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Macroscopic and microscopic evaluation of a new 
implant design supporting immediately loaded full arch 
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Summary

The purpose of this study is to evaluate macroscop-
ic and microscopic appearance of a new implant de-
sign, with particular emphasis given to the type of 
prosthesis connection. Two dental implants of the 
same type (Torque Type®, WInSIx®, BioSAFin. S.r.l. 
- Ancona, Italy), with sandblasted and acid etched 
surfaces ( Micro Rough Surface®), but differing from 
each other for the prosthesis connection system, 
were examined by scanning electron microscope 
(SEM) analysis at different magnifications: TTI im-
plant, with a hexagonal internal connection, and 
TTx implant, with a hexagonal external connection. 
SEM analysis showed that the Torque Type® implant 
is characterized by a truncated cone shape with ta-
pered tips. The implant body showed a double loop 
thread and double pitch with blunt tips. For both 
types of connection, the implant neck was 0.7 mm 
in height with a 3% taper. This implant design may 
be able to guarantee osteotomic properties at the 
time of insertion in a surgical site suitably prepared, 
a facilitated screwing, thanks to the thread pitch and 
to the broad and deep draining grooves, thereby 
ensuring a good primary stability. The different con-
nection design appears defined and precise, in order 
to ensure a good interface between the fixture and 
the prosthetic components. Therefore, this design 
appears to be particularly suitable in cases where 
a good primary stability is necessary and a precise 

coupling between endosseous and prosthetic com-
ponents, as it allows an easy insertion of the fixture 
even in conditions of reduced bone availability, and 
in cases of immediately loaded full-arch rehabilita-
tions.

Key words: dental implant, Scanning Electron 
Microscope (SEM), implant connection.

Introduction

Osseointegrated implantology, thanks to many studies, 
is now considered a surgical discipline with proven ef-
fectiveness. Success in implant dentistry consists in get-
ting a good rate of integration between implant and host 
bone, which defines a good osseointegration according 
to the principles initially introduced by Branemark and 
subsequently developed by numerous studies over the 
years (1-3).
The implant design is a key factor to achieve good pri-
mary stability. It should be designed to guarantee the es-
tablishment of a direct connection between bone tissue 
and implant surface during the early stages of the heal-
ing process, without the interposition of fibrous tissue, 
as well as to achieve an even distribution of the loads 
which, through the masticatory system, are transmitted 
to the peri-implant bone tissue whilst chewing (4,5). 
There are two fundamental aspects of implant design: 
the macro-structure, characterized by the shape of the 
body, the characteristics of the neck and the apex, by 
the design, by the number and pitch of the thread, and 
the microstructure, characterized by the surface treat-
ment. In addition, there is also the good accuracy of the 
prosthetic components (6-8).
It is known that differences in implant shapes induce 
significant changes in force distribution on the surround-
ing bone (9). The macroscopic geometric pattern of a 
dental implant can assume a cylindrical or conical form. 
For some years some companies have marketed the ta-
pered form, with the aim of combining the advantages 
of both designs. A tapered implant creates the basis for 
an excellent primary stability by gradually allowing thin 
ridge expansion and determining the least stress pos-
sible at the interface with the surrounding bone (10,11).
The design of the implant neck, or crestal module, has 
undergone considerable evolution in recent years. The 
implant neck represents the transosseous area of the 
implant body where the highest concentration of me-
chanical stresses are evinced and where the transition 
between the hard tissue and soft tissue support occurs. 
Discriminating elements of the crestal module could be 
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identified in the geometrical design and in the surface 
type. The possible geometric profiles of the implant neck 
are essentially three: straight walls, diverging walls and 
converging walls. Despite the diverging walls type seem-
ing to be the best form, as it can provide a slightly higher 
primary stability after the implant insertion, from the clini-
cal point of view the behavior of the bone before and 
after the load is not dissimilar between the three geo-
metric figures. In fact, an aspect commonly observed at 
the level of the crestal module is the different bone level 
before and after the occlusal loading. Before loading, if 
the implant was positioned so that the prosthetic plat-
form is at the level of the crestal bone, there will always 
be a clinical situation where the bone covers the entire 
implant neck. After application of the load there is invari-
ably a vertical bone loss, the level of which is located in 
correspondence of the first thread. All this takes place 
independently from the geometrical shape and the level 
of the first thread.
The crestal module height was reduced over time by 
various manufacturers, until today, when the height of 
the smooth collar is reduced to less than 2 mm.
The morphology of the crestal module evolved in the 
same way - from a smooth surface to a treated sur-
face with microthreads for increased stability of bone in 
the coronal zone, to favour aesthetics and peri-implant 
health (12). 
The use of the smooth neck arises from the necessity 
to limit the plaque retention at the border zone between 
the implant, bone and soft tissue. The presence of micro 
retentions at the level of the crestal module is designed 
to adequately dissipate forces that are expressed at the 
cervical area of the bone-implant interface in the pres-
ence of occlusal stress, in all implant types, thus allow-
ing to maintain the height of the bone spikes in accor-
dance with the law of Wolff (13), a phenomenon that in 
the presence of a smooth neck does not happen.
As regards the design and the pitch of the threads, 
these must be designed to maximize the transmission 
of forces between the implant and surrounding bone tis-
sue, and to correctly distributed stress arising between 
the bone interface and the implant (14). Their main role 
is to increase primary stability and extend the available 
surface of the implant for bone contact.
Among the various thread designs, the V-shaped threads 
and the broader square threads have been shown to 
generate less stress and to better distribute the loading 
forces compared to the thin threads and tapered apex 
threads (15). The phenomenon is best appreciated in the 
bone marrow, while no difference have been found in 
cortical bone.
Another important factor necessary to achieve success 
in implantology is represented by the surface properties 
of the material used (16). The micro-topography of the 
implant surface is able to affect the percentage of BIC 
(Bone-to-Implant Contact) and the cellular response of 
the host tissue (17). The treated surfaces stimulate os-
teoblast proliferation, as demonstrated by the increased 
expression of biological markers, which transposes into 
an increase of osteogenesis, thus assuming an impor-

