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Abstract

This paper is a review of some interesting reghli$ has been obtained in the study of the quantum
gravity partition functions in three-dimensions, the Selberg zeta function, in the vanishing of
cosmological constant and in the ten-dimensionahaaly cancellations. In th®ection 1 we have
described some equations concerning the pure thneeasional quantum gravity with a negative
cosmological constant and the pure three-dimenkisnpergravity partition functions. In the
Section 2 we have described some equations concerning éfieel§ Super-trace formula for
Super-Riemann surfaces, some analytic properti€Setiferg Super zeta-functions and multiloop
contributions for the fermionic strings. In tH&ection 3 we have described some equations
concerning the ten-dimensional anomaly cancellatemd the vanishing of cosmological constant.
In the Section 4 we have described some equations concerninggsadings, p-adic and adelic
zeta functions and zeta strings. In conclusiorth@Section 5 we have described the possible and
very interesting mathematical connections obtaineiveen some equations regarding the various
sections and some sectors of Number Theory (Rienmata functions, Ramanujan modular
eguations, etc.).and some interesting mathematical applicatiomeeming the Selberg super-zeta
functions and some equations regarding3betion 1

1. On some equations concerning the pure three-dimermsial quantum gravity with a
negative cosmological constanfl] [2]

This section is devoted to describing some expticihputations concerning the three-dimensional
pure quantum gravity with negative cosmologicalstant. The classical action can be written



1 jd3x@(R+722j. (1.1)

167G
We describe the sum of known contributions to taeifon function from classical geometries that

can be computed exactly, including quantum comesti Furthermore, we describe pure three-
dimensional supergravity partition functions.

The automorphism group of Adé SO(31), which is the same aS.(2,C)/Z,. We may write the
metric on a dense open subset of AdS

dz’ + du?
g =2 Lo snc. @)
u

If we identify the real one-parameter subgroup gliae™) of SL(2,C) as the group of time
translations, the AdSnetric (1.2) can be put in the form

ds® = cosifrdt® + dr? +sinf’rd¢?, (1.3)

with —co<t<o, 0<r<o, and 0<¢<2n.

We write Zc’d(r) for the contribution to the partition function tife manifold M . Because the
manifolds M_, are all diffeomorphic to each other, the functidgs, (r) can all be expressed in
terms of any one of them, Sﬁ()’l(f), by a modular transformation. The formula is siynpl

z,,(r)=2,,((ar +b)/(cT +d)), (1.4)

wherea andb are any integers such thad —bc = . The partition function, or rather the sum of
known contributions to it, is

z(r)= ;‘chd (r)= ;‘,Zo,l((af +b)/(cT +d)). (1.5)

This formula shows that the key point is to evaudt,(r). In the most naive semiclassical

approximation,ZO,l(r) is just exp(— 1), wherel is the classical action. Hence, we can write also
the following expression

2,,(r)= exr{— (ﬁ [dx/g [R+€—22jﬂ . (1.5b)

The full action includes the Gibbons-Hawking bouydirm, which has the opposite sign of the
Einstein-Hilbert term (1.1). This extra term remsuwhe divergence, and one arrives at a finite
(negative) answer for the action bf

| =-47kim7  (1.6)

wherek =/ /16G . Hence, we can write also the following equation



l
d®xy/g| R+— |=-4m——Imr. (1.6b
16nG~[ ( j 16G ( )
Therefore, in this approximation, we have

Zoy(r) Ofad . (1.7)
Three-dimensional pure gravity with the Einsteirbdit action (1.1) is dual to a conformal field

theory with central charge, =c; =3//2G =24k . For our purposes, we simply parametrize the
theory in terms ok =c_/24=c, /24. Hence, we have the following connection:

1@dox¢_(R+ j::cL—q; 30/2G =24k. (1.7b)

Let L, and Eo be the Hamiltonians for left- and right-moving nesdof the CFT. They are related
to what we have calleth andJ by

~

H=L,+L,; J=L-L,. (1.8)

The CFT ground state hds =-c_ /,24[0 =—Cy /24, or in the present context, = EO =-k.
Equivalently, this state hasl = -2k, J = 0. Its contribution to

Trexp(- 272(lm 7)H + 27i(Rer)J)
expl47kImz)=[qq ",

as in egn. (1.7). IL, and En are the left- and right-moving modes of the Virasalgebra, then a

general such state is
|‘! L |'L L
n= m=

Q), (1.9)

with non-negative integens, ,v,, .
A state of this form is an eigenstatelof and L, with Ly=-k+>"_ nu,, Ly=-k+>"_ my,.
The contribution of these states to the partitiomction is then

- 1
Zo,l(r):|QQ| kﬁ- (1.10)

[t

It is convenient to introduce the Dedekindfunction, defined by

n(r)= ql’z“ﬁ (1— q”). (1.11)



Eqgn. (1.10) can then be rewritten

Zou(r) =

1 2|GCI|_(k_1/24)|1—CI|2. (1.12)

()

The known contributions to the partition functionpafre gravity in a spacetime asymptotic to AdS
come from smooth geometridd ., wherec and d are a pair of relatively prime integers. Their

contribution to the partition function, includinghé contribution from the Brown-Henneaux
excitations, is

z(r)= ;20,1(;4), (1.13)

where
_ar+b _(a b
= y—(c djms_(z,z) (1.14)
and
Z (Z'):‘q'k - (:L—q“)‘12 :|qq_k+1/24|1_q|2 (1.15)
01 rl:! |/7(sz

The summation in (1.13) is over all relatively primeand d with ¢= 0. Since Zoyl(r) is invariant

underr - 7+ 1 the summand in (1.13) is independent of the ehoifca and b in (1.14). This
sum overc andd in (1.13) should be thought of as a sum over teePS(2,2)/Z , whereZ is

the subgroup oPS.(2,2)=9.(2,2)4+1} that acts byr — 7+n, nOZ. Given any function of ,
such aszoyl(r), that is invariant under - 7+ ,lone may form a sum such as (1.13), known as a

. 7 . . 2 . . .
Poincaré series. The functior'Im r|/7(r)| is modular-invariant. We can therefore writér) as a
much simpler-looking Poincaré series,

1 _—k+1/24 2
Z(r):mg(\/lmﬂqq 1-q )y, (1.16)

where(..), is the transform of an expression) by y.

