Pathogenesis of primary hypercalciuria

Orson W. Moe
Joseph E. Zerwekh
Chou-Long Huang
Patricia A. Preisig
Orhan K. Oz
Charles Y.C. Pak

Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, USA

Address for correspondence:
Orson W. Moe, M.D.
Director, Center for Mineral Metabolism & Clinical Research
University of Texas Southwestern Medical Center
5323 Harry Hines Boulevard
Dallas, TX 75390-8885
USA
Ph. +1 214 648 7993
Fax+1 214 648 2526
E-mail: orson.moe@utsouthwestern.edu

Summary

Hypercalciuria may be classified into absorptive, renal, and resorptive forms, depending on whether the primary defect is intestinal hyperabsorption of calcium, renal leak of calcium, or excessive bone resorption. In absorptive hypercalciuria, the pathogenetic role of vitamin D is uncertain, and mutations in the chloride channel may occur mainly in association with Dent’s disease. Early studies suggest that a new soluble adenylyl cyclase (AHRAC) may be etiologically important in this condition, since base changes in this gene occur much more frequently and are directly correlated with intestinal calcium absorption. The distal nephron is the site of reabsorption of the final 20% of filtered calcium. The transcellular reabsorption of calcium begins with a passive entry of Ca2+ through apical calcium channels, followed by diffusion through cytosol and active extrusion across the basolateral membrane. Calcium transport in the nephron is regulated by luminal pH, calcitriol, estrogen, parathyroid hormone, prostaglandin E2, and sodium load. A biochemical picture of renal hypercalciuria may be produced by a load from dietary animal proteins, prostaglandin E2 excess, sodium load, hyperparathyroidism, and estrogen deficiency. So far, mutations in apical calcium channel have not been found.

The hallmark of resorptive hypercalciuria is primary hyperparathyroidism. Bone loss often accompanies absorptive hypercalciuria. AHRAC may be implicated, since base changes in this gene are inversely correlated with spinal bone density. Dietary acid load from high animal protein diet may cause hypercalciuria, in part by stimulating bone loss.

KEY WORDS: primary hypercalciuria, renal calcium excretion, intestinal calcium absorption.

1. General Description

2. Potential Pathogenetic Role of Vitamin D

3. Genetic Basis of Absorptive Hypercalciuria
 a. AHRAC Gene
 b. Chloride Transporter

4. Sarcoidosis

Table I - Pathophysiology of Absorptive Hypercalciuria (Table I)

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General Description</td>
</tr>
<tr>
<td>2. Potential Pathogenetic Role of Vitamin D</td>
</tr>
<tr>
<td>3. Genetic Basis of Absorptive Hypercalciuria</td>
</tr>
<tr>
<td>a. AHRAC Gene</td>
</tr>
<tr>
<td>b. Chloride Transporter</td>
</tr>
<tr>
<td>4. Sarcoidosis</td>
</tr>
</tbody>
</table>

Introduction

Hypercalciuria is clinically important since it often accompanies the formation of calcium-containing kidney stones. Among patients with idiopathic calcium oxalate nephrolithiasis, hypercalciuria is the main determinant for the formation of calcium phosphate nidus (in the thin loops of Henle of the nephron) that may initiate calcium oxalate crystallization (1). The correction of hypercalciuria by thiazide or indapamide has been reported to reduce the rate of recurrent stone formation (2). In a risk analysis, hypercalciuria confers a higher risk for stone formation than hyperoxaluria (3).

The pathophysiologic basis for hypercalciuria is multifactorial, involving disturbance in calcium handling at three organs: intestine, kidneys, and bone. Accordingly, hypercalciuria has been classified into absorptive, renal, and resorptive forms, depending on whether the primary defect is intestinal hyperabsorption of calcium, renal leak of calcium, or excessive bone resorption (4). This article will review recent advances in the pathophysiology of each of three main causes of hypercalciuria. It is understood, however, that a primary defect in calcium handling in one organ system may produce a secondary disturbance in other organ system. Moreover, in some conditions, calcium handling may be primarily disturbed in more than one organ system.

Pathophysiology of absorptive hypercalciuria (Table I)

Table I - Pathophysiology of Absorptive Hypercalciuria.