tant role regarding the long-term survival of the osseoin-
tegrated implants (18).
The titanium surface can be prepared with different tech-
niques in order to obtain an optimal degree of roughness 
of the surface, as it has been shown that the wider the 
functional surface is in contact with the bone, the better 
the support for the prosthesis (19,20).
The rough implant surfaces determine a slightly better 
bone tissue response in quantitative terms of bone-
implant contact percentage (21-23). The purpose of 
the surface treatment is to increase the contact area 
between the bone and the implant, thus improving the 
osseointegration. Even with only the threads, the resis-
tance degree to tensile forces and compression is great-
er than smooth implants not threaded, and the presence 
of microretentions on the surface of the fixture allows to 
increase the tensile and torsion strength of the implant. 
In addition, some authors have demonstrated how mac-
rophages, epithelial cells and osteoblasts, have a high 
tropism against rough surfaces (24,25).
In order to obtain a surface topography able to promote 
the process of osseointegration, various surface treat-
ments have been tried out, such as sandblasting (26), 
acid etching (27), combined treatment of blasting and 
etching (28), surface coating with micro-granules of 
hydroxyapatite (29) or particles of titanium oxide (30), 
or electrochemical deposition (31). Recent researches 
highlighted how the micro-roughness obtained by blast-
ing and acid etching is compatible with best clinical and 
histological results. 
Several options also affect the types of connections 
between the endosseous fixture and implant prosthetic 
components.
External hexagonal connection was the first connec-
tion system used in implantology which was ideated by 
Branemark only as coupling mechanism to easily guide 
the stump insertion; its function was then expanded to 
become a real anti-rotation mechanism. The interface 
and the tightening screw are subject to very high mas-
ticatory loads, subjecting the screw to insidious lateral 
bending forces, tilting and elongation that may mobilize 
it (32).
Of the internal connections, the most widely used are 
internal hexagonal, internal octagonal, conical screw 
and Morse connections. The internal connections have 
shown an increased stability, better mechanical stability 
and resistance to lateral forces than external ones.
The aim of this study is to describe the macroscopic and 
microscopic appearance of a new implant design, with 
particular emphasis on the type of prosthesis connec-
tion.

Materials and Methods

In this study, the macroscopic and microscopic appear-
ance of a new implant design was evaluated, with par-
ticular emphasis on the type of prosthetic connection. 
Two dental implants of the same type (Torque Type®, 
WInSIx®, BioSAFin S.r.l., Ancona, Italy), with sandblast-
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ed and acid etched surfaces (Micro Rough Surface®), 
but differing from each other for the prosthesis connec-
tion system, were examined by scanning electron micro-
scope (SEM) analysis at different magnifications: TTI im-
plant (Torque Type® Implant I), with a hexagonal internal 
connection, and TTx implant (Torque Type® Implant x), 
with a hexagonal external connection. 
The macrostructure of the geometrical design of the 
different segments of the fixture, the characteristics of 
the prosthetic connection, and the microstructure of the 
implant surface were analyzed by Scanning Electron 
Microscope (Zeizz EVO-50, Cambridge, UK). Electron 
acceleration potential was kept between 15 and 25 kV, 
and the working distance kept between 9 and 12 mm, 
according to the different requirements and types of 
samples.