Now we see what we need to analyze the following su

S

E(sh )=y —

5 exr{Zm Im yr + 27 u Reyr} , (1.17)
calcr+d|

make the analytic continuation, and determineefphartition functionZ is physically sensible.
We defined =d'+nc, wheren is an integer and runs from 0 andc - 1We may separate out the
sum overn in (1.17) to get

E(sk,u)= y ™)+ % N f(c,d'\n) (1.18)

¢>0d'0Z /cZ nOZ

where



, y® 271Ky . | a cx+d
flc,d',n)= +2 — = . (1.19
(e.d'n) |c(r +n)+ d'|25 eXp{|c(r +n)+ d'|2 nu( C c|c(r +n)+ d'|2 }} (1.19)

Hence, we can write the following equation

E(sx,p)=ye v +3 3 3

¢>0d'0Z/cZ nOZ

x Y 2y ppgyf & X*d . (119
|c(r+n)+d'|25exp{|c(r+n)+d'|2 Ae de(r +n)+df ( )

The first term in egn. (1.18) comes fraax0,d= . 1
The Poisson summation formula allows us to turn ¢hm overn into a sum over a Fourier

conjugate variable
> f(c,d,n)=> f(c,d',A) (1.20)

nbz A0Z

where f (c,d",A) is the Fourier transform

fc.d',A) = exq 27 =M 5 [ dterm 2wy ~i)| (g 51
C c?t? +y clt? +y?

We have written the integral in terms of a shiftedgration variableg = n+ x+i. Upon Taylor
o

expanding the exponential that appears in the iat@md introducingl’ =t/ y, we get

T

2 - yl—m—sjj:o dTe? (1+T2)‘m—S(K —igT )m . (1.22)

For a givend , such ana exists if and only ifd 'lies in the se{Z/cZ)” of residue classesodc
that are invertible multiplicatively. So, droppittge prime fromd | we may write the sum over that

variable as
S(- A, ;c) = Z ex 277( nd + ]} (1.23)

0(z/cz)”

whered™00(Z/cz)" is the multiplicative inverse od . This sum is known as a Kloosterman sum.
Rearranging the sums in (1.18), we have also

E(s &, u) = yse?" 0+ +Ze2"”XE (s.k,u) (1.24)

where

m=0 Cc=

£ (5= S (sl ™| SIS Aac) . 125)



Here we have defined the integral

| s (S, 1) = (an)m rw AT ™ L+ T2 ™ (k —igT)".  (1.26)

m

Hence, we have also the following equation

E.(s,x,1)= 2 (Zz)m J‘: dTe?™™ (1+T2)_m_s(/( i ,L/T)myl‘m‘s[z c2AmsIs(— A,y c)j . (1.26b)

Note that (1.25) is independent ®f so that (1.24) has the form of a Fourier expangiox with
Fourier coefficients Eﬁ(s,/(,,u) given by (1.25). These Fourier coefficients aregidslly
complicated functions of/, since the integral (1.26) depends yn

Now we consider the Fourier mode which is consiarx, i.e. thefi= Oterm in (1.24). In this case
the integral (1.26) is independent pf and may be evaluated explicitly. Far= , e result can
be expressed in terms bf functions

m 2"V (s+m-1/2)
mr(s+m)

l.o(S,x0) =& ., (1.27)

while for ¢ =+1, we require also hypergeometric functions

(2n)mr(1+2mjr( m2— !

+Sj 1 1
ZF{m +S—E+S;—;K2j+

Y ESIE CO{ mnj

2 mr(m+s) 2 2 72
(2n)’"r(mjr(m + sj
+m/(sin(m”j 2) \2 2F1(1_m,m+8;§;/(2) (1.28)
2 mr(m+s) 2 '2 T2
When m= 0, this formula simplifies to
Ms-1/2
INCVESIE ﬁT(STs)) . (1.29)

The sum overc may also be evaluated exactly. Foe=  this evaluation involves the Kloosterman
sum S(00;c); from the definition (1.23), one can see t18{0,0;c) is equal to the Euler function
(p(c), which is defined as the number of positive intedess tharc that are relatively prime to.
The sum ovec is a standard one

¢ Am9I5(00;¢) = cZ>(:)c‘2(""+s)qo(c) = % . (1.30)

NgE

1l
-

C

We note that the egs. (1.27), (1.28) and (1.29)bmarelated with the Selberg zeta-function for the
modular group.



The Selberg zeta-function was introduced by Atléb&g in the 1950s. It is analogous to the
famous Riemann zeta function

= —, (1.30Db)
»l-p

where P is the set of prime numbers. The Selberg zetatiumaises the lengths of simple closed
geodesics instead of the prime numbers.

For the case where the surface i§ \ H?, where ' is the modular group, the Selberg zeta-
function is of special interest. For this special ase the Selberg zeta-function is intimately
connected to the Riemann zeta-functionn this case the scattering matrix is given by:

p(e)=m e _rz )%%S ) w309

In particular, we see that if the Riemann zeta-fimmchas a zero as,, then the scattering matrix
has a pole a, /2and hence the Selberg zeta-function has a zesy /2.
Thencewe have the following interesting mathematical corections

w272 (s+ m-1/2) \/—I'(s 1/2)¢(2s-1)

mir(s+m) r(s)c(es)

(1.309

[m—l m 1 zj
+s——+S =K |+
2 2 2

+ miesinl ™7 (Zﬂ)mr(rzrljr(r;+sj2|: 1 mm, §K -
" Snijgr(s—;/g)(zn(];ss_)l) a 3(01)2 2 j
r(s)c(zs) =~

s-1/ s-1/ S—
g T s

For u=+1, the Kloosterman sum becomes a special case of wieaknown as a Ramanujan’s
sum:

s(A0;c)= Zz"d“-u(c)- (1.30h)

Z/cZ

Here 4(c) is the Mobius function, which is defined as follaw(c)=0 if ¢ is not square-free,
while if ¢ is the product ok distinct prime numbers, thea(c) = (-1)¢. The sum ovec is given
by

i C_2(5+m)8(0,il' C) — iC_Z(Ser),U(C) = +rn)) . (130|)



The exact expression for theindependent part of our Poincaré series (1.18) is:
E,(s.x, )= ZW (s, )y"™=. (1.31)

If we take they = Ocase, we find that the coefficienl\%(s,/(,/,l) are given by

m +1/2
2" 7™Y27 (2m) o

w2k 0) = e lam )

(1.32)

