Hyperplasia of parathyroid gland in a five-year old child affected by MEN 2A

Tommaso Marcucci1
Geri Fratini1
Gabriella Nesi2
Vania Vezzosi2
Francesca Marini3,4
Maria Luisa Brandi3
Geri Fratini1
Tommaso Marcucci1
1 General Surgery Unit, Department of Clinical Physiopathology, 2 Department of Human Pathology and Oncology, 3 Regional Center for Hereditary Endocrine Tumors, Department of Internal Medicine, and 4 DeGene Spin-off, University of Florence, Florence, Italy

Address for correspondence:
Francesco Tonelli, M.D.
Department of Clinical Physiopathology
General Surgery Unit
Viale Morgagni 85, I-50134 Firenze, Italy
Ph. +39 055 4277449
Fax +39 055 4361770
E-mail: f.tonelli@dfc.unifi.it

Summary

Primary hyperparathyroidism (HPT) is observed in 20-30% of patients with multiple endocrine neoplasia type 2A (MEN 2A). The age of diagnosis ranges from seven to seventy one year old (with median of thirty eight years) in patients affected by HPT in MEN 2A. We diagnosed primary HPT in a 5 year old boy carrier of RET gene mutation associated with MEN 2A, submitted to prophylactic total thyroidectomy (TT). The RET mutated gene carriers are submitted to prophylactic total thyroidectomy at different ages. Recent studies demonstrated that based on the type of RET gene mutation the timing of TT varies, as the transforming potential of RET-mutations are codon-dependent with significant correlations between genotype and clinical phenotype in MEN 2A patients. In particular, the medullary thyroid carcinoma (MTC) occurs earlier in the patients with codon 634 mutations than in those with other mutations, and these patients have also a higher frequency of pheochromocytoma and hyperparathyroidism. This genotype-phenotype correlation is confirmed in the patient described in this report, who was carrier of a germline mutation in the 634 codon (Cys→Trp) and showed early expression of MTC and parathyroid pathology. The young age of this patient represents an exception, as other Authors report a more conservative surgical approach.

Case report

A 5-year-old child of male sex was admitted to our observation in November 2002, since genetically diagnosed as MEN 2A carrier. The mother was affected by pheochromocitoma, medullary thyroid carcinoma and carrier of an activating mutation of the RET gene. The child had a silent clinic picture and underwent genetic analysis. The exam showed that he was carrying the same (TGC→TGG) mutation of the RET gene on the 634 codon of exon 11, with consequent aminooacidic substitution Cys→Trp in the encoded protein. Ultrasound exam of the superior abdomen and of the neck (April 2003) did not identify significant alterations, with the absence of lesions at bilateral suprarenal level and regular thyroid as regard size and structure. Biochemical exams showed abnormal levels (20.3 pg/ml; n.v.: male • 15.9 pg/ml, female • 8.5 pg/ml) of circulating calcitonin. Also non specific enolase (NSE) was higher than normal (16.7 ng/ml; n.v.: 0.0-13.0 ng/ml), urinary excretion of the principal adrenergic hormones (vanillylmandelic acid, metanephrine and normetanephrine) was within the normal range (1.82 mg/24h, 55 mcg/24h, 135 mcg/24h respectively; n.v.: 1.80-6.70 mg/24h, 52-341 µg/24h, 88-440 µg/24h), as also chromogranin A (CgA) (62 ng/ml; n.v.: * 123 ng/ml). Surprisingly, serum concentrations of ionized calcium and PTH were respectively 4.72 mg/dl (n.v.:4.10-5.30 mg/dl) and 44.4 pg/ml (n.v.:10-68 pg/ml). On July 2003 the child was admitted to our Surgery Unit and underwent various diagnostic exams including pentagastrin test that resulted positive showing an abnormal response of calcitonin with a peak of 166 pg/ml after one min. Both the genetic test and the biochemical profile of the patient were indicative for surgery. For this reason on July 2003 the child underwent total thyroidectomy with lymphadenectomy of the central compartment and transcervical thymectomy. During surgery all the parathyroid glands were identified. The superior right and inferior left parathyroid were found enlarged (7x3.5x3.8 mm, 6x4x3 mm, respectively) and, therefore, both parathyroids were excised. The intraoperative histological exam showed hyperplastic tissue at the superior right parathyroid (Fig. 1). The postoperative histopathological diagnosis was of multifocal medullary thyroid carcinoma with a major nodule measuring 3 mm in diameter, of hyperplastic lymphadenitis in the parathyroid lymphonodes and of hyperplasia of the parathyroid glands.

