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Summary

Cytogenetic analysis is a crucial tool of prenatal diag-
nosis. The ability to rapidly detect aneuploidy and iden-
tify small structural abnormalities of foetal chromo-
somes has been greatly improved by the use of molec-
ular cytogenetic technologies. Microarray-based Com-
parative Genomic Hybridization (aCGH) has been re-
cently employed in postnatal diagnosis of cryptic chro-
mosomal aberrations, but use in prenatal diagnosis is
still limited.
We set-up a diagnostic protocol which uses aCGH
technology on genomic DNA isolated from uncultured
chorionic villus sampled at 11-12 week’s gestation. We
used a commercially targeted microarray (MDTelArray,
Technogenetics Srl – Bouty Group, Sesto S. Giovanni,
Milan, Italy) constituted by 167 genomic clones corre-
sponding to 34 critical regions frequently involved in
microdeletions and microduplications and 126 sub-
telomeric clones. Array validation has been carried-out
via retrospective analysis of DNA isolated from a se-
ries of cytogenetically normal chorionic villus samples
(CVS) and of DNA isolated from cytogenetically abnor-
mal cultured amniocytes, CVS or peripheral blood. A
pilot prospective study was undertaken analyzing 25
CVS obtained from foetuses at risk for chromosomal
aberrations. aCGH results both for retrospective and

prospective studies were in agreement with data ob-
tained using “classical” cytogenetic analysis, and/or
FISH analysis or DNA testing. Although these prelimi-
nary data support the usefulness of aCGH in prenatal
diagnosis, further prospective studies are required to
verify the feasibility of introducing this technique as
part of the diagnostic armamentarium for identify af-
fected foetuses. 

KEY WORDS: prenatal diagnosis, array-based comparative genom-
ic hybridization (aCGH), aneuploidy, cryptic chromosomal aberra-
tions, chorionic villus samples (CVS).

Introduction

A potentially lethal or handicapping major defect oc-
curs in 2-3% of liveborn infants (1). Congenital malfor-
mations have become the main cause of infant mortal-
ity during the first years of life (2, 3). Approximately 10-
15% of stillborn and liveborn infants with malforma-
tions have chromosomal imbalances (4, 5). Since the
development of chromosome banding techniques in
the late 1960’s (6), microscopic karyotype analysis has
been applied to prenatal testing and is still today con-
sidered the gold standard for prenatal diagnosis. This
procedure results to be highly reliable for identifying
chromosome copy number abnormalities (aneuploidy)
and large structural rearrangements in foetal cells ob-
tained invasively by either amniocentesis or chorionic
villus sampling (CVS). However, even if this procedure
results highly reliable, a number of limitations frequent-
ly occur. The resolution appear to be inadequate to de-
tect deletions or duplications <10 Mb. In addition, the
technique requires cells culture and a long time for de-
finitive results generating frequently anxiety for parents
during a pregnancy. Studies have demonstrated the
ability of molecular techniques to detect aneuploidy
and submicroscopic chromosomal anomalies within 24
hrs. These include, fluorescence in situ hybridization
(FISH), quantitative fluorescence polymerase chain re-
action (QF-PCR), and multiplex ligation-dependent
probe amplification (MLPA) (7-9). However, all these
techniques seems to be inadequate to perform a
genomewide screening. Recent studies have demon-
strated the ability of aCGH to detect submicroscopic
chromosomal anomalies in individuals with learning
and developmental disability providing evidence for a
genomewide screening strategy in detecting DNA copy
number imbalances in a rapid and less labour-inten-
sive manner (10, 11). This technique is similar in prin-
ciple to conventional metaphase CGH (12, 13), but us-
es arrayed DNA sequences instead of metaphase
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chromosomes as targets for hybridization, thus provid-
ing a direct link between detected aberrations and the
physical and genetic maps of the human genome. Pa-
tient and reference genomic DNAs labelled with two
different fluorochromes are co-hybridized to an array of
mapped DNA fragments immobilized on slides (12,
14). The genomic resolution depends on the physical
distance between two clones and the sizes of individ-
ual clones. This technique is able to detect, in a single
experiment, any dosage imbalances including aneu-
ploidies, deletions or duplications, but it cannot detect
balanced rearrangements such as reciprocal and
Robertsonian translocations or inversions. aCGH
shows a number of advantages compared to conven-
tional techniques in terms of clinical practice and cost
implications. 
Here we present our experience in validation of an inno-
vative aCGH (MDTelArray, Technogenetics Srl – Bouty
Group, Sesto S. Giovanni, Milan, Italy) for prenatal diag-
nosis. For this purpose, we established an original pro-
tocol based on genomic DNA extracted from CVS during
the first trimester of gestation. MDTelArray was
arranged by 167 genomic clones corresponding to 34
critical genomic regions frequently involved in mi-
crodeletions and microduplications and 126 subtelomer-
ic clones. The aCGH was tested in a series of six retro-
spective unbalanced cases, and 16 normal DNA sam-
ples. In addition, 25 prospective samples of chorionic vil-
li obtained from foetuses at high-risk for chromosomal
aberrations were studied.