To evaluate they =+ 1terms, note that as= 1/2he first two arguments of the relevant

hypergeometric function appearing in (1.28) areegets. This means that the formula (1.28)
simplifies considerably as= 1/t is just a polynomial inx . It is

1 277m+1/2
—Ktl|=——F—— 1.
Im'O[Z'K'ﬂj mi(m+ 1/2)Tm(K) (-39

where Tm(/() denotes a Chebyshev polynomial of the first kifd.the coefficients appearing in
(2.31) are

w, (1/2,k,£1/2) =

277m+1/2
(e v2)eamey) ) €39

Also the egs. (1.32), (1.33) and (1.34) can beedlaith the eq. (1.30c).
Now we will consider the AZ 0 terms. For = 0 and A# Q the integral

(1.26) is a K-Bessel function

25+1n25+m|ﬁ|s+m—1/2
mr(s+m)

| na(s.4.0)= YUK (2rfly). (1.35)

The Kloosterman sum is now the general case of Ramajan’s sum

S(fi,0;,c) = Z /e = ;u(d). (1.36)

Z/cZ

We will simply quote the answer for the sum oeer

00

-2(s+m)fa A 1-2(s+m)
e s(A0;c)= G (S+m))25 . (1.37)

c=1

Taking s= 1/2 gives a Fourier coefficient of the regularizedtpian function. Consider first the
m=0 term. Forn= Q this was the dangerous term in the analytic cotion, but forn# Qit
simply vanishes, because tﬁéZs) in (1.37) has a pole at=  1/2ausing the Kloosterman sum to



vanish, and — unlike the= ©8ase — the integral (1.35) is finite a=  1/2he other terms are
non-zero, and give

0 3/2 +1| A|M
E,(U2k0)=> — 2 i

m:1mr(m+1/2)((2m+1)(;5_2mj\/§*<m(2ﬂlﬁ|y)- (1.38)

Each term in the sum oven vanishes for largg ase 2l

However, whenu # Qthe sum ovec

ic ™SR, u,c), (1.39)

c=1

though of considerable number-theoretic interemtnot be expressed in terms of familiar number-
theoretic functions such as the Riemann zeta foncfihe sum (1.39) defines a meromorphic
function on the complexs plane. This function is essentially the Selberg zeta funicin
associated to the modular domainD =H/SL(2,2). When we takes= 1/2the function (1.39)

remains regular for elementary reasonsmf> . l@deed, one can see directly that the sum
converges for these values, by noting from thenitedn of the Kloosterman sum (1.23) that

IS(A, ¢.c) <c.
The sum over geometries, if we take account of dhé classical action and not the one-loop
correction, is

Z9r)=> exf27kImyz}. (1.40)

The necessarg-dependent function was already introduced in €égi.7); ZD(r) is formally given
by the functionE(s,k,0) at s= 0
z9r)= lim E(s,k0). (1.41)

However, as an analytic function in, E(s k,0) has a pole as= 0To see this, consider the
expansion (1.31) of the part cE(s,k,O) which is constant inx. The m= 0 term in this sum
vanishes, because of the poleifs) at s= 0. Them= 1term gives

E(sk0)=r Z(1(;+282)s)(rs(1++1/s§) ~oly?) @4

which has a pole a= 6oming from the harmonic serig1) =

We note that also the eq. (1.42) can be relateld tvé eq. (1.30c), i.e. the Selberg zeta functown f
the modular group:

s-1/2)(\2s- J(1+2s)(s+1/ 4
it e )2}(2(5) V= in g(l(zfz)s)(r(lfs? roby). e

Now we recall some properties of the modular irevatri (r) The J function has aj-expansion



I(r)="> c(m)g :é+1968841 +...

m2-1

where the coefficients(m) are positive integers. As thm) are positive, it follows thaf obeys

3(0)=3(-7)

and so is real along the imaginaryaxis.
Although the exact form oﬂ(q) Is quite complicated, in many cases the “treellapproximation”

J=q

is very useful. To this end, we note that for aiweg value ofr = x +iy, we have the bound

2. c{m

m21

<> c(m)q" = 3(iy)-

m21

9(0)-q7=

The functionzmzlc(m)|q|m depends only ory and is a monotonically decreasing functionygfso

in the fundamental domaib , it is bounded above by its value at V372, which is the minimum
of y in D. This value is

= 3(iV3/2)- e =1335.

Note that 1335=3[5[89 , where 3, 5 and 89 are Fibonacci’'s numbEwthermore, we have that

15 7
q:“"—cp?:(\/g*l] -(*/gzﬂj (11335,

2

Thencethere exist the connection both Fibonacci's numbasaureo ratio

Soin D, we have
B()-a=m.

Applying the triangle inequality, it follows thahroughoutD , we can bound the value df by
D(r)<e” +M.
We will now consider the action of the Hecke operd}, on J, defined by

TJ= “J (n7+33)/0%). (1.43)
>3

This is a new modular invariant function with arth order pole afj = .

10



Let us first consider thé = ferm in (1.43), which isJ(no). For anyo in C, we can find an
integerm such thatno + m lies in the fundamental domain. This allows uspply the following

equation
O(r)-e*™|<m  (1.44)

with 7 =ng and yr =ng +m to get

‘J(na) —g2ine

<M. (1.45)
Now, consider thed =n, =0 term in (1.43), which isJ(a/n). Sinceo lies in C, we can find
an integerm such that-n/o +m lies in the fundamental domain. So we may appl¢4), with

r=0/n andy=-n/o+m to get

‘J(a/n)—e‘z’*”’”

<M. (1.46)
Using these two equations, we may apply the trengtquality to (1.43) to get

—27ma —27in/ o
J(o)-em -e

<2M +Z‘ ”“ﬁdj‘. (1.47)

We will now apply the following equation

3(r) < exp{ma& . M} +M  (1.48)

|cr+d|

to each term on the right hand side of (1.47). @ndirst the term withd =n, 5 =n—- 1which is

J(JT_lj. We would like to apply (1.48) with:aT_l, so we must ask what possible values

cr +d| can take for this value af. Now, sinceo lies onC, it follows thatjo —1>1 and hence

o-1
n

Imz =y/n, equation (1.48) gives

‘J(a+n+lj
n

Let us consider the case whee=n and 0<fg<n-1 where we may apply (1.48) with

7=

>1/n. This implies that|cr+d|21/n for all possible choices ot and d. Since

<e”™+M. (1.49)

