in 1,25(OH)2D3 synthe-
sized in peripheral tissues (1).
Vitamin D has been widely known for decades for its primary
physiological role in regulating calcium homeostasis. However,
accumulating evidence from epidemiological, animal, cellular,
biochemical and, most recently, molecular genetic studies has
revealed new actions of vitamin D.
Vitamin D can regulate the proliferation and differentiation of a
wide variety of cell types, which has led to the analysis of the
potential therapeutic uses of its synthetic analogues as anti-
cancer agents, and as modulators of immune and nervous sys-
tem function. These lines of investigation have been accelerat-
ed by two recent developments: the determination of the crys-
tal structure of the vitamin D receptor and the use of large-

scale gene expression profiling with microarrays to identify the
molecular genetic events underlying vitamin D action. Here,we
will focus on the impacts of recent experimental and technolog-
ical advances on the potential uses of its analogues in cancer
therapy and prevention, in the treatment of autoimmune disor-
ders, and as neuroprotective agents.
Moreover, we also discuss the vitamin D status in inflammatory
bowel disease (IBD), infectious diseases, asthma, diabetes
mellitus type I and II.

Vitamin D receptor

By 1975, the presence of the vitamin D receptor (VDR) was
confirmed in the nuclei of cells incubated with radiolabelled
hormonal 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] (2, 3).
The cDNA encoding the human vitamin D receptor (VDR) was
cloned in 1988 (4), and confirmed that, similar to other steroid
receptors, it is a member of the nuclear receptor family.
Nuclear receptors are ligand-activated regulators of gene tran-
scription (5) with a conserved domain structure. The highly
conserved DNA-binding domain (DBD) contains two zinc fin-
gers that form a single structural domain containing an α-heli-
cal reading head that controls specific DNA sequence recogni-
tion. The VDR ligand-binding domain (LBD) not only binds lig-
and but also contains a ligand-regulated C-terminal AF-2 do-
main (activating function-2) that is essential for its capacity to
activate transcription. Similar to several nuclear receptors, the
VDR functions as a heterodimer with members of the retinoid X
receptor (RXR) family of receptors. Strong interactions be-
tween VDR and RXR LBDs are essential for ligand-dependent
dimerization and high-affinity DNA binding.
Nuclear receptors regulate target gene transcription by ligand-
controlled recruitment of several accessory proteins known col-
lectively as coregulators. Coregulators are essential for the his-
tone modifications, chromatin remodeling and recruitment of
RNA polymerase and ancillary factors necessary for initiation
of transcription. Nuclear receptors regulate transcription in part
by binding specific DNA sequences called hormone response
elements (6).

Chemopreventive action of 1,25(OH)2D3

a) Molecular evidences

Microarray studies have provided insights into the molecular
events underlying the chemopreventive effects of 1,25(OH)2D3.
Gene expression profiling revealed that EB1089 treatment in-
duced the growth-arrest and DNA damage gene (GADD45a) in
head and neck squamous cell carcinoma (HNSCC) cells in cul-
ture (7, 8), and in tumour xenografts of a mouse model of HN-
SCC (8). Induction of GADD45a expression was recently ob-
served in studies of the antineoplastic effects of 1,25(OH)2D3 in
insulinoma cells (9). Ablation of the GADD45a gene in mice
disrupts normal DNA repair and maintenance of global genom-
ic stability (10). This suggests that treatment with 1,25(OH)2D3
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or its analogues has genoprotective effects; i.e. they protect
the genome against accumulation of mutations that underlie
cellular transformation and cancer progression.
This notion is supported by observations that EB1089 induces
expression of several genes controlling redox balance in HN-
SCC, including glucose-6-phosphate dehydrogenase, which
lies at the head of the pentose phosphate shunt, a source of
reducing equivalents, glutathione peroxidase and thioredoxin
reductase (11). The enzymatic activities encoded by these
genes are also induced in treated cells (our unpublished re-
sults). Induction of thioredoxin reductase activity has also been
observed in 1,25(OH)2-treated prostate and breast carcinoma
cells (12, 13). These results are consistent with the observation
that treatment of leukemic cells reduces intracellular levels of
reactive oxygen species (ROS) (14). The protective effects of
1,25(OH)2D3 against oxidative DNA damage may represent a
physiological feedback loop to the photochemical synthesis of
vitaminD in skin by ultraviolet light, which is a DNA damaging
agent and an inducer of ROS (15). Indeed, direct photoprotec-
tive effects of 1,25(OH)2D3 were observed in UV-irradiated ker-
atinocytes in vitro and in mouse skin, and were linked to in-
creased expression of free radical scavenging metallothionein
(16).
1,25(OH)2D3 also stimulated expression of the gene encoding
the NRF2 transcription factor (17). NRF2 is induced by a num-
ber of chemopreventive agents, and in turn stimulates expres-
sion of several phase II detoxifying enzymes. Ablation of the
NRF2 gene in mice rendered them more sensitive to carcino-
genesis and eliminated the beneficial effects of chemopreven-
tive agents (17). An enhancement of xenobiotic metabolism by
1,25(OH)2D3 is also consistent with its direct induction of sev-
eral genes encoding members of the cytochrome P450 family
of oxidative enzymes (18-20).