Methods

Retrospective series

A series of 6 pathological DNA obtained from CVS or
cultured amniotic cells of samples affected foetuses (n.
3 respectively, trisomy 21, Klinefelter syndrome, and
Duchenne Type Muscular Dystrophy, DMD) or from af-
fected children (n. 3 respectively, Turner syndrome,
Prader-Willi syndrome and Smith-Magenis syndrome)
and 16 normal DNA samples (CVS) obtained from un-
affected foetuses, were studied. All retrospective se-
ries of samples were investigated by routine cytoge-
netics analysis and/or FISH, or DNA testing (DMD).

Prospective series

Twenty-five CVS obtained from foetuses at risk for
chromosomal aberrations due to advanced maternal
age, were obtained by the subjects’ obstetricians using
their standard clinical procedures. All CVS were pre-
pared for standard G-band karyotype for clinical labo-
ratory protocols and, in some cases, for the molecular
genetic analysis as well. The remainder of the foetal
sample was collected for aCGH analysis. For each ex-
periment, we used at least 2 µg of DNA extracted both
from fresh chorionic villus samples and corionic villus
samples preserved at -20°C even for as long as one
month. Test DNA was extracted using a Wizard Ge-
nomic DNA Purification Kit (Promega, Madison, WI),

according to the manufacturer’s protocols. Reference
genomic DNA was derived from peripheral blood of
phenotypically normal male and female control individ-
uals (Promega, Madison, WI). 

Microarray constitution, hybridization 
and data analysis

aCGH analysis was performed using a targeted mi-
croarray (MDTelArray, Technogenetics Srl – Bouty
Group, Sesto S. Giovanni, Milan, Italy) constituted by
167 genomic clones corresponding to 34 critical re-
gions frequently involved in microdeletions and mi-
croduplications (Table I) and 126 subtelomeric clones.
Each BAC clone was spotted in triplicate and positive
(pool of human BAC clone) and negative (rice DNA)
control clones were also printed. This array enables
the simultaneous analysis of all the regions above via
a single hybridization, therefore saving both time and
sample material. The array’s high resolution, allows for
more reliable and precise data. Moreover, two different
hybridization areas were spotted on the array, consent-
ing to perform the experiment in dye-reversal (Fig. 1).
This permits to achieve high quality data and provides
additional confirmation of true copy number alterations
(15, 16). In dye-reversal technique, for each patient
sample, two experiments were performed with reversal
of the dye labels for the control and the test samples
(17), followed by integration of the data from both dye-
reversed hybridizations to determine interferences for
each case (Fig. 2). After purification (Zymo Research’s
Clean and Concentrator™ -25 , Orange, CA), an equal
amount (1 µg) of both test and reference DNA was la-
belled with Cy3-dCTP and Cy5-dCTP (Amersham Bio-
sciences, Little Chalfont, UK), respectively, by random
priming (Bioprime® Array CGH Genomic Labelling
Module, Invitrogen, Carlsbad, CA), purified with
CyScribe™ GFX™ Purification Kit (Amersham Bio-
sciences, Little Chalfont, UK), precipitated and hy-
bridized following the microarray manufacturer’s proto-
cols (Technogenetics Srl – Bouty Group, Sesto S. Gio-
vanni, Milan, Italy). A dye-reversal experiment was per-
formed for each patient sample. Images were acquired
using GenePix 4000B dual-laser scanner and GenePix
Pro 6.0 software (Axon Instruments, Sunnyvale, CA).
The average ratios of the six spots for each patient
were analyzed and plotted using BlueFuse for Microar-
rays 3.3 (5164) software (BlueGenome Ltd, Cam-
bridge, UK). Increases (gains) and decreases (losses)
in DNA sequence copy number were defined by
test/reference ratios above 1.2 and below 0.8, respec-
tively, based upon previous reports in which 1.2 (log2

1.23=0.3) and 0.8 (log2 0.81=-0.3) were selected as
cut-off values based on experimental results of normal
variation observed when two normal reference DNAs
were co-hybridized to genomic microarrays (18, 10). To
ensure detection of any sex chromosomes abnormali-
ties if the sex of the foetus was different from the sex
of the DNA reference, during array validation chromo-
somes mismatch experiments, using male vs. female
DNA of cytogenetically normal individuals, were per-
formed.
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Table I - Microdeletion syndromes represented in the MDTelArray.

