Alexithymia may modulate decision making in patients with de novo Parkinson’s disease

Michele Poletti, PsyDa,b
Daniela Frosini, MDa
Cristina Pagni, PsyDa,b
Claudio Lucetti, MDa
Paolo Del Dotto, MDa
Gloria Tognoni, MDb
Roberto Ceravolo, MDa
Ubaldo Bonuccelli, MDa,b

a Neurology Unit, Hospital of Viareggio, Italy
b Department of Neuroscience, University of Pisa, Italy

Corresponding author: Ubaldo Bonuccelli
Department of Neuroscience, University of Pisa, Italy
E-mail: u.bonuccelli@med.unipi.it

Summary

The aim of this study was to investigate whether and how alexithymia may influence decision making under conditions of uncertainty, assessed using the Iowa Gambling Task, in patients with newly diagnosed, untreated (de novo) Parkinson’s disease, as previously reported for healthy subjects. Twenty-four patients with de novo Parkinson’s disease underwent a neuropsychological and neuropsychiatric assessment, including the Toronto Alexithymia Scale, the Geriatric Depression Scale Short Form, and the Iowa Gambling Task (IGT).

The assessment showed that 12 patients were alexithymic and 12 were non-alexithymic; seven patients were found to be mildly depressed and 17 non-depressed. Alexithymic and non-alexithymic patients did not differ in the IGT total score; however, significant differences emerged across the third block of the IGT, in which the alexithymic patients outperformed the non-alexithymic patients. Depression did not influence IGT performance.

Alexithymia may modulate decision making, as assessed with the IGT; alexithymia could be associated with faster learning to avoid risky choices and negative feedback, as previously reported in some studies conducted in anxious or depressed patients.

KEY WORDS: alexithymia, anxiety, decision making, de novo Parkinson’s disease, depression, Iowa Gambling Task

Introduction

In recent years several studies have investigated how neuropsychiatric features may influence decision making under conditions of uncertainty, as assessed using the Iowa Gambling Task (IGT) (1). High levels of impulsivity are associated with a poorer ability to alter choice behavior in response to changing reward contingencies (2-4).

With regard to depression, some studies reported poorer performances in depressed patients compared with healthy subjects (5,6), while another study reported better performances in depressed patients, suggesting that depression may be associated with faster learning to avoid risky choices (7); finally, one study reported that the IGT performances of remitted depressed patients were similar to those of healthy subjects, suggesting that alterations of decision-making behavior may be state-dependent (8). As regards anxiety, some studies reported an association between high trait anxiety and poor decision making (9,10), while others reported opposite findings (11,12). Summarizing, although no clear pattern emerges from these studies, they nevertheless show that affective features, at least, influence decision making, as assessed using the IGT.

Among affective disorders, depression and anxiety are strongly associated with alexithymia (13-16), a phenomenon related to an alteration in affect regulation (17): its characteristics include inability to identify and describe feelings, difficulty distinguishing feelings from bodily sensations of emotional arousal, impaired symbolization, and an externally oriented cognitive style. Only one study investigated the potential influence of alexithymia on decision making (18): Ferguson and colleagues reported that, on the IGT, alexithymic subjects exhibited a response pattern characterized by standard exploration and learning over the first blocks of the trial, followed by a shift to a relatively higher proportion of disadvantageous choices over subsequent blocks, and finally a return to the advantageous choices in the last blocks. This pattern was not observed in the low alexithymia participants, who showed the standard learning curve for the IGT. This effect was especially evident when subjects were under conditions of reduced cognitive information, that is, in the absence of cumulative feedback. To summarize, higher levels of alexithymia were found to be associated with a slowed learning rate on the IGT, and with increased risk taking toward the end of the task; this was consistent with the finding of an attenuation of emotional learning in tasks requiring the use of previous emotional information to guide future performance (19).

To confirm the potential influence of alexithymia on decision making, we used findings derived from our previous studies that assessed i) the relationship between alexithymia and depression (20) and ii) decision making under conditions of uncertainty (21) in patients with newly diagnosed untreated (de novo) Parkinson’s disease (PD). The reason we decided to assess alexithymia in this specific clinical population is that alexithymia is strictly related to depression and anxiety (13-16) and these affective disorders may precede the clinical motor onset of PD (22,23); our decision to assess decision making was prompted by the consideration that medicated patients may present decision making difficulties from the early stages of PD (24-26). In these studies (20,21) we showed that untreated patients in the early...
stages of PD, at the onset of clinical motor symptoms, present similar levels of alexithymia and depression and preserved decision making, compared with healthy controls. These findings are consistent with those of studies showing that both alexithymia and decision making under conditions of uncertainty are related to the orbital portions of the prefrontal cortex (27-30), a cortical area that is not affected by the neuropathology of PD in the early clinical stages (31). On the basis of our previous studies, we hypothesized that, as observed in healthy subjects, alexithymia may modulate decision making in patients with de novo PD; in particular we predicted that alexithymic patients may display a different pattern of choices, during the IGT, compared with non-alexithymic patients, but that these differences would not necessarily correspond to a different IGT total score between the groups. Moreover, we expected that the relationship between alexithymia and decision making, if found, would probably not be influenced by the concomitant PD neuropathology, which, in the early clinical stages, does not involve cerebral areas related to alexithymia and decision making under uncertainty.