b) Evidences in animal studies

Animal studies have provided evidence of chemopreventive ac-
tions of 1,25(OH)2D3 analogues in models of colon, hamster
cheek pouch, hepatocellular, gastrointestinal and skin carcino-
genesis (21-26). Chemoprevention likely arises in part from the
capacity of 1,25(OH)2D3 to regulate cellular differentiation and
proliferation (27). The potent growth inhibitory effects of
1,25(OH)2D3 analogues on cells in culture (28-31, 7) and in
xenograft models of cancer (8, 32-35) coupled with their low
calcemic activity make them potential agents for cancer thera-
py. Among the most widely studied analogues has been the
secosteroidal compound EB1089 (36). EB1089 treatment re-
duced tumour growth by 80% in the absence of hypercalcemia
in a mouse model of HNSCC, whereas 1,25(OH)2D3 induced
hypercalcemia and had a lesser inhibitory effect on tumour
growth (8). Similar antitumour effects of EB1089 were observed
in xenograft models of breast and prostate cancer (34, 35).
It is unlikely that regulation of a single gene controls the an-
tiproliferative effects of 1,25(OH)2D3. Growth inhibition has
been associated with several factors, including enhanced
transforming growth factor-β signaling (27), and to cell-specific
induction of cyclin-dependent kinase (CDK) inhibitors
p21WAF1/CIP1 and p27KIP1 at both transcriptional and post-
transcriptional levels (8, 27, 30, 37-39).

Antiproliferative effects of 1,25(OH)2D3 and its analogues

Epidemiological data provide a strong correlation between the
prevalence of certain cancers and exposure to sunlight, consis-
tent with chemopreventive effects of 1,25(OH)2D3, particularly
in breast, prostate and colon cancers (40). No epidemiologic

studies have directly measured vitamin D concentrations or in-
take on total cancer incidence or mortality. However, higher
rates of total cancer mortality in regions with less average UV-
B radiation exposure, among African-Americans, and among
overweight and obese people, each associated with lower cir-
culating vitamin D, and a greater cancer mortality when individ-
uals are diagnosed in the months when vitamin D levels are
lowest are compatible with a benefit of vitamin D on cancer
mortality (41). 
The vitamin D hypothesis may apply to multiple cancer sites,
but the research focus has been primarily on colorectal,
prostate, and breast cancers. Besides the inverse correlation
with cancer mortality with average regional UV-B radiation,
study for the other sites has been essentially non-existent or
sporadic, and thus little can be said. 