1. General Description
2. Potential Pathogenetic Role of Vitamin D
3. Genetic Basis of Absorptive Hypercalciuria
 a. AHRAC Gene
 b. Chloride Transporter
4. Sarcoidosis

General Description

Absorptive hypercalciuria (AH) describes a stone-forming condition in which the primary defect is presumed to be enhanced intestinal absorption of calcium (4,5). The increased absorbed calcium transiently raises serum calcium and suppresses parathyroid function. Hypercalciuria ensues from the increased renal filtered load of calcium, and decreased renal tubular reabsorption of calcium due to parathyroid suppression. In the classic presentation (AH Type I), the syndrome is characterized biochemically by normocalcemia, normal or low serum parathyroid hormone (PTH), high intestinal calcium absorption, and hypercalciuria. Urinary calcium is high (>200 mg/day) on a diet restricted in calcium (400 mg/day) and sodium (100 mEq/day), and remains high (>300 mg/day) on a high calcium
diet. In normal subjects, it is <200 mg/day on a low calcium diet and rarely exceeds 250 mg/day on a high calcium diet (4). Fasting urinary calcium is normal, and is appropriate for the level of parathyroid function. The intestinal hyperabsorption of calcium is unaffected by reduction of urinary calcium by thi- azide, or alteration of 1,25-dihydroxyvitamin D [1,25(OH)₂D₃] synthesis or sensitivity by orthophosphate or steroid (5). AH may present itself in a less severe form (AH Type II), wherein urinary calcium is normal on a calcium-restricted diet, though elevated on a high calcium diet. It may also occur in a severe form (fasting hypercalciuria), in which fasting urinary calcium is high. Fasting hypercalciuria may reflect inadequate duration of fast, incomplete renal clearance of absorbed calcium or reduced renal tubular reabsorption of calcium from suppressed parathyroid function. In some patients, however, fast- ing hypercalciuria may be reflective of concomitant bone loss. Although radial shaft bone density is spared, spinal bone den- sity has been reported to be reduced in AH type I and fasting hypercalciuria (6).

Potential Pathogenetic Role of Vitamin D

The pathogenetic role of vitamin D in AH is uncertain. Serum 1,25(OH)₂D₃ concentration has been reported to be either high or inappropriately high. A biochemical-physiological picture of AH can be produced by administration of 1,25(OH)₂D₃ to normal subjects. In some patients with AH, an inhibition of 1,25(OH)₂D₃ synthesis by a short-term treatment with keto- conazole reduced intestinal calcium absorption and urinary cal- cium (7). However, calcium absorption was shown to be in- creased in the jejunum but not in the ileum or colon among pa- tients with AH, whereas it was stimulated in all intestinal seg- ments following treatment with 1,25(OH)₂D₃ (5).

In the genetic hypercalciuric rats stone-forming, 1,25(OH)₂D₃ receptors (VDR) in the intestine were two-fold higher than in normocalciuric control rats (8), but VDR mRNA was not in- creased (9). This increase in VDR was associated with a higher amount of calbindin-D₂₈ occurring primarily in parathy- roid to high VDR. Thus, in this animal model of AH, hypercalciuria may be due to vitamin D-dependent stimulation of intestinal calcium absorption. In human beings, no increase in VDR number or affinity for the ligand for the receptor was found in monocytes and activated T cells or in cultured skin fibroblasts from AH patients (10). There was neither detectable mutations in the VDR coding sequence nor an association of VDR polymorphisms with increased intes- tinal calcium absorption (11). Finally, linkage analysis failed to implicate the VDR locus on chromosome 12 with the AH phenotype (12). However, in another study, quantitative trait analysis of urinary calcium excretion revealed linkage to some but not all markers in the VDR region (13). The same study elimi- nated the 1β-hydroxylase gene as being associated with hypercalciuria.

Genetic Studies in Human Beings with AH

AHRAC Gene

Prior studies have indicated that the inheritance of AH is compatible with an autosomal dominant trait. Reed et al. identified a locus on chromosome 1q23.3-24 in three kin- dreds with phenotypically well-defined AH (12). Within this region, they identified a candidate gene, the absorptive hypercalciu- ri-a-related adenylyl cyclase (AHRAC), on account of its as- sociation with AH (14) and the cyclase function in the soluble cytosolic cellular fraction described in its rat orthologue (15). The gene is ubiquitously expressed in humans and a number of base changes have been identified. While some of these base substitutions in AHRAC can be found in the normal population, the frequency in base changes was higher in patients with AH (14). Figure 1 summarizes the allelic frequency of all the base changes combined. Although one can easily find single base changes in normal subjects, most patients with >4 base changes have clinical AH.