T:a+,8. For this range of, |0—+,3|>\/§, so|r|>\/§/n. Hence|cr+d|>x/§/n and (1.44)

n

gives

<& +M. (1.50)

11



Finally, we consider the cases whared <n. In this case we apply (1.48) with= (no + 50)/ 5.
The fact thato lies onC implies that |cr + d| >/3n/5%. So we end up with the bound

e

Putting this all together, equation (1.47) becomes

2m

<e® +M. (L51)

2m

27 —27 — Y
T,J(0)-€?™ ~e?™?|<e™ +ne™ +n’e® +1°M . (1.52)

The factors ofn and n® in (1.52) come from the simple fact that there lass thann terms with
J=n, and less tham® terms with1< Jd <n. Multiplying both sides of (1.52) bg’*™ , and using
the fact thate™™ 7 =¢e™ for points on the curv€, this becomes

am

T,Je>™ — 2cod27mx) <1+ ne™ + ne 3 +Mne?™. (1.53)

For the moment, we concentrate on the case . Si@cey=> V312 for any point onC, we may
evaluate this right hand side of (1.53) to get

T,Je™ —2coq2/mx) < 112, (1.54)

This formula is valid for any point on the atcandn=> 2
We have only proven the bound (1.54) for . Fbrn= 0, we defineT,J = 1So the bound (1.54)

is trivial. Forn= 1, we haveT,J = J . In this case we have the slightly weaker bound
9(r)e™” - 2cod2mx) < 122 (1.55)

for points onC . We note that

122=2[06102[p112[0.618033=2 EE%LJ

hence the mathematical connection with the aurezosey .
We now describe the general case of a modularisrvgpartition function at levek :

2,(r)= Y Rt = YRT,I0) (1.56)

where theF, are non-negative integers ard, = . As with J(7), the fact thatZ, (r) has real

coefficients and is modular-invariant means th&t rieal on the imaginary axis as well as on the
boundary of the fundamental regiob .
We have proved the estimate (1.54) 19d on C with n= 2. Along with the estimate (1.55) on

C, this implies that for alh> 0

12



T,J =e*™(2co{2mx)+E,) (1.57)

where E, is an error term obeying
[E|<122. (1.58)

We note that

p2= (%LJ [2=0,6180332=1,236066012[D61= 122

hence the mathematical connection withi.e. with the aurea section
By simply adding up the inequalities (1.57) for O,...,k, with coefficientsF_,, and using the fact
that F_, = 1, we get a similar estimate faf, :

0
Z,67™ - 2cod2km) = E, + FAe_Z”(k+A)y(2COS(ZIﬂX) +E A‘). (1.59)

A=-k+1

To bound the location of the zeroes 4f, we must show that the right hand side is lesa tha
Then the zeroes aZ, will lie on C and become dense in the lardgdimit. For this to be the case,
F, must not grow too quickly witl. For example, assume that

F, < Ae"e*K) for —k<A< 0 (1.60)

wherea and A are positive constants. In this case

0 0 K
] ) ol A

> Rt cp Y sl < py gl S (161)
A=-k+1 : A=-k+1 n=1 e T -1

In the second line, we have used the fact §hat\/§/2 on C. Since
[2cod2mx) + | < 2+[E,| < 322, (1.62)

it follows from (1.58) that
[Z,e7™ - 2coq2krx) < |E | + 322 A . (63)
ez?(fs/z—ai -1

which is less than 2 for certain values Af and a . In particular, usindEk|< 122 and setting
A =1, we find that the right hand side is less tham®igled that
a<061. (1.64)

We note that

®2=2 Eﬁ@j =3.2360678121161= 322,

13



hence the mathematical connection wah i.e. with the aurea ratio
Now we describe the supergravity partition funcsion
In ordinary gravity, the thermal excitations oftleiovers are obtained by acting on the ground state

‘Q With Virasoro generatork_ , n= 2. When the boundary theory h&k= sdpersymmetry, we

n
can also act OI‘Q W|th superconformal generato@ ,,,,, N> 2. Writing —k" /2 for the ground
state energy, the partition function of left-moviexgitations is therefore

n-1/2
q—k3/2 —1+q

1.65
g (169

n=

Including both left- and right-moving excitationsthe contribution of M, to
F(q’q):TrNSeXF(_,m" —iHJ) is

n- 1/2

—1+q "

g (1.66)

| ~—k"r2
Fox=(d
n=

This formula can be justified exactly as for thesdwaic case.
The NS partition functiorF(r) =Tr,sexp(- SH —=i&) corresponds tg=v = 1/ZThis condition

is invariant under the subgroup & (2,2) characterized by saying that-d and a+b are both
odd. If c+d is odd, we can maka+b odd by adding tda,b) a multiple of(c,d). F, or at least
the sum of known contributions to it, can therefbeecomputed by summing,, over modular

images withc+d odd:
F(r)= Y F.4(r) @.67)

c,d|c+dodd

or equivalently
F(r)= > Fyllar+b)/(cr+d)). (1.68)

c,d|c+dodd

It is also of interest to compute partition funagowith other spin structures. However, the three
even spin structures an are permuted bﬁ(Z,Z) and so the associated partition functions are not

really independent functions. If we set=0,v =  1ARe get G(r) =Tr(-1)" exp- sH -1 &0).
The contribution ofM; to this partition function is obtained by reversithe sign of all fermionic
contributions in (1.66):
-kH/2
o=

The subgroup oSL(Z,Z) that preserves the conditiops=0,v =  liRcharacterized by requiring
that b should be even, which implies thatandd are odd. Hence

n1/22

(1.69)

Glr)= 3 G.a= Y Gullar+b)cr+d)), (1.70)

c,d|dodd ¢,d|dodd
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where for givenc,d , we pick a,b so thatad —bc= landb is even. A modular transformation
T:r - r+1 exchangeu,v)=(01/2) with (u,v)=(1/21/2), so in particular

F(r)=G(r+1)=F(r+2), (1.71)

and the summand in (1.70) does not depend on thieecbf a,b.
The Ramond partition functiorK =Try exd—,&’H —i&]) is computed fromu =1/2,v = (so

K(r)=G(-1/7). (1.72)

We will now compute the partition functions by summ over smooth geometries. We will
consider the partition functiorG(r) =Tr,¢(-1)" exp(- H —i&0), as it is technically the simplest;

the two other non-zero partition functions are thamen by (1.71) and (1.72).
From (1.69) and (1.70) we have