Key Words: medullary thyroid carcinoma, multiple endocrine neoplasia type 2A, preclinical genetic test, hyperparathyroidism.
The child was discharged with thyroid substitutive therapy and a well controlled calcemia. At 17 months after surgery, he is in good health with normal calcium and PTH levels and a negative pentagastrin test.

Discussion

The RET mutated gene carriers are submitted to prophylactic TT at different ages. Some Authors recommend TT at 5 years of age in mutated gene carriers (5-7). Other Authors suggest that TT at the age of 2 years (8-9) or between 3 and 5 years (10) is necessary to obtain optimal cure rates. Recent studies demonstrated that based on the type of RET gene mutation the timing of TT varies, as the transforming potential of RET-mutations is codon-dependent (11), with a significant correlation between genotype and clinical phenotype in MEN 2A patients (12-15). In particular the risk to develop MTC and metastatic MTC (MMTC) is genotype-dependent, with higher age-independent risk of MTC and MMTC in c634 mutation carriers (81%) than in c618 (34%) and c620 (7%) mutation carriers (16). “In vitro” transfection studies confirmed these findings with variable codon specific neoplastic transforming capacity of c609, c611, c618, c620, c630, and c634 mutations in C-cells and with the highest values for the c634 mutation (11). These results were confirmed by the clinical observation that MTC occurs earlier in patients with c634 mutation, whereas patients with c611 and c804 mutations display a late expression of MTC (12, 17-19). Moreover, in a recent review it has been reported that the youngest patient with MTC, a one year old, carried out the c634 RET mutation, whereas patients with c611 and c804 mutations display a late expression of MTC (12, 17-19). Therefore, the codon analysis has prognostic value and the knowledge of specific malignant potential of each codon may make possible to select the timing of TT based on genotype (16). Interestingly, patients with codon 634 mutations have a higher frequency of pheochromocytoma and hyperparathyroidism than those with other mutations (14,15). These phenotypic characteristics are confirmed in the patient described in this report, who showed early expression of MTC and parathyroid pathology and who is carrier of a germline mutation in the 634 codon (Cys→Trp).

Epidemiological data on the incidence of HPT in MEN 2A patients showed that HPT is observed more frequently in some
families, whereas in others it is not present also after a long follow-up from TT (20). These results have been explained on the basis of a decreased risk of HPT due either by the excision or by the damage of the parathyroids or by the possible elimination of a parathyroid stimulating factor produced by the C cells (20, 21). On the basis of these observations and of the low risk of onset of HPT in MEN2A, at present, the operation of prophylactic parathyroidectomy does not seem indicated when surgery for MTC is performed. The young age of the patient described in this report represents an exception, as other Authors report the absence of parathyroid pathology in patients submitted to prophylactic TT in children’s or in adolescents (22, 23). The clinical and biochemical features of our patient was entirely silent, in agreement with the described lack of symptoms in MEN 2A hyperparathyroid patients (3, 4, 24). Furthermore, MEN 2A patients can exhibit normal calcium and PTH serum values even if enlarged parathyroid gland(s) were found at surgery and histologically confirmed at pathology (4).

In the natural history of HPT in MEN 2A patients, in the majority (75-80%) of subjects the diagnosis of HPT is synchronous with that of MTC or pheochromocitoma, in the remaining cases HPT arises after many years from TT (1). HPT precedes the diagnosis of MTC or pheochromocitoma in less than 5% of the cases (4). As in our patient the two enlarged parathyroids were both hyperplastic, this case can be included in the 48% of cases with diffuse hyperplasia of the parathyroids (3, 25). Conversely, the presence of only one pathologic parathyroid gland (usually referred as single adenoma) at the surgical exploration is reported in a variable percentage from 27 to 48% of MEN 2A cases (2, 4, 26) and the double adenoma in about 8% (3, 25).