Past studies have shown that AHRAC clearly encodes an adenylyl cyclase and is expressed in the intestine. However, it is not well understood at present how AHRAC regulates in- testinal transport and how the various polymorphic variants lead to hyperabsorption of calcium. At the empirical level, the intestinal absorption is positively correlated with the number of base changes in AHRAC (Fig. 2). This finding strongly sug- gests that AHRAC may control intestinal calcium absorption. It is important to state that intestinal calcium absorption is a con- tinuous variable under polygenic as well as non-genetic con- trol. The elucidation of the function of wild type and variant AHRAC in the gut should advance our knowledge of the patho- physiology of AH.

![Figure 1](image1.png)

Figure 1 - Percentage of individuals harboring from 1-7 base changes in AHRAC. Open bars depict normal volunteers (n = 155) and closed bars indicate AH patients (n = 135).

![Figure 2](image2.png)

Figure 2 - The relationship between calciuric response to oral calcium load and number of base changes in AHRAC Phenotype. A 2-h fasting urine collection was obtained for measurement of calcium and creatine. After a synthetic meal containing 1 gm calcium, a 4-h urine collec- tion was obtained for calcium and creatine. The difference (Δ) be- tween urinary calcium post-calcium load and fasting urinary calcium is a surrogate of intestinal calcium absorption. N = number of subjects stud- ied. Asterisk denotes statistically significant difference from subjects with 1 base change (p<0.05 by ANOVA).
Pathogenesis of hypercalcemia

Clomidon channel. Dent’s disease (X-linked nephrolithiasis) is a condition with hypercalciuria of yet unresolved pathogenesis and "low molecular weight proteinuria" (urinary loss of proteins of low molecular weight). Dent’s disease is caused by mutations in the CLCN5 chloride channel. Although low molecular weight proteinuria is highly prevalent in this disease, one individual with documented CLCN5 mutation was found to have hypercalciuria without proteinuria, raising the possibility that CLCN5 mutations may underlie some patients with calcium nephrolithiasis (16). Scheinman et al. found some degree of low molecular weight proteinuria in 9% of patients with hypercalciuria but failed to show base changes in CLCN5 from genotyping 32 patients (16). Analysis of the genetic hypercalciuric rats with stones also failed to show base changes in CLCN5. If CLCN5 defects cause calcium nephrolithiasis outside the context of Dent’s disease, the incidence is likely very low.

Sarcoidosis

Sarcoidosis is a granuloma-forming disorder characterized by mild to severe hypercalcemia in 10% of patients, with hypercalciuria occurring in up to 50% of patients at some time during the course of their disease. For many years, it was believed that hypercalcemia and/or hypercalciuria resulted from increased sensitivity to the biological effects of vitamin D. Subsequently, the circulating concentrations of 1,25(OH)_2D_3 were found to be high, due to its extrarenal synthesis by macrophages in sarcoid granulomas (17). Thus, the increased 1,25(OH)_2D_3 synthesis causes hypercalcemia and hypercalciuria by stimulating intestinal calcium absorption and stimulating bone resorption.

The distinction between AH and sarcoidosis is best exemplified by the glucocorticoid response. Glucocorticoids are effective in treating hypercalcemia and hypercalciuria associated with sarcoidosis and other granulomatous conditions. Among patients with AH, this glucocorticoid response is typically ineffective among patients with AH (18).

Pathophysiology of renal hypercalciuria

Pathological processes involved in the development of hypercalciuria can be summarized as a functional disorder of renal tubular calcium reabsorption (5). Table II shows a list of conditions associated with renal hypercalciuria. As can be seen in this table, hypercalciuria is often associated with hypercalcinemia (3). This association is thought to result from the stimulation of parathyroid hormone (PTH) secretion, which increases serum 1,25(OH)_2D_3 synthesis and intestinal calcium absorption. Biochemically, serum calcium is normal and fasting urinary calcium is high, except in the presence of elevated serum PTH, indicative of secondary hyperparathyroidism from renal calcium leak. A disturbed function of renal proximal tubule was suggested by exaggerated calciuric response to carbohydrate ingestion, and accelerated diuretic-induced nephrolithiasis to thiazide challenge (19). Unlike in AH, the correction of renal calcium leak by thiazide restores normal parathyroid function and intestinal calcium absorption (5).