1- qn—l/Z
1-q"

)= 3 W]

c,d| dodd

}\y. (1.73)

To understand the modular transformation propedfeskis sum, it is useful to rewrite the infinite
product in terms of Dedekind eta functions. Usimg identities

ﬁ i-q')" = —qlle;g)_ %) (1.7

and

ﬁ(l—q”‘l’z): g™ e12) - 75

L-a"?) n(z)

this may be written as

G(T) _ Z[|q —ku+3/24‘1+ ql,z‘z II](Z' /2] }‘y . (1.76)

n(c)’

We may now extract these Dedekind eta functions fitee sum, using the fact thaflm r|/7(r)|2 is
modular invariant:

G(r)= |,7(T/2)|4Z( y'qq |kD+3/24‘ 1/2‘21/:

1/2| |

|/7 (r/ 2)|

1/2|,7( ]

In the second line we have defined

(E(k"- 3/240)+ E(k"+1- 3/240)+ E(k"+ 1/2- 3/242/2)+ E(k+ 1/2 - 3/24-1/2))

(1.77)
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1/2

A y .
= E 27K | 27TUR . (.78
E(K,,U) o8 |cr+d|exd TKIMyr + 271U eyr} ( )

This is the supersymmetric version of the Poinsarées.
This sum is divergent. In particular, at largeand d the exponential approaches one and we are

left with the linearly divergent sun)__ |7 + d|_l . The sum may be regularized by considering the
more general Poincaré series
— Y exd2mImyr + 2ziuReyr}  (1.79)

E(s.k, 1) =
( KIU) cd| dodd|CT+d|

as an analytic function of and takings - 1/2
Now we start by lettingd =d'+2nc, whered'=dmod2c. The sum in (1.79) can be written as a
sum overc,d ‘,andn:

E(s.k,p)= y'e@@ )+ % %" S f(c,d',n) (1.80)

¢>0d'0Z /2cZ nOZ

where

, y® 27Ky .| a cx+d
flc,d',n)= + 27U — - . (181
(e.dn) c(z +2n)+df™ eXp{|c(r +2n)+d n,u[ ¢ dc(r+2n)+df’ }} (1.8)

We will now apply the Poisson summation formulahe sum ovem, as for the bosonic partition
function. We must compute the Fourier transform

f(c,d',A)= J'_mw dne”™ £ (c,d",n)

:lex{zﬂw_ nﬁxjj’m dteniﬁt( . Yy ]Sexp{zn(Ky_IM)} (182)
2 e c (t

2 24 yz) Cz(tz + yz)

The integral appearing in (1.82) is precisely tthefined in (1.26). The Fourier coefficients of the
Poincaré series (1.79) are therefore given by

E(s k1) = y &™) + 3 ™ E (s,k,44)  (1.83)

where

00

E.(s.k, )= z oS p)yT™ S(Zc‘z(m+5)8(— ﬁ,2,u;20)] (1.84)

m: c=1

is defined in terms of the integrals (1.26).
We will now restrict our attention to the= dase. First considez = .0n this case, the integrals

were given in (1.27). To do the sum owernote first that the Kloosterman su{00,2c) is equal
to Euler’s totient functiong(2c). The sum ovec is
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2(m+s) -
-2(m+s) — -2(m+s) — Z(Z(m + S) 1)
; cAm5(0,0,2c) ;c #2c) P01 emrs)) (1.85)

As in the bosonic case, we must be careful wheimga& — 1/2. For m= 0 (and A= 0), the sum
(1.85) vanishes as= 1/2whereas the integral,, has a pole am=0,s= 1/2as we see in

(1.27). The product of the two factors is finite; fact, I(s—-1/2)/7(2s) — 2 at s — 1/2. The

m>0 terms are finite without any such subtleties. Hatihg the first three terms in the expansion
of (1.79) gives

- — 2 8’ -1/2 647° 2 |,,~3/2 -5/2
EO(1/2,/(,O)— y +(—21((3)ij +(—4185((5)K jy +O(y ) (1.86)

Let us now consider thg =+ 1/&rms. Form= Q we find that

|0v0(s,K,¢1/2)=\/71M. (1.87)

r(s)

This is the analogous of equation (1.29) used éencbmputation of the bosonic partition function.
For m> 0 the integrals are complicated hypergeometric fonst of the sort written down in
(1.28). To do the sum ovar, we use the fact that the Kloosterman s8{B,21,2c) is equal to the

Mobius function(2c) . The sum ovec is given by

-2(m+s) — -2(m+s) _ 22(m+5)
> cAmels(0£12¢) = Y ¢ ™ y(2c) = - T me ) (1.88)

c>0

At s=1/2, we again must be careful to cancel the zero .B8)latm= 0against a pole in (1.87),
using the fact that M(s—1/2)/{(2s) — 2 as s - 1/2 Including the next two terms in the series,
we find

E,(1/2,k,£1/2) = -2y*? —(%ij‘”z —(%7{5) (8/(2 —l)jy‘?”2 + O(y‘5’2). (1.89)

Putting this all together gives the following expam for the partition function

=G (r +|/7(T/2]2 _ +(6+16kD)(773—6n) B
ole)=cule)+ 1 ( o 010 b,
_ 472288 —16k°(277* ~1385)+ 45-1277")
418% (5)

v+ o(y‘?’)j . (1.90)
This is the supergravity partition function.

Now, with regard the eqgs. (1.89) and (1.90), we tidde following pure numbers:

3,5,6, 712, 16, 21, 45, 93, 135, 2880, 4185.

17



We observe that four numbers are p(n), i.e. pangtiof numbers: 3, 5, 7 and 135. Four numbers are
oftype p(n)+1: 8=7+1, 12=11+1, 16=15+1, 222=1.