Materials and methods

Twenty-four de novo PD patients were enrolled from two Italian tertiary movement disorders clinics (Versilia Hospital, Viareggio; Neurological Clinic, University of Pisa) in the period from January to December 2008. All patients fulfilled research diagnostic criteria for idiopathic PD (32) and gave their informed consent to participate in the study. Patients who had clinical features suggestive of primary atypical parkinsonism, such as multiple system atrophy, progressive supranuclear palsy and corticobasal degeneration, and those with a diagnosis of dementia according to DSM-IV criteria (33), were not included in the study. Magnetic resonance imaging showed no signs of atypical parkinsonism, normal pressure hydrocephalus, moderate-to-severe vascular abnormalities, or tumors. In all the PD patients, gender, age and years of education were recorded. The patients performed a computerized standard version of the IGT, and completed the twenty-item Toronto Alexithymia Scale (TAS-20) (34), the Geriatric Depression Scale Short Form (GDS-15) (35), and the Mini-Mental State Examination (MMSE) (36).

The Frontal Assessment Battery (FAB) (37) was also administered to assess the presence of an executive dysfunctions; F2, Difficulty describing feelings; F3, Difficulty focusing on inner affective experience. The total score on the questionnaire allows subjects to be categorized as low alexithymic (scores ranging from 20 to 51), borderline alexithymic (scores ranging from 52 to 60), or alexithymic (scores ≥61). In order to compare our findings with those of Ferguson and colleagues (18), we adopted their cut-off point, classifying patients as low alexithymic (TAS-20 score ≤51) or high alexithymic (TAS-20 score >51). The GDS-15 is a validated self-report questionnaire for the evaluation of depressive symptoms; we adopted a cut-off point of 5 (presence of depression if the score is >5), as previously suggested for PD patients (38).

A chi-square test was used to compare the qualitative characteristics of patient subgroups (alexithymic vs non-alexithymic patients; depressed vs non-depressed); for the comparison of the quantitative variables, the Wilcoxon-Mann-Whitney test for independent data was used. The relation between quantitative variables was evaluated by means of a linear correlation, with a Bonferroni correction for multiple comparisons.

Results

All patients were cognitively preserved (mean adjusted MMSE score 28.60±2.14; mean adjusted FAB score 16.46±1.70). The demographic and clinical characteristics of the patients are reported in Table 1. As regards IGT performance, 10 patients obtained a negative score (≤0) and 14 a positive (>0) score. Applying the TAS-20
cut-off point of 51, 12 patients were found to be alexithymic and 12 non-alexithymic. Applying the GDS-15 cut-off point of five, 17 patients were categorized as non-depressed and seven as mildly depressed. Three patients had a positive family history of PD and four patients had a positive history of affective disorders (2 major depression, 1 dysthymia and 1 generalized anxiety disorder). No demographic (age, gender, education) or cognitive (MMSE, FAB) differences emerged between the alexithymic and the non-alexithymic patients or between the depressed and the non-depressed patients. De novo PD patients gave the following IGT scores: (block 1-20: -1.83±3.27; block 21-40: -1.42±3.25; block 41-60: 0.42±4.60; block 61-80: 3.75±6.78; block 81-100: 3.58±7.29; total score: 4.50±16.15); in the previous study (21) in which we compared IGT performances of de novo PD patients and healthy controls, although the healthy controls outperformed the de novo PD patients, the difference did not reach statistical significance. In the present study, the alexithymic patients outperformed the non-alexithymic patients in the third IGT block (41-60) (p=0.04); in the other IGT blocks and in the IGT total score no differences emerged between the alexithymic and the non-alexithymic patients (Fig. 1). No differences emerged (p=0.45) between the IGT performances of depressed and non-depressed patients, either in the total score (2.44±12.40 and 2.63±17.37 respectively) or in the five blocks of 20 choices. In the whole patient sample, correlation analyses revealed that the MMSE and FAB were negatively correlated with age (respectively r=-.443; p=0.03 and r=-.565; p=0.004); the TAS-20 and the GDS-15 were significantly correlated (r=.451; p=0.027). Considering the TAS-20 subscales, the GDS-15 significantly correlated with the F1 subscale (Difficulty identifying feelings) (r=.561; p=0.012) and the F2 subscale (Difficulty describing feelings) (r=.929; p<0.001). The TAS-20 was correlated negatively with education (r=-.520; p<0.001). The TAS-20 total score and the TAS-20 subscales F2 and F3 did not correlate with any IGT parameter, while the TAS-20 F1 subscale correlated positively with the IGT 21-40 score (r=0.559; p=0.013) and negatively with the IGT 61-80 (r=-.488; p=0.034) and the IGT 81-100 (r=-.666; p=0.02) scores.