Table II - Pathophysiology of Renal Hypercalciuria

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General Description</td>
<td>Renal hypercalciuria is an uncommon cause of hypercalciuric nephrolithiasis. It is believed to result from a primary impairment in the renal tubular reabsorption of calcium (5). The resulting transient decline in serum calcium concentration stimulates parathyroid function, which in turn enhances 1,25(OH)_2D_3 synthesis and intestinal calcium absorption. Biochemically, serum calcium is normal and fasting urinary calcium is high, except in the presence of elevated serum PTH, indicative of secondary hyperparathyroidism from renal calcium leak. A disturbed function of renal proximal tubule was suggested by exaggerated calciuric response to carbohydrate ingestion, and accelerated diuretic-induced nephrolithiasis to thiazide challenge (19). Unlike in AH, the correction of renal calcium leak by thiazide restores normal parathyroid function and intestinal calcium absorption (5).</td>
</tr>
<tr>
<td>2. Physiological and Molecular Basis of Renal Hypercalciuria</td>
<td>Calcium Transport in the Nephron: The kidney is critical for maintaining calcium homeostasis. To maintain calcium balance, about 98% of the calcium load filtered by the glomerulus must be reabsorbed along the nephron. Approximately 70-80% of the filtered calcium is reabsorbed in the proximal tubule and the thick ascending limb (TAL) of Henle’s loop. The reabsorption of calcium in the proximal tubule and TAL occur passively through the paracellular pathway. The remaining about 20% of calcium reabsorption in kidney occurs via a transcellular pathway in the distal part of the nephron, consisting of convoluted tubules (DCT), connecting tubules and the initial portion of the cortical collecting ducts. The transcellular reabsorption of calcium in the distal nephron is a multi-step process (Fig. 3). It begins with passive entry of Ca^{2+} through Ca^{2+} channels in the apical membranes, followed by diffusion of Ca^{2+} into cytosol facilitated by binding to the 1,25(OH)_2D_3-dependent Ca^{2+}-binding protein (calbindin-D_28k), and eventually by extrusion of Ca^{2+} across the opposing basolateral membranes. The extrusion of Ca^{2+} across the basolateral membranes requires energy and is mediated by Na+Ca^{2+} exchangers and Ca^{2+}-ATPases operating against the electrochemical gradient for Ca^{2+}. It has been postulated that the ini-</td>
</tr>
</tbody>
</table>
tial passive entry through Ca\(^{2+}\) channels in the apical membranes is likely the rate-limiting step of the trans-epithelial reabsorption of calcium in the distal nephron (20).

Apical Calcium Channels. The cDNAs for the apical Ca\(^{2+}\) channels in the distal nephron have been recently isolated. These are called ECaC1 (for epithelial Ca\(^{2+}\) channel-1) and ECaC2 (also known as TRPV5 and TRPV6 respectively). In the kidney, TRPV5 and TRPV6 are localized to the apical membranes of distal nephron (21).

Regulators of Calcium Transport in the Nephron

Although the active transcellular reabsorption of calcium in the distal nephron accounts for only about 20% of total reabsorbed calcium, it is the major target for regulation by key factors implicated in the development of hypercalcemia.

Luminal pH Using patch-clamp electrophysiological recording of recombinant EcaC1 channels expressed in cultured cells, low extracellular pH directly inhibited ECaC1 channel activity with an apparent \(pK_a\) of 6.55 which is within the physiologic range of luminal pH of the distal nephron (22). The direct inhibition occurred as a result of extracellular proton titration of glutamate-522 (rabbit EcaC1) in an extracellular loop. The ECaC1 activity was inhibited by 16% for a drop in extracellular pH of 0.4.