But we obtain also the number 31 (prime natural Imemwith 5 and 7, i.e of typén+ Withn=1

and 5 that are Fibonacci’'s numbers). Indeed:

93=3x31, 2880=45x 64, 4185=45x%93. We note tha®3=31x &nd64=31x2+2=8% 8
Furthermore, we have th&1=21+8+ that are all Fibonacci’'s numbers and the numbes 8
related to the following Ramanujan modular equatiost has 8 “modes” that correspond to the

physical vibrations of a superstring.
Indeed, we have that:

© COSTEXW

e VA | s
antilog ™ C(?ISZI'VX Dtgj\fz
e g (itw
8=1p A . (1.90a)

Rlees

2880=(31x93)-3, 4185=45x93=31x135  93=(77+101)/2+4=89+4 with 89 that is
Fibonacci’'s number. We have also that:

We have also that:

6=2x3, 12=2°x3, 16=2x8, 21=3x7, 45=3x5 135=3’x5,

with 2, 3, 5, 8 and 21 that are Fibonacci’s numbkris important to observe that the number 31 is
a factor of 248=31x 8, where 248 is the number related to the dimessairthe Lie group &
while 8 is a Fibonacci’'s number and is relatechtoghysical vibrations of the superstrings.
Furthermore, we remember that (with regard the rarsbf partitions):

PA)=LpR)=2pE@) =3 p@=5pB)=7p6)=1Lp(7)=15p@) =22...,p(4) =135
and we notethat: 7+1=8, 11+1=12,+15=16 and 22-1=21, andthat

21 + 16 + 8 = 45, with 21 and 8 that are Fiboriaccumbers. We note also that, with regard
p@),p4) and p (5), we have: 3+4 +5=12, whilp@4) = 136th14=2+ 3+ 4 + 5 sum of
nof p(2),p@).p(4) and p (5)

Furthermore the sum of 3, 5, 6, 7, 8 and 16 isb185=45x 3. Thence, also the number 45 is
very important. We have observed that 45 = 3 +18 + 21, that are all Fibonacci’s numbers, and 8
is related to the physical vibrations of a supargtr

Furthermore, we have also tha880=12x  240d 2880-45=2835=21x 135 Also here, we
note that 21 is a Fibonacci’'s number, while the ben24 (2=24 /2, 240=24x%10), is related to
the physical vibrations of a bosonic string, thetocthe following Ramanujan’s modular equation:

18



) cosntxvv’e_mzw- dx
antilog ™ COSIVK Dtgjf

24 = e ¢ alw) . (1.90b)

227

In conclusion, we have also that:

p(2)+ p(5)+ p(8)=2+7+22=2+8+21=31,
p(1)+ p(5)+ p(7)+ p(8) =1+7+15+22=3+8+13+21= 45,

with 2, 3, 8, 13 and 21 that are Fibonacci's nureber

1.1 Gravity and Chern-Simons Theory with negative cosmological constant

As noted by Achucarro and Townsend and subsequextinsively developed by Witten, vacuum
Einstein gravity in three spacetime dimensionsgsivalent to a Chern-Simons gauge theake

will be interested in the case of a negative cosgiohl constant\ = -1/¢%, hence/ =J-1/A .
Then the coframee® = €;dx” and the spin connectionw® :%ga“wmdx“ can be combined into
two SL(2,R) connections one-forms

AR = g i%ea. (1.91)

It is straightforward to show that up to possibtubdary terms, the first-order form of the usual
Einstein-Hilbert action can be written as

1 . 1 A o . )
I :%J‘M {e D(dwa +§£abca)b Dafj+geabce Oe’ O¢ } = ICS[A( )]— ICS[A( )] (1.92)

where A®) = A¥Tare SL(2,R)-valued gauge potentials, and the GBemons actionl  is

log =L Tr(ADdA+gADADAj. (1.93)
4G 47w 3

Similarly, the Chern-Simons field equations
Fe =dA® + A OA¥ =0 (1.94)

are easily seen to be equivalent to the requiretiattthe connection be torsion-free and that the
metric have constant negative curvature, as redjloyehe vacuum Einstein field equations.
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Banados, Teitelboim and Zanelli showed twatcuum (2+1)-dimensional gravity with\ <0
admitted a black hole solutioifhe BTZ black hole in “Schwarzschild” coordinategjiven by the
metric

ds* = (N Fat? - £ 2ar? - r*(dp+ Nodtf  (1.95)

with lapse and shift functions and radial metric

N" =

2 166232\ 4G
f:( ] , N¢=- (3=Me). (1.96)

~8eM T r’

The metric (1.95) is stationary and axially symneetwith Killing vectors 9, and d,, and

generically has no other symmetries. Although isalibes a spacetime of constant negative
curvature, it is a true black hole: it has a geaugwent horizon at, and, whenJ # Qan inner

Cauchy horizon at_, where

r+2=4GM€2{1i|:1—(ijT } (1.97)
M/

2 2
N )
8G/ 4G/

Another useful coordinate system is based on propdial distancep and two light-cone-like
coordinatesu,v=t// £ ¢ ; the metric then takes the form

ds? = 4G¢(L*du? + Ldv?) - ¢2dp? + (0% +16G°L* L'e ™ Jdudv  (1.99)

with
e (rxr)

L*="+==/  (1.100)
16G/¢

In these coordinates, the Chern-Simons connec{b@4) take the simple form

1d,o _46 L'e”du —ld,o -e’dv
AW =| 2 ¢ A = 2
’ 4G

1 (1.101)
-efd -=d -—Lefdv =d
N 2 P Y4 2 P

It is easy to check that these connections satgfyequations of motion (1.94). This solution may

be generalized: the Einstein field equations aite ssttisfied if one allowsL™ to be an arbitrary

function ofu and L™ to be an arbitrary function of.

As a constant curvature spacetime, the BTZ bladd isdocally isometric to anti-de Sitter space. In
fact, it is globally a quotient space of AgBy a discrete group. We can identify AdBith the
universal covering space of the group SL(2,R); B¥Z black hole is then obtained by the
identification
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o, . eﬂ(r,,irr_)//f 0
g=p 00, p = 0 e_,T(nJ_rr_)/(

] . (1.102)

Up to a gauge transformation, the group elemegritsan be identified with the holonomies of the
SL(2,R) connections (1.101).

The most important feature of the BTZ black hol¢hiat it has thermodynamic properties closely
analogous to those of realistic (3+1)-dimensionatk holes: it radiates at a Hawking temperature

of
2 _ .2
70K _rliz-12) (1.103)

2 2w,

where k is the surface gravity, and has an entropy

S=

27T, (1 104)
47G

equal to a quarter of its area.