Monosomy 1p36 Syndrome [(OMIM #607872) (1p36)]

Van der Woude Syndrome [(OMIM #119300) (1q32-q41)]

Nephronophthisis 1 [(OMIM #256100) (2q13)]

Brachydactyly-Mental Retardation Syndrome [(OMIM %600430) (2q37)]

Wolf-Hirschhorn Syndrome [(OMIM #194190) (4p16.3)]

Cri-du-Chat Syndrome [(OMIM #123450) (5p15.2)]

Adenomatous Polyposis of the Colon [(OMIM +175100) (5q21-q22)]

Sotos Syndrome [(OMIM #117550) (5q35)]

Saethre-Chotzen Syndrome [(OMIM #101400) (7p21.1)]

Williams-Beuren Syndrome [(OMIM #194050) (7q11.2)]

Kallmann Syndrome 2 [(OMIM #147950) (8p11.2-p11.1)]

Langer-Giedion Syndrome [(OMIM #150230) (8q24.11-q24.13)]

Monosomy 9p Syndrome [(OMIM #158170)]

HDR Syndrome [(OMIM #146255) (10p15)]

DiGeorge Syndrome/Velocardiofacial Syndrome Spectrum of Malformation 2 [(OMIM %601362) (10p14-10p13)]

Wagr Syndrome [(OMIM #194072) (11p13)]

Potocki-Shaffer Syndrome [(OMIM #601224) (11p11.2)] 

Prader-Willi Syndrome / Angelman Syndrome [(OMIM #176270/#105830) (15q11-q13)]

ATR-16 Syndrome [(OMIM #141750) (16pter-p13.3)]

Miller-Dieker Lissencephaly Syndrome [(OMIM #247200) (17p13.3)]

Charcot-Marie-Tooth Disease Neuropathy, Type 1A [(OMIM #118220) (17p11.2)]

Neuropathy, Hereditary, with Liability to Pressure Palsies [(OMIM #162500) (17p11.2)]

Smith-Magenis Syndrome [(OMIM #182290) (17p11.2)]

Neurofibromatosis Familial Spinal [(OMIM #162210) (17q11.2)]

Alagille Syndrome 1 [(OMIM #118450) (20p12)]

DiGeorge Syndrome [(OMIM #188400) (22q11.2)]

Neurofibromatosis, Type II [(OMIM #101000) (22q12.2)]

Short Stature, Idiopathic, Autosomal [(OMIM #604271) (Xpter-p22.32, Ypter-p11.2)]

Steroid Sulfatase Deficiency [(OMIM +308100) (Xp22.32)]

Kallmann Syndrome 1 [(OMIM +308700) (Xp22.3)]

Muscular Dystrophy, Duchenne Type [(OMIM #310200) (Xp21.2)]

ATR-X Syndrome [(OMIM #301040) (Xq13)]

Pelizaeus-Merzbacher Disease [(OMIM #312080) (Xq22)]

XX Male Syndrome [(OMIM 278850)]

Figure 1 - MDTelArray imaging showing two different hybridization areas to perform the experiment in dye-reversal. 