1,25(OH)\(_2\)D\(_3\) and Estrogen. 1,25(OH)\(_2\)D\(_3\) stimulates calcium reabsorption via genomic mechanisms analogous to classical steroid hormones. It increases the mRNA levels of both calbindin-D\(_{28K}\) and the Na\(^+/Ca\(^{2+}\)\) exchanger in a time frame that requires a genomic mechanism (23). While not expressed at a high level as calbindin-D\(_{28K}\) or calbindin-D\(_{9K}\), it is also expressed in the kidney and upregulated at the mRNA level by 1,25(OH)\(_2\)D\(_3\). Recently, 1,25(OH)\(_2\)D\(_3\) was shown to regulate the expression of ECaC2 in the kidney (24). 1,25(OH)\(_2\)D\(_3\) may also influence calcium reabsorption by altering the expression levels of the PTH receptor and 25-hydroxyvitamin D\(_3\) hydroxylase (23).

Until recently estradiol has not been considered a calcitropic hormone. However, recent studies in animal models of estrogen deficiency indicate that estradiol may have an effect on calcium reabsorption in the kidney at the level of calcium absorption in the intestine independently of vitamin D. One model utilized aromatase knockout (ArKO) mice. Aromatase synthesizes estrogens from androgen precursors. ArKO mice are deficient in estrogens but not other gonadal factors. The ArKO female mice had elevated urinary calcium/creatinine ratios despite high serum PTH indicative of renal calcium leak (unpublished observations, Preisig et al.). Compared with the wild type mice, the female ArKO mice have significantly lower expression of calbindin-D\(_{28K}\), EcaC1, EcaC2, Na\(^+/Ca\(^{2+}\)\) exchanger and plasma membrane Ca\(^{2+}\) pump activity. A high serum PTH receptor and 25-hydroxyvitamin D\(_3\) receptor may activate phospholipase C, which may then decrease phosphatidylinositol 1,4,5-bisphosphate (PIP\(_2\)) concentration in the membrane, possibly that the reduction in PIP\(_2\) by PGE\(_2\) could then increase the activity of ECaC1 directly or indirectly by enhancing the sensitivity of ECaC1 to inhibition by acid.

Sodium Load As described above, the reabsorption of calcium in the proximal tubule and TAL is passive and coupled to sodium transport (30). Sodium load and volume expansion inhibit reabsorption of sodium and calcium in these nephron segments and increase renal calcium excretion.

Clinical Conditions Associated with Renal Hypercalciuria

High Animal Protein Diet A high animal protein diet has long been known to cause hypercalcemia. Several mechanisms have been invoked. It may partly be due to enhanced bone loss (see Resorptive Hypercalcemia). Hypercalcemia of dietary acid excess does not appear to be intestinal in origin since there is no change in intestinal calcium absorption (31). High dietary protein intake causes glomerular hyperfiltration, which causes increased filtered load of calcium. The hypercalcemia, however, is above and beyond that of an increased filtered load to the kidney, indicating that a high dietary protein intake also causes a direct inhibition of calcium reabsorption in the kidneys (32). The possibility that hypercalcemia of animal protein excess is due to an acid-mediated renal calcium leak (33) is supported by studies to be described below.

Dietary Acid Load. On a daily basis, the normal Western diet generates about 1 mEq/kg of acid in adult human beings. The kidney is responsible for clearing the systemic acid load. However, there is a gradual reduction in overall renal function with age, which reduces the ability of the kidneys to excrete acid (34). When combined with a continued intake of animal proteins (contain acid-generating components such as methionine or cysteine), a slight but significant acidemia may persist in the elderly. Even in younger individuals, overindulgence of animal proteins, can produce a degree of systemic acidicity. The ensuing metabolic acidosis or acid load can produce marked hypercalcemia.

In a recent clinical study, a high protein-low carbohydrate weight reducing diet increased net acid excretion by 54 mEq/day and reduced urinary pH by 0.5 unit (35). While urinary calcium increased by 90 mg/day, intestinal calcium absorption was not altered and changes in bone markers were unremarkable. In another study, an animal model of animal protein excess was produced in rats by feeding a high casein diet (32). Compared with a low casein diet, urinary calcium was 3-4 fold greater on a high casein diet that was high in acid ash content. In a preliminary study (unpublished observations, Preisig et al.), the neutralization of the acid load by co-administration of potassium citrate completely abrogated the rise in urinary calcium from the high casein diet. PGE\(_2\) Excess. It is known that high dietary protein intake increases renal production of PGE\(_2\). In experimental animals, in-
Pathogenesis of hypercalciuria

 tra-arterial administration of PGE$_2$ increased urinary calcium without changes in the systemic blood pressure or glomerular filtration rate (38). Treatment with prostaglandin synthetase inhibitors restored normal urinary calcium among patients with hypercalciuria. The complete abrogation of hypercalciuria of high animal protein diet by administration of alkali mentioned earlier suggests that an increase in acid load is the principal factor for hypercalciuria of high dietary protein intake. PGE$_2$ may exacerbate hypercalciuria by increasing the sensitivity of ECaC1 to inhibition by acid.