a) Breast cancer

An inverse association between regional sunlight exposure and
breast cancer mortality has been observed in several analyses
(42). However, an analysis within the Nurses’ Health Study did
not find the expected geographic gradient for breast cancer in-
cidence (43).
One nested case-control study based on 96 breast cancer cas-
es found no association between prediagnostic 1,25(OH)2D3
concentration and risk of breast cancer; circulating 25(OH)D3
was not examined. 
John et al. (44) analysed data from NHANES I based on 190
women with incident breast cancer from a cohort of 5009
women. Several measures of sunlight exposure and dietary vit-
amin D intake were associated with a moderate reduction in
breast cancer risk. In the Nurses’ Health Study, vitamin D in-
take was examined prospectively in relation to breast cancer
risk based on 3482 incident cases of breast cancer (45). Total
vitamin D intake (dietary plus supplements) was associated
with a lower risk of breast cancer (RR=0.72; 95% CI=0.55-
0.94); similar inverse associations were observed with other
components of diary foods (lactose, calcium) so it was difficult
to conclude definitively an independent effect of vitamin D.
However, total vitamin D intake was more strongly associated
with lower risk than was dietary or supplemental vitamin D in-
take individually, which is suggestive of an independent effect
of vitamin D. Thus, the data for breast cancer incidence are
suggestive of a benefit from vitamin D, but overall data are rel-
atively sparse and inconclusive.

b) Colorectal cancer

The epidemiologic evidence that high vitamin D status may
contribute to lower rates of colorectal cancer is strong and con-
sistent (46). The data linking average regional UV-B radiation
and cancer mortality rates appear to suggest a stronger asso-
ciation for colorectal cancer than for other cancer sites. 
About 7000 premature deaths from colorectal cancer annually
in the US due to inadequate doses of UV-B radiation were esti-
mated. This estimate for colorectal cancer would account for
about 30% of the total premature cancer deaths due to low UV-
B whereas colorectal cancer mortality accounts for only about
10% of the total deaths from cancer.
Studies that have examined circulating 25(OH)D3 levels and
subsequent risk of colorectal cancer or adenoma, the cancer
precursor, have found a lower risk associated with higher
25(OH)D3 concentrations (47-52), with one exception (53). In
the Washington County, Maryland cohort, an inverse relation
between circulating 25(OH)D3 was observed in the first eight
years after the blood sample collection (47), but no associa-
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tion was observed in cases diagnosed 10-17 years after the
sample collection (53). A study conducted in Finland found no
relation between serum 1,25(OH)2D3 concentration and col-
orectal cancer incidence, but an inverse relation was suggest-
ed for 25(OH)D3 level, particularly for rectal cancer (48). A re-
cent analysis in the Nurses’ Health Study found a significant
inverse association between 25(OH)D3 and colorectal cancer
risk . Several studies (49-52, 54) that have examined circulat-
ing vitamin D levels and risk of colorectal adenoma, cancer
precursor, suggest an inverse association with 25(OH)D3 and
possibly 1,25(OH)2D3, particularly for advanced adenomas
(52). In regards to the required 25(OH)D3 level to reduce opti-
mally colorectal cancer risk, no threshold was suggested in
any of the studies. In the Nurses’ Health Study, the largest rel-
evant study of colorectal cancer, based on 193 incident cases,
the RR decreased across quintiles, with a RR of 0.53 (CI,
0.27-1.04) for quintile 5 versus 1. The median 25(OH)D3 con-
centration in quintile 5 was 88 nmol/L. When the relationships
between colorectal cancer and dietary or supplementary vita-
min D have been investigated in cohort studies of men (55,
56) and women (57-59) or both sexes (60, 61), and in case-
control studies (62-69), the majority of studies suggested in-
verse associations for colon or rectal cancer, or both (55-58,
61, 63, 65, 67, 68). 
All the studies of colorectal cancer that took into account sup-
plementary vitamin D reported an inverse association. In these
studies, the cutpoint for the top category was from approxi-
mately 500 to 600 IU/day, with an average of approximately
700-800 IU/day in this category. The risk reduction in the top
versus bottom category was as follows: 46% (57), 34% (56),
58% (58), 24% (59), 30% (68), 29% male, 0% female (61), and
50% males, 40% females (69). 