FOR REVIEW ONLY 

© CIC EDIZIONI INTERNAZIONALI



Results and discussion

Initially, we evaluated if the DNA extraction method influ-
enced the aCGH results. For this purpose, we compared
hybridization results obtained using aliquots of the same
sample, immediately treated or stored at -20°C for up to
one month. No significant differences were scored be-
tween samples processed immediately respect to those
stored. 
The aCGH analytical validity was carried-out via retro-
spective analysis of DNA isolated from a series of cyto-
genetically normal CVS and cytogenetically abnormal
DNA obtained from cultured amniocytes, CVS or periph-
eral blood. Chromosomal abnormalities included aneu-
ploidies (trisomy 21, 47,XXY, 45,X) and microdeletions
[del (X)(p21.2), del(15)(q11.2-q13) and del(17)(p11.2)]
respectively associated to DMD, Prader-Willi syndrome,
and Smith-Magenis syndrome. aCHG analysis of the
sample with trisomy 21 had a single gain in copy num-
ber of clones on chromosome 21 that was represented
by 3 BAC clones with a ratio = 1.38 ± 0.03. DNA sample
of kariotype 47,XXY also exhibited single copy gain of
clones on chromosome Y as represented by 7 BAC
clones with a ratio = 1.29 ± 0.04 (using a reference fe-
male DNA). aCGH analysis of 45,X DNA sample
showed a single copy number loss of all BAC clones on
chromosome X (ratio = 0.77 ± 0.012) (using a reference
female DNA). DMD DNA sample had a copy number
loss on chromosome X as showed by 3 BAC clones with
a ratio = 0.58 ± 0.05. In Prader-Willi sample was evident
the loss of copy number of 10 BAC clones (ratio = 0.71
± 0.02) on chromosome 15. aCGH analysis of Smith-
Magenis DNA showed a single copy loss of 5 BAC
clones on chromosome 17 with a ratio = 0.78 ± 0.012.
The aCGH results were in agreement with those ob-
tained by the classical cytogenetic analysis, FISH analy-
sis and DNA testing achieving an analytical sensitivity
and specificity of 100% in the examined samples. 
After array validation, 25 uncultured chorionic villus

samples obtained from foetuses at risk for chromosomal
aberrations were analyzed. 24 out of 25 examined sam-
ples did not show any chromosomal abnormalities in the
analyzed regions (Fig. 3). In one case, with abnormal ul-
trasound findings, a trisomy 18 was detected (Fig. 4).
aCHG analysis of the sample had a single gain in copy
number of clones on chromosome 18 that was repre-
sented by 7 BAC clones with a ratio = 1.35 ± 0.04. The
presence of this aneuploidy was confirmed by karyotype
analysis. Cytogenetic analysis is an important compo-
nent of prenatal diagnosis allowing the identification of
aneuploidy and unbalanced structural rearrangements
in foetuses including and/or one of the following: ad-
vanced maternal age, abnormal serum screening re-
sults, a high-risk for cytogenetic abnormalaties based on
family history, abnormal ultrasound findings. Conven-
tional karyotype analysis of banded chromosomes is still
considered the gold standard method in prenatal diag-
nosis. Although highly reliable for identifying aneuploi-
dies as well as large chromosomal rearrangements, its
resolution size (5-10 Mb) significantly limits this tech-
nique. (reviewed in 19). In addition, the chromosomal
origin of extra structurally abnormal chromosomes
(ESACs) could not be revealed and microscopic re-
arrangements of subtelomeric regions cannot be detect-
ed (20, 21). Furthermore, the average time to receive
the analysis results (approximately 14 days) represents
another significant limitation. Molecular cytogenetic
techniques were developed to overcome the resolution
limitations of karyotype analysis, as well as reducing the
average reporting time for a rapid screening of common
aneuploidies (i.e. trisomy 13, 18 and 21, triploidy and
aneuploidy of the sex chromosomes) (FISH and QF-
PCR analyses) and MLPA (7-9). Although these tech-
niques do not provide a genome wide screen, they are
not likely to replace conventional karyotyping. In order to
investigate structural chromosomal rearrangements as-
sociated with copy number variation in a genome wide
scale, comparative genomic hybridization (CGH) has

Prenatal diagnosis of genomic disorders and chromosome abnormalities using array-based comparative genomic hybridization

Journal of Prenatal Medicine 2007; 1 (1): 16-22 19

Figure 2 - An illustrative example of a microdeletion detected by MDTelArray using a dye-reversal experiment. For each patient sam-
ple, two experiments were performed with reversal of the dye labelling for the test and the reference samples (A and B). In A test (pa-
tient) DNA was labelled in Cy3 (green) and reference (control) DNA in Cy5 (red). In B, the same test DNA was labelled in Cy5 (red)
and the reference DNA in Cy3 (green).

A B
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Figure 3 - MDTelArray linear plot showing normal results for all chromosomes. The thin green line represents the fluorescence inten-
sity ratios between unaffected foetus (labbelled with Cy3) and control (labelled with Cy5) (green arrow). The thin red line represents
the fluorescence intensity ratios obtained from a second hybridization in which the dyes have been reversed (control Cy3: unaffect-
ed foetus Cy5). 