Dietary Sodium Load. A high dietary intake of sodium is well known to increase urinary calcium by impairing renal tubular reabsorption of calcium (37). An increment in dietary sodium of 100 mEq/day increases urinary calcium by about 40 mg/day. While the slope is not altered, the intercept is higher in patients with nephrolithiasis for each increment of sodium intake; thus, there is higher degree of hypercalciuria (38). The induced hypercalciuria normally produces a compensatory rise in intestinal calcium absorption, probably by stimulating parathyroid hormone and the synthesis of 1,25(OH)$_2$D$_3$.

Relative Hypoparathyroidism from Enhanced Intestinal Calcium Absorption. In hypoparathyroidism, correction of hypocalcemia by vitamin D often produces hypercalciuria.

Estrogen Deficiency of Postmenopausal State. Several clinical studies suggest that urinary calcium is increased in the postmenopausal state, possibly due to estrogen lack. Among women with stones, the urinary calcium significantly increased during the 6th decade of life, coinciding with a rise in stone formation rate (39). Compared with the untreated postmenopausal women, those treated with estrogen had reduced urinary calcium (fasting and 24-hour). The rise in urinary calcium following menopause appears to be renal in origin (40). Sakhaee et al. reported on a group of postmenopausal women with osteoporosis who displayed biochemical picture of renal hypercalciuria with secondary hyperparathyroidism, associated with high bone resorption on bone histomorphometric analysis (40). Nordin et al. found that urinary calcium (corrected for creatinine) was significantly greater in normal postmenopausal women who had not received hormone replacement therapy, compared with normal premenopausal women (41). The higher urinary calcium in postmenopausal women could not be explained by increased filtered load of calcium. Lastly, McKane et al. directly measured serum unfiltered calcium and tubular reabsorption of calcium in early postmenopausal women before and following 6 months of estrogen therapy (42). After the effect of changes in endogenous PTH secretion was excluded by pharmacologic dose of PTH, estrogen treatment significantly increased tubular reabsorption of calcium, providing evidence that estrogen may directly lower urinary calcium independently of PTH. Thus, the available clinical data suggest that renal calcium loss is present in estrogen deficiency, and is corrected by estrogen therapy.

Mutations of ECaC Genes as a Potential Cause of Renal Hypercalciuria. As described above, ECaC1 and ECaC2 are critical gate-keepers of transcellular Ca$^{2+}$ transport and primary targets for regulation of renal calcium handling by calcitropic hormones, dietary factors, and acid-base status. It is thus tantamount to speculate that mutations of these genes may be responsible for genetic forms of renal hypercalciuria. In nine families with hypercalciuric nephrolithiasis, no mutations were identified in the exons of ECaC. Haplotype analysis did not implicate a role of the locus on chromosome 1. Single nucleotide polymorphisms were noted in the 5'-flanking region. No genotype-phenotype association was identified (43). Since there is likely loci heterogeneity, ECaC is not entirely ruled out as a candidate gene for renal hypercalciuria.

Pathophysiology of resorptive hypercalciuria (Table III)

Table III - Pathophysiology of Resorptive Hypercalciuria.

| 1. Primary Hyperparathyroidism |
| 2. Base Changes in AHRAC as a Part of AH Syndrome |
| 3. Dietary Acid Load |

In resorptive hypercalciuria, the primary defect responsible for hypercalciuria is believed to be excessive bone resorption. The prototype of resorptive hypercalciuria is primary hyperparathyroidism (PHPT) but it may also be seen in association with AH and dietary animal protein excess.

Primary Hyperparathyroidism.