c) Prostate cancer

For prostate cancer, the results regarding vitamin D are gen-
erally non-supportive. In populations where severe vitamin D
deficiency is uncommon, higher 25(OH)D3 level has not been
associated with a reduced risk (70-74). Only two studies (75,
76), which were conducted in Nordic countries, supported an
inverse association for 25(OH)D3, though one of these studies
also found an increased risk in men with the highest 25(OH)D3
values (76). Because of the high latitude and reduced sun-
shine exposure in Nordic countries, 25(OH)D3 levels were
quite low, and 1,25(OH)2D3 synthesis is impaired only when
25(OH)D3 is seriously deficient (77-80). Thus, it is possible
that the 25(OH)D3 levels were low enough to influence sub-
strate availability for 1,25(OH)2D3, though 1,25(OH)2D3 was
not measured in these studies. Regarding 1,25(OH)2D3, one
study (70) is supportive, while another is suggestive (71) for
an inverse association for circulating 1,25(OH)2D3 and aggres-
sive prostate cancer, particularly in older men. In a case-con-
trol study conducted in the UK, where vitamin D deficiency is
relatively common in the elderly (81), regular foreign holidays,
higher sunbathing score, and higher exposure to UV radiation
were associated with a reduced risk of prostate cancer (82). A
recent nested case-control study did not support a reduced
risk of prostate cancer associated with higher 1,25(OH)2D3 or
25(OH)D3 (73), but the vast majority of cancers was organ-
confined and detected through PSA elevation in this study.
Another recent small study based on 83 cases from the Na-
tional Prevention of Cancer Trial found no association be-
tween plasma 25(OH)D3 or 1,25(OH)2D3 and total prostate
cancer risk (74). In contrast to colorectal cancer, none of the
four studies that have evaluated whether dietary or supple-
mental vitamin D is related to risk of prostate cancer support a
protective association (83-86). In one cohort, vitamin D intake

was found to be inversely associated with colorectal cancer
risk (59), but not with prostate cancer risk (84). This finding
suggests the effect of dietary vitamin D may differ between
prostate and colorectal cancer.

Immuno-modulatory effects of 1,25(OH)2D3

The VDR is expressed in most cells of the immune system, in-
cluding T lymphocytes, and antigen-presenting cells (APC)
such as macrophages and dendritic cells (87-91). Growing ev-
idence indicates that 1,25(OH)2D3 is a modulator of immune
system function, consistent with its capacity to control cellular
differentiation. Helper T (Th) cells are central to all antigen-
specific immune responses. The microenvironment in which
naive Th cells develop determines which of 2 subtypes pre-
dominates (Th1 or Th2). Th1 and Th2 cells are direct targets
of 1,25(OH)2D3. Quiescent CD4+ T cells expressed VDRs but
only at low concentrations, which increased 5-fold after activa-
tion (92). 1,25(OH)2D3 decreased the proliferation of purified
Th cells and decreased the production of IFN-γ, IL-2, and IL-5
(92). In Th2 cells, 1,25(OH)2D3 increased the production of IL-
4 (92). The effectiveness of 1,25(OH)2D3 for suppression of
autoimmune diseases in vivo has been shown to depend on
IL-2 (93) and IL-4 (94) secretion. CD4+ T cells from VDR
knockout (KO) mice (which do not respond to vitamin D) pro-
duced more IFN-γ and less IL-2, IL-4, and IL-5 than did CD4+