Concerning the surgical treatment the experience reported in literature is scarce. The preferred surgical treatment is to limit the removal to the enlarged parathyroid glands. The results of the partial parathyroidectomy showed relapses of HPT in 20.9% of the cases, (mean variable follow-up from 3.5 to 11.4 years) (Table I). However, given that in a large part of the cases (about 3/4) the treatment of HPT occurs during surgery for MTC, it is not clear how many glands are effectively removed. In fact, the TT and the frequent heed for lymphoadenectomy of the central section of the neck (including often the thymectomy) can cause the extirpation or the devascularization of some or all residual parathyroid glands. This is also confirmed by the fact that in these experiences a high number of permanent hypoparathyroidism (10-19%) is present (Table I). Therefore, the apparently favourable results of a partial parathyroidectomy limited to the resection of the increased in volume glands should be better evaluated and analyzed by prospective clinical studies. Finally, the experience with subtotal or total parathyroidectomy associated to autograft is very limited, even though the accumulated data do not show major differences, suggesting a more conservative surgical approach (Table I).

Table I - Surgical approach to HPT in MEN 2A**.

<table>
<thead>
<tr>
<th>Parathyroidectomy</th>
<th>Partial</th>
<th>Subtotal</th>
<th>Total with autotransplantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperparathyroidism (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent</td>
<td>5.8</td>
<td>8.1</td>
<td>3.3</td>
</tr>
<tr>
<td>Recurrent</td>
<td>5.1</td>
<td>10.2</td>
<td>6.6</td>
</tr>
<tr>
<td>Recurrent + Persistent</td>
<td>20.9</td>
<td>18.3</td>
<td>16.0</td>
</tr>
<tr>
<td>Permanent hypoparathyroidism (%)</td>
<td>17.4</td>
<td>30.0</td>
<td>13.6</td>
</tr>
</tbody>
</table>

* Data selected from Ref. 3, 4, 24, 25, 27; ° Follow-up (years): mean 7, range 3.5-11.4.

References

14. Mulligan LM, Eng C, Healey CS et al. Specific mutations of the RET protooncogene are related to disease phenotype in MEN 2A
MEN 2A expression in the infancy

15. Schuffenecker I, Billaud M, Calender A et al. RET proto-oncogene
multiple endocrine neoplasia type 2A in children: therapeutic re-
sults of early thyroidectomy and prognostic value of codon analy-
17. Egawa St, Futami H, Takasaki K et al. Genotype-phenotype corre-
lation of patients with multiple endocrine neoplasia type 2 in
18. Hansen HS, Torring H, Godballe C et al. Is thyroidectomy neces-
sary in RET mutations carriers of the familial medullary thyroid
19. Lombardo F, Baudin E, Chiefari E et al. Familial medullary thyroid
carcinoma: clinical variability and low aggressiveness associated
with RET mutation at codon 804. J Clin Endocrinol Metab. 2002;
87:1674-1680.
20. Gagel RF, Tashjian AHJ, Cummings T et al. The clinical outcome
of prospective screening for multiple endocrine neoplasia type
484.
21. Mallette LE. Management of hyperparathyroidism in the multiple en-
docrine neoplasia syndromes and other familial endocrinopathies.
22. Wells SA, Chi DD, Toshima K et al. Predictive DNA testing and
prophylactic thyroidectomy in patients at risk for multiple endocrine
23. Decker RA, Geiger JD, Cox CE et al. Prophylactic surgery for multi-
ple endocrine neoplasia type Ila after genetic diagnosis: is parathy-
24. O'Riordain DS, O'Brien T, Grant CS et al. Surgical management of
primary hyperparathyroidism in multiple endocrine neoplasia types
25. Kraimps JL, Denizot A, Carnaille B et al. Primary hyperparathy-
roidism in multiple endocrine neoplasia type Ila: retrospective
26. Van Heerden JA, Kent RB, Sizemore GW et al. Primary hyperpar-
thryoidism in patients with multiple endocrine neoplasia syn-
results after operative treatment of primary hyperparathyroidism
associated with multiple endocrine neoplasia types I and Ila: is a
more or less extended operation essential? Eur J Surg. 2001;167:
173-178.