Results

At SEM analysis, both TTI and TTx implants were char-
acterized by a truncated cone shape, with a tapered 
apex (Fig. 1). 
Both implants showed a reduced crestal module repre-
sented by a smooth neck 0.7 mm height and 3% taper. 
The implant-prosthetic connection was characterized 
by a very deep lodging for the fixing screw, with a hex-
agonal form with a double parallel type connection (Fig. 
2). The TTx implant includes a crestal module with a 
smooth surface, dominated by the external hexagonal 
connection module (Fig. 3). At SEM analysis, the neck 
surface seemed completely smooth and well polished; at 
3000x magnification there were signs of lathing, typical 
of machined surfaces (Fig. 4). 
With regard to the implant body, this was equipped with 
a double thread and double pitch. The thread pitch was 
0.60 mm. The threads are “V” shaped with rounded tips 
and slopes inclined at approximately 45°.
The main thread has a step along its apical side which 
forms the smaller thread (Fig. 5). The depth of the main 
threads is 0.375 mm, as long as the depth of the second-
ary threads is 0.125 mm. The main thread width ranges 
from 0.07 mm at the top to 0.50 mm at the base, while 

Figure 1 - SEM visualization of  WInSIx® TT and TTx implants. 
It may be noticed the truncated shape of the fixture with tapered 
apex.

Figure 2 - SEM visualization of a TT implant-prosthetic connec-
tion with a deep lodging of hexagonal form and smooth crestal 
module.

Figure 3 - SEM visualization of a TTx external implant-prosthetic 
connection constitute of smooth crestal module dominated by an 
hexagonal connection.

Figure 4 - SEM visualization of the machined neck surface (149x 
magnification).
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the distance between each thread is 0.10 mm at the 
base and 0.53 mm at the peak. The implant shape is 
maintained constant along the entire implant body.
The apical portion shows a bevel apex, nearly flat, char-
acterized by broad and deep drainage furrow, with in-
creasing size apically (Fig. 6).
The surface of the implant body, defined by the manu-
facturer of Micro Rough Surface®, and realized by a sub-
traction process for etching and sandblasting, was reg-
ularly distributed along the surface (low magnification) 
(Fig. 7). In the apical portion, at 1980x magnification, it 
can be seen how the rough aspect of this surface recalls 
that typical of tooth enamel after acid etching. At higher 
magnification the surface appears to be characterized 
by small depressions and elevations of 2-4 µm (Fig. 8).

Discussion

In scientific literature it is widely reported that the mac-
roscopic structure and the surface characteristics of 

Figure 5 - SEM visualization of the continuous step that forms 
the smaller threads from the main threads (192x magnification).

Figure 6 - SEM visualization of the bevel apex characterized by 
furrows drain.

dental implants play a decisive role in obtaining success 
in osseointegrated implantology (33). In particular, the 
geometrical design of the threads, their position and 

Figure 7 - SEM visualization of the Micro Rough Surface® regu-
larly distribuited (721x magnification).