T cells from wild-type (WT) mice (95). Consistent with this
finding, in vivo antigen stimulation of VDR KO mice resulted in
increased antigen-specific IFN-γ response (95). Furthermore
the mixed lymphocyte reaction with CD4+ T cells from VDR
KO mice was twice that with CD4+ T cells from WT mice (95).
The data suggest that T cells from VDR KO mice secrete
more IFN-γ and less of the Th2 cytokines IL-4 and IL-5. Fur-
thermore, 1,25(OH)2D3 reduced Th1 cell-associated cytokine
production and increased Th2 cell IL-4 secretion. In the ab-
sence of vitamin D signaling, the T cell compartment has a po-
tentially stronger Th1 phenotype.
One study of mice in which the VDR gene had been ablated
concluded that altered immune responses were an indirect
consequence of VDR disruption because they could be re-
stored by normalization of calcium homeostasis (96). Howev-
er, another study revealed abnormal development of pro-in-
flammatory T helper 1 (Th1) cell development in VDR knock-
out mice (97). Moreover, mice rendered 1,25(OH)2D3 defi-
cient by knockout of the gene encoding 25-hydroxyvitamin D3
1-α-hydroxylase were deficient in peripheral T lymphocytes
(98).
These findings help to provide a molecular basis for the thera-
peutic potential of 1,25(OH)2D3 analogues in treatment Th1-
stimulated autoimmune diseases. Indeed, in mice, 1,25(OH)2D3
can prevent systemic lupus erythematosus, experimental au-
toimmune encephalomyelitis (EAE), collagen- induced arthritis,
inflammatory bowel disease and autoimmune diabetes (96).
For example, treatment of mice with myelin basic protein in-
duces EAE, a multiple sclerosis-like disease whose progres-
sion is driven by activated T cells. Dietary 1,25(OH)2D3 pre-
vented the onset of EAE and the progression of established
disease (99, 100). The most firmly established clinical use of
1,25(OH)2D3 analogues is in the treatment of the Th1-driven
chronic inflammatory skin disease psoriasis, which affects 2%
of the population. 1,25(OH)2D3 analogues account for 50% of
all drugs used to treat mild to moderate disease. Analogues
are used topically, and one of the most throughly tested is the
secosteroidal compound calcipotriol (101-103), which is effec-
tive either alone or when administered in combination with anti-
inflammatory steroids (104).
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Inflammatory bowel diseases (IBD) and vitamin D status

In IBD, the immune system-mediated attack is against the gas-
trointestinal tract (105, 106). T cells that preferentially produced
the Th1 cytokines (IL-2, IFN-gamma, and tumor necrosis factor
alpha) were shown to transfer Crohn’s disease-like symptoms to
naive mice (107, 108), and the production of Th1 cytokines is as-
sociated with IBD among humans subjects (109). In convention-
al animal facilities, IL-10 KO mice develop enterocolitis within 9-
12 wk of life (110). Approximately 30% of IL-10 KO mice die af-
ter the development of severe anemia and weight loss (110). 
Vitamin D deficiency accelerated the development of IBD
symptoms among IL-10 KO mice (111). 
In the clinical practice, vitamin D deficiency is common among
patients with Crohn’s disease, even when the disease is in re-
mission (112, 113). It is unclear why vitamin D deficiency oc-
curs more frequently in IBD; it is probably attributable to the
combined effects of low vitamin D intake, malabsorption of
many nutrients including vitamin D, and decreased outdoor ac-
tivities in climates that are not optimal for vitamin D synthesis in
the skin. The standard treatments for patients with IBD include
short-term high-dose and long-term low-dose prednisone ther-
apy (113, 105, 106). Prednisone and other corticosteroid thera-
pies result in decreased bone mineral density, which increases
the risks for vertebral fractures. Vitamin D deficiency has been
linked to bone loss among patients with IBD, and bone loss is
a problem for up to 50% of patients with IBD (112, 113). A
placebo-controlled study showed that calcium and vitamin D
supplementation were effective for preventing bone loss
among patients with Crohn’s disease (112, 113, 114). The hor-
monally active form of vitamin D, 1,25-dihydroxyvitamin D3
[1,25(OH)2D3], is known to increase bone mineralization when
administered to experimental animals (115) and human sub-
jects (116). Therefore, vitamin D and/or 1,25(OH)2D3 supple-
mentation is warranted for patients with IBD, to maintain bone
mineral density and to normalize circulating vitamin D concen-
trations.