2. On some equations concerning the Selberg Supertrab@mula for super Riemann
surfaces, analytic properties of Selberg super zefanctions and multiloop
contributions for the fermionic string. [3] [4]

We have formulated the Selberg Supertrace formualasuper Riemannian surfaces for operator
valued functions of the Laplace-Dirac operatgy. Let h be a test-function with the properties:

i h(%ﬂp 0ce(R),
1)) h@ﬂp need not be an even function in

ii) h(%ﬂp 0 O(é}(p - *w),

iv) h(%ﬂp is holomorphic in the strip |Im(p)|s1+g+£, £>0 to guarantee absolute

convergence in the sums of eq. (2.5) below.
Its Fourier transfornyg is given by:

m+1

; j (2.1)

— 1 T —iu :
g(u)—ZT_J;dpe ph(|p+

The term Agm) corresponding to the identity transformation reads
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A =i(g-1)| h(ip + 1) tanh7pdp + (1 g)m/ZHg + kj - h(g -k —1ﬂ . (m even)

k=1

—00

2.2)
A :i(g—l)T h(|p+ j cothrpdp + (1- g)m 1)/2{ (m+1 j—h(mT_l—kﬂ, (m odd)
- ) (2.3)

The last two equations can be combined and statadcompact form yielding

Agm):(l‘g)TMTm(coshgjdu, (mO2z), (2.4)

0 sinhE
2

where Tm[coshij coshEu denotes then” Chebyshev-polynomial |ru:osh— Thus for the

supertrace formula we get (primitive geodesic A2F) =%+ pE® (nON) are denoting the Bose

and Fermi Eigenvalues aof , respectively):

é[m(pf)‘hn(pf)]z

=(1- g)I—g(u)__ :?L(j u)coshEdu +{;;—ekly|/y)(ye—kly [g(kly)+ g~k )- x* (g(kly)e_k'”2 +g(-K, "'V’z)]
sinh_
2

(2.5)

The Selberg super zeta-functions are defined by
ﬂ H[l X&) (Re9)>1), (26)

where g can take on the valueg=  Dflespectively.y, describes the spin structure andis the

length of a primitive geodesic. The product is taken over all primitive conjugacy sesy [T .
The Selberg supeR -functions are defined by

R,(s)= =Jy_}|[1—)(§e_dy], (Re(s)>1). (2.7)

Z,(s+1)

To study the analytic properties @, and Z, let us consider the Selberg supertrace formula for
m=0, i.e.:
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oo

3 [n(pe)- (s )=

n=0

=i(g _1)_T h(lp +—jtanh7pdp + ZZ%W[Q(HVF g(_ kly)_Xl;(g(kly)e—kly/Z + g(_ K, kIy/Z)]

{r}p k=1

(2.8)

To get information forZ, or R, respectively, one has to choose a test fundti@r) so that the
first two terms in the square bracket in the supee formula cancel, i.e.g(u)=-g(-u). We
choose the functior(Re(s) > 1, Re(o) > 1):

1 1 1
9 ) , 1 1
2 - 2 2 ‘/1=1/2+ip ZZIP( 2 - 2 zj' (29)

2 SZ+ o’ +
sz—(A—;j 02—()I—;j P P

The second term plays the role of a regulator abal the involved terms in the supertrace formula
are convergent. Thus fag(u):

1 T —iy| 200 - 1 1
g(u):_J;e Phs(p)dp:I—TJ' pSInup( R pzjdp, (2.10)

and we see thag(u) is an odd function as required. Using

? xsinax T
2 dx=e %, (211
| rra®=5e" @)

we get(u>0) g(u)=(e* -e*) and forudR

glu)= sign(u)(e‘s‘”‘ - e‘”‘”‘), (2.12)

thus finally for G(u, x)

Glu.x,)= 2)(( sl e”“)sinh%. (2.13)
Therefore only they, -term remains in the supertrace formula which adide study the properties
of Z, alone. Inserting3(u, x) into the length term yields
°° 6e" _xe |_R(S)_Rio)
kl)(gll)( =;VV__yy_= _ '
;kz 2sinh v y ! 2\ ) F1-xe™ 1-xe® | Rls) Rlo)

(2.14)
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In the last step the property of the logarithmiowdive of the Selberg supéd® -functions has been
used, i.e. forRe(s)>1:

V
Iy)(ye

(2.15)
1 )(y

—InF{1 —Inﬂ[l xye

The A, term gives

. r _4 © du | psinup T psinup | _
=ilg-1 p)tanh/pdp=—(1-g > dp— dp|=
A =ilo -] h{p)anvea = £1-)f | [P - ESNLEg,

=4(1-g)f glsali 2 gy (2.16)
. u
0 sinh—
2
where the integrals (2.11) and

[ S_i”(ax) dx="Ltanh®,  (2.16b)
Jsinh(bx) 20 2b

have been used. Using now

Ie—#xsmhﬁx dx = {LIJ[1+—’U+’8)—LP(1+L'BH, (2.17)
sinhbx bl (2 2b 2 2

0

whereW(z)=r"(2)/T(z), zOC, we obtain finally forA,

A =4(g -1)[W[S+%j - LP(J +%ﬂ . (2.18)

Let us denote byAn(()O) =ng —n; the difference between the number of even andzeda modes
of the Dirac operatori. Thus we get the supertrace formula for the famch

0o

Z[hs(pf)—m(p,f)]—An(()O) 11 :
(s—zj(s+2j( Yo

o o5+ +[o+1]-

Let us consider the eq. (2.19) in the lirait- % and get

N \

)

©)_Rl0) 10

R(s) R(o)
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A=—2, (anP=0), A= - (<o),
1 _ An@\plan@) 1
2) 1-anf)R [2)
[ j R(o)do
. (an®>0). (2.21)
( R(o)do
Therefore
o 2py _ 2py, _ 2p, . 2ip ~4(g-1)y. - A=
; s +(p2f 411+(p':3)2 s+ (pr f ;’L(p:)z
S, (Y ( 1) R{S
_ g_l)l.p s+= |+ . (2.22)
(S_;j(s+;j 2 RI(S)

h, has the symmetryh, =h__. Writing down eq. (2.22) fors - —s and subtracting it from eq.
(2.22) gives with HJ(%+ sj = W(%—sj + rtanss  the functional equation in differential form for
the R -function,

%In R(s)R(-s)=-4(g-1)tan/s. (2.23)