In PHPT, a hypersecretion of PTH from a benign solitary parathyroid adenoma (80%) or multiglandular parathyroid hyperplasia (15%) produces excessive bone resorption. Under normal circumstances, an increase in circulating ionized calcium is followed by a rapid decrease in PTH secretion. In PHPT with adenoma, this feedback control is impaired, resulting in hypersecretion of PTH. In PHPT caused by hyperplasia, the sensitivity to circulating calcium is relatively intact but the number of parathyroid cells is increased, enhancing PTH secretion. In either case, the PTH excess increases the number of active osteoclasts on the bone surface, stimulating bone resorption. The resulting rise in serum calcium increases the renal filtered load of calcium, causing hypercalciuria. Although PTH augments renal tubular reabsorption of calcium, hypercalciuria ensues from the greatly increased filtered load of calcium and from a suppressive effect of hypercalcemia on calcium reabsorption (44).

PGE$_2$ also induces the renal 25-hydroxvitamin D$_3$-1α-hydroxylase; thus, serum 1,25(OH)$_2$D$_3$ concentration is often high in PHPT. The enhanced 1,25(OH)$_2$D$_3$ synthesis stimulates osteoclastic bone resorption and, more importantly, raises intestinal calcium absorption. These effects further increase the circulating concentration of calcium and contribute to hypercalciuria. Thus, hypercalciuria of PHPT is primarily resorptive and secondarily absorptive in origin.

Base Changes in AHRAC as a Part of AH Syndrome

Despite intestinal hyperabsorption of calcium, patients with AH tend to have negative calcium balance (45) and low spinal bone mineral density (6). The most notable reduction in spinal bone density was seen in patients with fasting hypercalciuria, implying a role for resorptive hypercalciuria (46). The association between dietary risk factors (such as high sodium and acid intake) and lower bone density is attenuated in AH patients with the most severe fasting hypercalciuria, suggesting presence of intrinsic bone defects in this subgroup of AH patients (6). There is a 4-fold higher risk of fractures in patients with hypercalciuria (47). Bone biopsies in patients with AH have shown a picture compatible with low bone formation and turnover; less common are features suggestive of increased bone resorption (48). In concert, these findings...
provide compelling circumstantial evidence for bone involve-
ment in AH.

At the molecular level, the number of base changes in AHRAC
has been shown to be well correlated with reduced spinal bone
density in AH (14). Among AH patients with intestinal hy-
perabsorption of calcium, patients harboring AHRAC base
changes had much lower bone density than those with wild
type AHRAC genotypes (14). While AHRAC is expressed in
bone, its current function in osteoblasts and osteoclasts is un-
known. It is conceivable that dysfunction of AHRAC can alter
the rate of bone formation that produces an inappropriately
high bone resorption in AH.

Dietary Acid Load

Besides impairing renal tubular reabsorption of calcium, meta-
bolic acidosis causes bone loss by physicochemical and cellu-
lar effects. When calvaria devoid of live bone cells are exposed
to an acid medium, calcium is released from dissolution of
bone mineral (calcium phosphate) (49). Calcium mobilization
from live calvaria is more marked due to stimulation of osteo-
clastic bone resorption and inhibition of osteoblastic bone for-
mation (50). In the previously cited animal model of animal protein excess
(32), we also evaluated the effect of chronic metabolic acidosis
on bone remodeling. On bone histomorphometric analysis, a
high casein diet with abundant acid ash content significantly in-
creased bone resorption and turnover (eroded surface, osteo-
clastic surface, mineralizing surface, and double layered tetra-
cycline surface), compared with a low casein diet (unpublished
observations, Zerwekh, Preissig et al.). Bone formation (os-
teoblast surface) was unaffected. Thus, there was a net bone
loss indicated by low bone volume, and reduced trabecular and
cortical thickness. In a preliminary study, the addition of potas-
sium chloride to the diet produced an inappropriately
high bone turnover and bone loss, contributing to hypercalciuria.

Acknowledgement

The Center for Mineral Metabolism and Calci Research is sup-
ported by USPHS grants P01-DK2.543 and M01-RR00633.

References

1. Evan AP, Lingen KE, Cee FL, et al. Randall’s plaque of pa-
patients with nephrolithiasis begins in basement membrane of thin

2. Birnll L, Melton T, Guerra A, et al. Randomized prospective
study of a nonhazide diuretic, indapamide, in preventing calcium

chemistry and the risk for kidney stones among women and men.
Kid Inter. 2001;59:226-228.