Vitamin D and infectious diseases

On the basis of the ability of 1,25(OH)2D3 to suppress the de-
velopment of various autoimmune diseases and to prolong al-
lograft survival, 1,25(OH)2D3 has been recognised as an im-
munosuppressive hormone (117, 118). However, 1,25(OH)2D3
has been shown to have no effect on the susceptibility of mice
to infections with Herpes simplex virus or Candida albicans
(115). The doses of 1,25(OH)2D3 chosen were the same doses
that had been shown previously to prolong allograft survival
(115, 118). Surprisingly, little is known about the effect of vita-
min D status on the ability of the host to fight infections. There
is an interesting but mechanistically unsubstantiated link be-
tween vitamin D deficiency and cases of tuberculosis (119).
Experimentally, vitamin D deficiency and host resistance to in-
fectious diseases have not been studied extensively. One ex-
periment in VDR KO mice showed that VDR KO mice exhibited
increased granulomatous inflammation (slightly more severe
infection) during Schistosoma mansoni infection, compared
with WT mice (95). Little is known about the role of vitamin D
and 1,25(OH)2D3 in regulating immune responses to infectious
diseases. What is known is somewhat paradoxical, on the ba-
sis of the ability of this nutrient/hormone to suppress autoim-
mune diseases and prolong transplant survival.

Vitamin D and experimental asthma

Experimental allergic asthma was induced in VDR KO, WT,
and 1,25(OH)2D3-treated WT mice. WT mice developed asth-
ma, which was characterized by many inflammatory cells infil-
trating the lungs. Lung histopathologic scores reflected the
amount of epithelial hyperplasia and inflammation on a scale of
0 to 4 (maximum). The Th2 cell-driven disease experimental
asthma failed to develop in VDR KO mice (120). 1,25(OH)2D3
treatment of WT control mice had no effect on asthma severity.
VDR KO mice did develop antigen-specific Th2 cell responses
in the periphery but failed to develop lung inflammation or air-
way hyperresponsiveness (120). The absence of vitamin D sig-
naling through VDRs protected these mice from developing ex-
perimental asthma. The Th2 cell response develops in the ab-
sence of VDRs; however, Th2 cells may not traffic to the lung
and cause disease. It is also possible that epithelial cells in the
lungs of VDR KO mice are unable to respond to an inflamma-
tory challenge.

Vitamin D and diabetes

Several studies in rats and humans (121,122) have demon-
strated that vitamin D deficiency causes reduced insulin secre-
tion, and that 1,25(OH)2D3 improves in β-cell function and con-
sequently in glucose tolerance (123). In vitamin D-deficient
rats, glucose tolerance and insulin secretion were improved
with 1,25(OH)2D3 treatment (124). In gestational diabetes mel-
litus, Rudnicki and Molsted-Petersen (125) reported that the
glucose level decreased after intravenous treatment with
1,25(OH)2D3. Vitamin D also corrects glucose intolerance and
normalizes insulin sensitivity in uremic patients (126, 127).

a) Type 1 diabetes mellitus

Some studies (128, 129) suggested that vitamin and its
metabolites act in the regulation of the endocrine pancreas not
only via the plasma calcium levels but also directly on the β-
cells. 1,25(OH)2D3 may influence both endocrine and exocrine
pancreatic function (130). The effects of 1,25(OH)2D3, a biolog-
ically active metabolite of vitamin D, and its analogues have
been examined regarding binding to nuclear VDR (nVDR) and
membrane VDR (mVDR), through which they might induce ge-
nomic and nongenomic responses respectively.
In humans, Baumgartl et al. (131) reported that serum 25OHD3
levels measured at matched time points throughout the year
are lower in patients newly diagnosed with type 1 diabetes
than in healthy controls. In 1999, the EURODIAB Substudy 2
Study Group (132) studied the correlation between vitamin D
supplements during the first year of life with the development
of type 1 diabetes. They reported that vitamin D supplement
during the first year of life is associated with a decreased risk
of type 1 diabetes. In another study, Stene et al. (133) investi-
gated whether cod liver oil or vitamin D supplements taken ei-
ther by the mother during pregnancy or by the child in the first
year of life is associated with lower risk of type 1 diabetes in
children. They found a lower risk of diabetes in children when
mothers took cod liver oil during pregnancy. It was noted that
newborn children of mothers who had taken cod liver oil during
pregnancy had higher concentrations of 25(OH)D3 in the cord
blood than children of mothers who had taken other vitamin D
supplements during pregnancy (133). However, there was no
significant protection from type 1 diabetes risks when infants
were fed either cod liver oil or vitamin D supplements. They
suggested that exposure in utero could be relevant for the de-
velopment of type 1 diabetes. In addition, Hypponen et al.
(134) assessed the risk of type 1 diabetes and vitamin intake
during infancy of 10.821 children in Oulu and Lappland of
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northern Finland. They reported that dietary vitamin supple-
mentation is also associated with reduced risk of type 1 dia-
betes.