Figure 1. IGT performances of alexithymic and non-alexithymic de novo PD patients.

Table 1 - Characteristics of de novo Parkinson’s disease patients

<table>
<thead>
<tr>
<th></th>
<th>PD patients (total sample)</th>
<th>Non-alexithymic PD patients</th>
<th>Alexithymic PD patients</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 24</td>
<td>n = 12</td>
<td>n = 12</td>
<td></td>
</tr>
<tr>
<td>Age (Mean (SD))</td>
<td>65.04 (6.23)</td>
<td>66.17 (5.20)</td>
<td>63.92 (7.17)</td>
<td>0.47</td>
</tr>
<tr>
<td>Gender m/f</td>
<td>17/7</td>
<td>7/5</td>
<td>10/2</td>
<td>/</td>
</tr>
<tr>
<td>Education (Mean (SD))</td>
<td>8.92 (4.03)</td>
<td>10.58 (4.37)</td>
<td>7.25 (2.95)</td>
<td>0.60</td>
</tr>
<tr>
<td>MMSE (Mean (SD))</td>
<td>28.60 (2.14)</td>
<td>28.72 (2.41)</td>
<td>28.49 (1.94)</td>
<td>0.71</td>
</tr>
<tr>
<td>FAB (Mean (SD))</td>
<td>16.46 (1.70)</td>
<td>16.27 (1.89)</td>
<td>16.64 (1.55)</td>
<td>0.79</td>
</tr>
<tr>
<td>GDS-15 (Mean (SD))</td>
<td>4.83 (3.49)</td>
<td>3.33 (2.34)</td>
<td>6.33 (3.89)</td>
<td>0.14</td>
</tr>
<tr>
<td>TAS-20 (Mean (SD))</td>
<td>51.46 (13.47)</td>
<td>40.67 (8.35)</td>
<td>62.25 (7.44)</td>
<td>< 0.01*</td>
</tr>
<tr>
<td>TAS-20 F1 (Mean (SD))</td>
<td>17.11 (5.71)</td>
<td>12.86 (4.18)</td>
<td>19.58 (5.07)</td>
<td>0.013*</td>
</tr>
<tr>
<td>TAS-20 F2 (Mean (SD))</td>
<td>15.21 (5.32)</td>
<td>10.00 (3.91)</td>
<td>18.25 (3.27)</td>
<td>< 0.01*</td>
</tr>
<tr>
<td>TAS-20 F3 (Mean (SD))</td>
<td>21.16 (5.39)</td>
<td>15.86 (4.70)</td>
<td>24.25 (2.70)</td>
<td>< 0.01*</td>
</tr>
<tr>
<td>IGT Total score (Mean (SD))</td>
<td>4.50 (16.15)</td>
<td>2.33 (18.04)</td>
<td>6.67 (14.48)</td>
<td>0.29</td>
</tr>
<tr>
<td>IGT 1-20 (Mean (SD))</td>
<td>-1.83 (3.27)</td>
<td>-2.00 (3.19)</td>
<td>-1.67 (3.49)</td>
<td>0.75</td>
</tr>
<tr>
<td>IGT 21-40 (Mean (SD))</td>
<td>-1.42 (3.25)</td>
<td>-1.67 (3.17)</td>
<td>-1.17 (3.46)</td>
<td>0.75</td>
</tr>
<tr>
<td>IGT 41-60 (Mean (SD))</td>
<td>0.42 (4.60)</td>
<td>-1.17 (3.99)</td>
<td>2.00 (5.90)</td>
<td>0.04*</td>
</tr>
<tr>
<td>IGT 61-80 (Mean (SD))</td>
<td>3.75 (6.78)</td>
<td>3.00 (7.97)</td>
<td>4.50 (5.60)</td>
<td>0.17</td>
</tr>
<tr>
<td>IGT 81-100 (Mean (SD))</td>
<td>3.58 (7.29)</td>
<td>4.17 (8.37)</td>
<td>3.00 (6.35)</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Abbreviations and symbols: *=statistically different; FAB=Frontal Assessment Battery; GDS-15=Geriatric Depression Scale Short Form; IGT=Iowa Gambling Task; MMSE=Mini-Mental State Examination; SD=standard deviation; TAS-20=twenty-item Toronto Alexithymia Scale; TAS-20 F1=Difficulty identifying feelings; TAS-20 F2=Difficulty describing feelings; TAS-20 F3=Difficulty focusing on inner affective experience.
Discussion