4. Pak CYC, Ohata M, Lawrence EC, et al. Hypercalciurias: causes,
parathyroid functions, and diagnostic criteria. J Clin Invest.1974;
54:387-400.

5. Pak CYC. Physiologic basis for absorptive and renal hypercalci-

6. Pietschmann F, Breslau NA, Pak CYC. Reduced vertebral bone
density in hypercalcemic nephrolithiasis. J Bone Min Res. 1992;
7:1351-1388.

7. Breslau NA, Preminger GM, Adams BV, Pak CYC. Use of keto-
conazole to probe the pathogenetic importance of 1.25-(OH)2D in

8. Bushinsky DA, Favus MJ. Mechanism of hypercalciuria in genetic
hypercalciuric rats: inherited defect in intestinal calcium transport.

receptor in genetic hypercalciuric rats: a cause of intestinal cal-

10. Zerwekh JE, Reed BY, Helfer HJ, et al. Normal vitamin D recep-
tor quantitation and responsiveness to 1,25-dihydroxyvitamin D in
skin fibroblasts from patients with absorptive hypercalciuria. Am

vitamin D receptor mRNA and genotype in absorptive hypercalciuria.

12. Reed BY, Helfer HJ, Glimmer VL, Pak CYC. Mapping of a common
gene defect in absorptive hypercalciuria and idiopathic osteo-
porosis to chromosome 1q23.3-q34. J Clin Endo Metab. 1999;
84:3907-3913.

is not linked to calcium stone formation or calciuic phenotypes in

14. Reed BY, Glimmer VL, Helfer HJ, et al. Identification and charac-
terization of a gene with base substitutions associated with the
absorptive hypercalciuria phenotype and low spinal bone density.
J Clin Endo Metab. 2002;87:476-485.

15. Chen Y, Jinn U, Livi T, et al. Soluble adenylyl cyclase as an
evolutionarily conserved bicarbonate sensor. Science. 2000;

with mutation in CLCN5: relevance to idiopathic hypercalciuria. Kid

identification of 1,25-dihydroxyvitamin D3 produced by cultured
alveolar macrophages in sarcodiosis. J Clin Endo Metab. 1985;
60:960-966.

18. Zerwekh JE, Pak CYC, Kaplan RA, et al. Pathogenetic role of
1α,25-dihydroxyvitamin D in sarcodiosis and absorptive hypercal-
iuria: different response to prednisonol therapy. J Clin Endo Metab.
1980;51:381-386.

19. Sakkhae K, Nicar MJ, Brater DC, Pak CYC. Exaggerated natri-
euretic and calcic responses to hydrochlorothiazide in renal hyper-
calciuria but not in absorptive hypercalciuria. J Clin Endo Metab.
1985;61:825-829.

20. Suki WN, Lederer ED, Rouse D. Renal transport of calcium, mag-
esium, and phosphate. In Brenner & Rector’s The Kidney (6th

21. Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ. Local-
ization and regulation of the epithelial Ca2+ channel TRPV6 in the

22. Yeh B-I, Sun T-J, Lee J, Chen HH, Huang C-L. Mechanism and
molecular determinants for regulation of rabbit transient receptor
potential type 5 (TRPV5) by extracellular pH. J Biol Chem. 2003;
278:51044-51052.

23. Hoenderop JG, Willems PHGM, Bindels RJ. Toward a compre-
prehensive molecular model of active calcium reabsorption. Am. J
Physiol. 2000;278:F352-F360.

24. Hoenderop JG, Muller D, van der Kemp AW, et al. Calcitriol con-

of calbindin-D28k in aromatase deficient mice. J Bone Miner Res.
2003:17:5290.

26. Öz OK, Zerwekh J, Hajibeigi A, et al. Down regulation of mole-
cules critical for calcium reabsorption in the kidney of aromatase

27. van Abel M, Hoenderop JG, Dardenne O, et al. 1.25-dihydroxyvita-
m D3-independent stimulatory effect of estrogen on the expression

28. Liu FY, Cogan MG. Angiotensin II stimulates early proximal bicar-
bonate absorption in the rat by decreasing cyclic adenosine
Pathogenesis of hypercalciuria