b) Type 2 diabetes mellitus

Vitamin D deficiency was linked to IGT (impaired glucose toler-
ance) and type 2 diabetes in humans many years ago (135,
136). These observations were confirmed in animal models,
which demonstrated that pancreatic insulin secretion is inhibit-
ed by vitamin D deficiency (137). Several reports have as-
cribed an active role to vitamin D in the functional regulation of
the endocrine pancreas, particularly the beta cells. Not only re-
ceptors for 1,25(OH)2D3 are found in beta cells (138), but the
effector part of the vitamin D pathway is also present in the
form of vitamin D-dependent calcium-binding protein, also
known as calbindin-D28 (139). The expression of calbindin-
D28k has been shown to protect beta cells from cytokine-medi-
ated cell death (140). Several studies have demonstrated a link
between VDR gene polymorphisms and type 2 diabetes, al-
though the findings differ from one population to another. A
study in Bangladeshi Asians demonstrated that the ApaI RFLP
(Restriction Fragment Lenght Polymorphism) influences insulin
secretion in response to glucose (141), while associations be-
tween the VDR ApaI RFLP (restriction fragment lenght poly-
morphism) and higher fasting plasma glucose levels and glu-
cose intolerance were observed in a community-based study of
older adults without known diabetes (142). More recently,
genotyping for TaqI, ApaI, BsmI and FokI RFLPs revealed that
the BsmI RFLP is associated with high fasting glucose levels in
young males with low physical activity (143). 

Effects of 1,25(OH)2D3 in the central nervous system

While 1,25(OH)2D3 can protect against progression of neu-
rodegenerative disorders such as EAE through its effects on
the immune system, recent evidence suggests that it can act
directly on the central nervous system (CNS) itself. The VDR is
widely expressed throughout the CNS (144), and is a strong in-
ducer of nerve growth factor expression (145). Several studies
have suggested that 1,25(OH)2D3 has neuroprotective effects.
In vivo experiments in rodents have shown that 1,25(OH)2D3
retards age-related decreases in hippocampal neuronal density
(146), and protects against neuronal cell death in a rodent
model of stroke (147). Moreover, 1,25(OH)2D3 can act directly
on primary cultures of rat hippocampal neurons to inhibit ex-
pression of markers associated with neuronal aging (148). Part
of the neuroprotective effects of 1,25(OH)2D3 in the CNS may
also lie in its capacity to protect cells from ROS. Studies in cul-
tured rat neurons showed that 1,25(OH)2D3 protected against
the neurotoxic effects of agents that caused oxidative damage
by increasing intracellular levels of glutathione (149), consis-
tent with its effects on redox balance observed in cancer cells.

Conclusions

Vitamin D action is not only involved in bone metabolism. The
broad expression pattern of the VDR, and the widespread ef-
fects of its hormone on cellular differentiation and proliferation
have opened up a number of new fields of investigation for ba-
sic researchers interested in 1,25(OH)2D3 function as well as
those more concerned with the therapeutic potential of its syn-
thetic analogues as chemopreventive agents against cancer
and neuronal aging, as well as their potential in combating a
number of autoimmune disorders.
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