On the basis of previous empirical findings we hypothesized that alexithymia may influence decision making under conditions of uncertainty. To test this hypothesis we adopted findings from our previous studies investigating i) the relationship between alexithymia and depression (20) and ii) decision making under uncertainty (21) in patients with newly diagnosed untreated PD. In these studies we found similar levels of alexithymia and preserved decision making in PD patients in comparison with healthy controls, probably because alexithymia and decision making under uncertainty are both related to the orbital portions of the prefrontal cortex (27-30), a cortical area that is not affected by the PD neuropathology in the early clinical stages (31). These findings suggested that the relationship between alexithymia and decision making, if found, would probably not be influenced by the concomitant PD neuropathology, which in the early clinical stages does not involve cerebral areas related to alexithymia and decision making under uncertainty. On the basis of reports of modulating effects of affective features on decision making under uncertainty (5-12), we predicted that alexithymia would have a modulating effect on decision making under uncertainty also in de novo PD patients.

Three empirical findings emerged from the present study. First, the alexithymic and non-alexithymic patients performed similarly on the IGT; in fact, although the alexithymic patients outperformed the non-alexithymic patients, the difference did not reach statistical significance. This finding is in line with the findings of Ferguson and colleagues (18), who reported similar IGT total scores in alexithymic and non-alexithymic healthy young subjects.

Second, it emerged that alexithymia may modulate learning across the IGT. The alexithymic patients significantly outperformed non-alexithymic patients in the central phase of the IGT (block 41-60), suggesting that alexithymia could be associated with faster learning to avoid risky choices and the negative feedback with which these choices are more frequently associated. This pattern of choices is similar to patterns described in some studies in depressed patients (7) and anxious patients (11), which showed that depression and anxiety are associated with faster learning to avoid risky choices. The modulating effect of some alexithymic features on decision making is also suggested by the different direction of the correlations between the TAS-20 F1 subscale (Difficulty identifying feelings) and IGT partial scores: positive in the second block (choices 21-40) and negative in the last two blocks (choices 61-100). In the early phases of the IGT the reward-punishment schedule of the task is opaque and learning is taking place at a non-declarative, implicit level (39); in these phases, in which subjects do not have a clear understanding of what is going on – this is the pre-hunch phase of the task (39) –, difficulty identifying feelings related to the reward-punishment schedule may induce them to adopt a conservative strategy, which enhances the IGT performance. However, while this strategy of choice enhances performances in the early IGT phases, it impairs them in the final IGT phases, as suggested by the negative correlations in the last two IGT blocks, and as also previously reported; as a matter of fact Ferguson and colleagues (18) reported that alexithymic subjects were characterized by a relatively higher proportion of choices from disadvantageous decks in the last IGT phases (choices 71-90). Our finding confirms that alexithymic subjects may present attenuated emotional learning along the task; this attenuated emotional learning is probably due to problems consolidating previous emotional experience (19) and probably hampers the hunch phase (hypotheses generated on which were the “good” and “bad” decks) and the conceptual phase (clear idea of what is going on) in the IGT performance. Considering that i) a substantial minority of healthy subjects does not reach the conceptual phase despite performing normally on the task (18), and ii) a minority of healthy subjects fails the task, obtaining a negative total score (40-42), it would be interesting to verify in further studies whether these subgroups have higher levels of alexithymia, which may interfere with their emotional learning.

Third, contrary to what has been reported in samples of patients with major depression (5,6), in our study depression did not influence the IGT performance. However, the patients in our sample did not show major depression, with the exception of one who had a score of 14 on the GDS-15. The presence of patients with only mild depressive symptoms may probably explain why our study found a different relationship between depression and decision making compared to studies on patients with major depression.

In conclusion, this study confirmed that alexithymia may modulate decision making under uncertainty, as assessed by the IGT, suggesting that alexithymic features in patients should be taken into account when assessing decision making.

References

1. Bechara A, Damasio AR, Damasio H, Anderson SW. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 1994;50:7-15
9. de Visser L, van der Knaap LJ, van de Loo AJ, van der Weerd CM, Ohi F, van den Bos R. Trait anxiety affects decision making differently in healthy men and women: to-
30. Li X, Lu ZL, D’Argembeau A, Ng M, Bechara A. The Iowa Gambling Task in fMRI images. Hum Brain Map 2010;31:410-423