Figure 8A

Figure 8B - SEM visualization of the Micro Rough Surface® at 
higher magnification (A:1980x; B: 7330x).
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their pitch along the implant body determine a different 
response to functional loads and transmission of those 
forces to the surrounding bone tissue (34). The implant 
design plays an even more important role if surgical 
protocols providing immediate loading are adopted. It is 
known that in the initial stages following implant inser-
tion, and especially after immediate loading, implant sta-
bility should be guaranteed by mechanical relationship 
between the fixture and the bone tissue rather than a 
biological bone integration. Therefore, the percentage of 
bone-implant contact and the friction that is obtained dur-
ing the insertion play an important role in the mechanical 
behaviour of immediate loaded prosthetic implants.
The tapered shape of the implant fixtures TTI and TTX 
ensures a gradual expansion of the thin crests during 
the insertion phase of the fixture by determining the least 
possible stress to the surrounding bone. This factor is of 
fundamental importance in cases of reduced bone avail-
ability, where preserving cortical bone tissue is appropri-
ate, as well as carrying out a three-dimensional expan-
sion and compaction of the walls of the newly formed al-
veolar bone. The implant type analyzed showed a thread 
design that allows to release more force and give easy 
access to good primary stability. The thread geometry 
contributes to obtaining primary stability, responsible for 
the biomechanical behaviour of the bone-implant inter-
face after the healing process (35).
The thread height is defined as the distance between 
the major and the minor diameter of the coil. A shallow 
thread depth, as well as those present in the Torque 
Type implants, favors insertion. In fact, although deeper 
threads ensure an increase of the surface and represent 
an advantage in areas of low density bone and high oc-
clusal stress, on the other hand shallow threads allow an 
easy insertion in alveolar ridges with more dense bone 
without the need to perform tapping before the implant 
insertion (36).
In a study conducted by finite element analysis, it was 
demonstrated that the height of the thread more than 
its thickness is able to influence primary stability, and in 
particular threads with a height exceeding 0.44 mm is 
able to provide excellent biomechanical response when 
inserted into bone tissue of medium or low density with 
immediate loading (37).
In addition, these threads have an osteotomic effect, 
allowing to pack the peri-implant bone using a surgical 
technique that provides preparation of the implant site 
according to “press-fit” protocol. In vitro studies showed 
that in case of poor quality bone, such as in the posterior 
maxilla, implants with chamfer thread design produced 
lateral compressive forces which increased the bone-
implant contact and consequently improved the primary 
stability (38). This factor is very important in case of im-
mediate load technique of several implants, as in the 
case of rehabilitation providing the immediate solidifica-
tion using bar techniques (Just on 4® and Just on 6®). 
Furthermore, as already demonstrated, under vertical 
load the presence of threads with bevel peak allows a re-
duction of divergent forces, thereby reducing the stress 
at the bone implant interface (39). 

TTi and TTx implants also have a double loop thread, a 
principal and a secondary smaller one, due to the pres-
ence of a groove on the apical side of the main thread. 
An implant with double coil has an insertion speed twice 
as fast compared to an implant with a single coil. Some 
studies report that implants with a high number of loop 
threads and a reduced pitch possess a high percentage 
of BIC, due to increased surface area (40). Some stud-
ies showed how the ideal threads pitch to obtain a good 
primary stability, and an optimal distribution of the stress 
should be not more than 0.8 mm (41). A thread pitch less 
than this measurement was seen to positively influence 
the load distribution along the peri-implant bone walls, 
accompanied by a smaller crestal bone resorption (42).
The osteotomic effect at the implant site during the im-
plant screwing phase is further achieved through the ta-
pered apex and the self-tapping implant design with the 
cutting apical portion. Moreover, the presence of deep 
grooves at the apical level, constituting an anti-rotational 
system, is necessary for bone chip collection and clot 
discharge during the screwing phase (43). 
With regard to the crestal module, the manufacturer’s 
choice to use a smooth neck reflects the concept to 
guarantee the minimum plaque retention, allowing to 
obtain an optimal integration with the bone tissue (44).
The constant size of the internal hexagon for the various 
implant diameters allows the use of few components, 
making the prosthetic steps and the eventual choice to 
adopt the Platform Switching technique easier.
The connection type through a long screw, ensures high 
connection stability, with considerable reduction of the 
stress between abutment and implant, and a greater 
contact surface which limits the microcirculation of bio-
logical fluids (45).
Another important factor analyzed was the implant sur-
face, because the surface of the fixture is the only part 
to come into direct contact with the host tissue, influenc-
ing cellular and biochemical responses, acting also on 
the stability between bone and implant (46). SEM analy-
sis allowed to assess the degree of roughness present 
on the implant body and on the apical portion, typical 
of a sandblasted and acid etched surface with signs of 
streaks, depressions and elevations highly variable in 
size and shape.
Recent clinical studies showed how an implant with a 
rough surface can be loaded before the traditional treat-
ment protocols (47). Some studies showed that dental 
implants with low roughness values, as for the implant 
with machined surface, can promote the formation of fi-
brous tissue around the implant, reduce the percentage 
of bone-implant contact and show a lower resistance to 
the removal than implants with rough surfaces (48).
The implants with sandblasted and etched surfaces, 
for the presence of more regular micro-roughness pro-
duced by the etching treatment, seem to favor the bone 
healing process, also by the marked incidence of the in-
creased cytokine production, such as osteogenic prosta-
glandin E2 (PGE2), and transforming growth factor-beta 
(TGF-b1), with the latter less sensitive to surface rough-
ness than in the case of PGE2 (49). According to some 
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authors, this treatment promotes osseointegration due to 
an increase in initial cell anchorage by osteoblasts (50).
All in all, the results obtained prove that dental implants 
of a design that complies with the results of research 
regarding the macrostructural aspect and the micro-
structural surface topography, if used according to cor-
rect surgical and prosthetic protocols assure safe and 
predictable results. 
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