Figure 4 - (A) MDTelArray linear plot showing the trisomy of chromosome 18 (affected foetus DNA Cy3: control Cy5). Duplication
is evident as a deviation from a log2 ratio of 0. (B) Chromosome 18 analysis showing fluorescence intensity ratios between affect-
ed foetus DNA (labbelled with Cy3) and control DNA (labelled with Cy5). (C) Partial of linear plot of the reverse experiment show-
ing fluorescence intensity ratios between control DNA (labbelled with Cy3) and affected foetus DNA (labelled with Cy5). (D) Chro-
mosome 18 analysis showing fluorescence intensity ratios between control DNA (labbelled with Cy3) and affected foetus DNA (la-
belled with Cy5).

A

B C D
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been introduced to assist prenatal diagnosis (22-24).
However, CGH still requires metaphase chromosomes
as targets for hybridization, limiting its resolution to ap-
proximately 5 Mb, like microscopic karyotype analysis
(25).
Microarray-based comparative genomic hybridization
(aCGH) is a recently developed technology that evolved
from standard CGH on metaphase spreads. aCGH uses
arrayed DNA sequences instead of metaphase chromo-
somes as target of hybridization, thus providing a direct
link between detected aberrations and the physical and
genetic maps of the human genome. Its resolution is
limited only by the size of the target and the density of
these clones. This technique is able to detect any
dosage imbalances including aneuploidies, deletions or
duplications, but it can not detect balanced rearrange-
ments such as reciprocal and Robertsonian transloca-
tions or inversions. The primary advantage of aCGH
over conventional cytogenetics and FISH analysis is its
ability to detect DNA copy number changes simultane-
ously at multiple discrete loci in a genome. Moreover,
aCGH offers rapid, high throughput analysis on minimal
amounts of DNA, two prerequisites for any platforms ap-
plied to prenatal diagnosis. In fact, its utility to identify
chromosomal imbalances in prenatal samples has been
recently reported (26-29). However, whole-genome ar-
rays could generate data that are difficult to interpret and
that are subject to multiple FISH verifications per pa-
tient. Furthermore, the array content must be well con-
sidered before its application in prenatal testing. Copy
number variations (CNVs) of genome regions not previ-
ously associated to “chromosomal phenotype” may be
difficult to interpret. In addition, recent studies have
shown that familiar DNA gains and losses across the
genome are numerous and common (30, 31). CNVs
may have no clinical significance if equally detected in
phenotipically normal and abnormal individuals or have
clinical importance, especially if identified as de novo in
a person with abnormal phenotype. The remaining CN-
Vs may have some clinical implications, but it will be
necessary to observe the same alterations in more ab-
normal cases to understand their clinical relevance (31-
33). Depending on the resolution and representation of
the genome of the microarray, CNVs may be frequently
found, thus complicating the interpretation of results.
Thus, microarray design is very important to obtain high
quality results. 
In contrast to whole-genome aCGH, targeted arrays
constructed with clones mapping within chromosome re-
gions frequently involved in genomic disorders or sub-
chromosomal anomalies have been developed (34, 15,
35). These arrays have been used in the clinical diagno-
sis of chromosome abnormalities in children with birth
defects, mental retardation, or developmental disabili-
ties (16, 36, 37), however prenatal uses are limited at
present (38). 
We present a preliminary study on validation and utiliza-
tion in prenatal diagnosis, of a targeted array able to re-
veal specifically 34 critical chromosomal regions in-
volved in microdeletions and/or microduplications that
cause well known syndromes. The array contained also
41 subtelomeric regions target of mental retardation and
learning and developmental disability. All aCGH results
agreed with those obtained by karyotyping or FISH
analysis or DNA testing, detecting both aneuploidies

and chromosomal microdeletions. Even if we analyzed
only a restricted number of samples, our results con-
firmed the possibility to use this kind of aCGH in prena-
tal diagnosis, minimalizing the difficulties of good inter-
pretation of results. Furthermore, applying aCGH tech-
nology on genomic DNA isolated from uncultured chori-
onic villus samples we obtained the same results as ob-
tained by DNA isolated from cultured cells. Thus, the
time taken to report results back to patients could be sig-
nificantly reduced. We are confident that this targeted
array improves the analysis of segmental aneuploidy in
uterus and suggests that it may prove feasible to intro-
duce aCGH as part of the diagnostic armamentarium for
detecting chromosomal rearrangements which would
not be otherwise investigated in routine prenatal cytoge-
netic analysis.
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