This equation can be integrated yielding
R(SR(-5)= Alcosrsf™™,  (2.24)

where ,5& iS a constant given e.g. by} = Ri(sO)Ri(— %)(003733)4(1_g) with some s,0C, which is
however, independent & . We have, e.g. fors, = :0A = R%(0).
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Now, we derive the analytic properties of the Sejbsuper zeta-functiorZ, and present a
functional equation connecting the two Selberg sapta-functionsZ, and Z,. Let us consider the

test function(Re(s) > gj :

1

= Yo ‘A:ip+(l/2):—2'
All-1)-s1-5) p2+(s_1j

2

(2.25)

This gives at oncéy, = @ecauseh, is an even function irp . Furthermore forg(u):

® —|up
)=L f dp=—t Wi (596
7T el —

Thus forG(u, x):
—(S—(l/Z))kIy kl
G(kly,)(y):—l(l—)(l'j cosh?yj. (2.27)

S—i
2

Therefore we get for the right-hand side of theestrpce formula

~(s-(1/2)),

© | e ki
y _ K v | =
%Z «, 1 (1 )(ycosh?j
2

2
1 ° |, w0, (WM, (s (2K, 1 d Z2(s)
= 2 - xke r - e —In g :
25—1{y}pk2=;1—e'k'y [ & X ] 2s-1ds Zl(s_ljzl(s+lj
2
(2.28)

Here use has been made of the properties of tlagitbgnic derivative of the super zeta-functions:

%Inz ——Ingl“[l xoe = g: VXEH_I . (2.29)

Thus we find the supertrace formula for the testfion h,

S B F (0) _ 1 d ZZ(S)
Z[*L,(Pn)—hs(lon )]_S(Alnfs)_ZS—ld_sln a 5| (2:30)
" Zl(s—zjzl(s+2j

The test functionh, is invariant under the change— 1-s. Performing this substitution in eq.
(2.30) and subtracting it from (2.30) yields thadtional equation
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d 72(s) _d z2(1-s)

ds Zl(s— 1)Zl(s+ 1) ds Zl(l - sjzl(g - sj
2 2 2 2

Let us consider the functional equation (2.23) thee R -function and perform the substitution

(2.31)

S - %— s. By expressing th&, -function by the quotient of th&, -functions, this yields

1 1
o
—In =4mg-1jcotrs. (2.32)

Thus we find by combining eqgs. (2.31) and (2.32) fanctional equation in differential form
connectingZ, and Z, :

q Zl(; - sjzo(s)

ds 21@ + sjzo(l— )

=2n(g-1)cotrs. (2.33)

The functional equation can be integrated yielding:

Zl(_ jzo(s)
2 =C,(sins) Y, (2.34)

zl(; + sjz0 (1-5)

whereC, is, e.g. given by

C,= (2.34b)

|:Zl(; + sojzo(l— 5)(sin ,—50)2(1—9)}

with  some s0OC which is, however, independent ofs, e.g. for §==:

Co= Zl(O)/Zl(l) = Rl(o) = \/K
To get around the difficulties of the combinatiohtbe Z, and Z, functions for general test
functionsh in the Selberg supertrace formula let us defieesthper zeta-functiod, :
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ﬂ rlSde 1— dlag le X6 -(1, /2),Xye—(|y/2)e—(s+n)|y)]:

~(s+n+1)l,

h-ete _ 72,(92(s+1)

ﬂ,l:! [1 X,€ ~(s+n+1/2)l, ]2 - le(s_*_;j . (2.35)

Let us consider the resolventof : R (22) = (s* = 02) ™ (Re[s) >1). Therefore

1 | B 1
2 _ 32 |2=(12)+ip T .
s°-A (Sz_ij_ip_'_pZ

We first calculate the Fourier transformaffp):

h(p)= (2.36)

olu)= = Jrlple e = u)+ g.(u). @37

)= | ey =0 0)=51 e 1jpp —to=-0.1)

(2.38)

Using the integrals:

p+ox+ X’

—00

j (b+ exsinax dx = { - b2 sinaq + ccosaq}nea‘ Pt

jmw: b-cq cosaq +csinag ;e P . (2.39)
P+ Ox+ X ’

—00

We get foru> Q
1 . u._
, u)=—sinh=e™**. (2.40
oo cosh 0,(u) = sinh> (2.40)

Therefore(uOR):
o(u)= L gra-sa (2.41)

which gives forG(u,)()
—_ 1 —US u
G(u,)(y)-ge [COS*FZ—XV) (2.42)

and the right-hand side of the supertrace formedals:
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a0 012 4 oM 12 _ ok ziZ;(S)
S{;;eklylz -k, 72 € (e te 2)(1/) 25 ZS(S) (2.43)
For the A, -term:
A =i(g —1)j h(p)tanhrpdp =i 2 J' J' iinup dp = 1_29 . (2.44)
-o OSInhZ-W(s —j—ip+ p* S
Therefore we have for the resolvent kernel the grgee formula
& 1 1 o +g-1_ 1 Z(s)
- . (2.45
2 - e-(r )2} s szly) ¢

Equation (2.45) an&, can be extended meromorphically tosll A, .
A very simple functional relation can be deducenhrfreq. (2.45), reading

dinZ(s) _dInZ,(-s) |

& o (2.46)

In terms ofZ, and Z, eq. (2.46) gives

d In ZO(S)ZO(S+1) _d In Zo(_ S)Zo(l_ S) .

e
2 2

Equation (2.46) or (2.47), respectively, integragides Z (s)=Z.(-s), thus Z,(s) is an even
function in s. Combining egs. (2.23), (2.33) and (2.47) we dedhe functional equation for the
R, function, which reads:

%In R,(s)R,(- s)=4m{g-1)cotrs. (2.48)

(2.47)

Equation (2.48) can be integrated to give

R,(s)R,(-s) = B, (sin7s)®™, (2.49)

-g)

where the constanB, is e.g. given by B, = R,(s,)R,(- s, )(sin7s, )'*® with somes, 0C, where

B, is independent of,. We have, e.g. fos= i% B, = ZO(_EJ/Z(’@) = R{—%).

A similar relation holds also for the ordinary Saitp zeta-function:

RER(-s) = (i(i)zz(zls—) 3 (2.50)
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however, in this case the integration constanivergby B = 2497 From egs. (2.24), (2.34) and
(2.49) many relations linking, and Z, for particular arguments can be deduced, e.qg.

):ﬁ@:ng (2.51)

Let be mON,. Let us calculate the superdeterminants by¢thinction regularization. We get:

0
sdefc? -2)= exp{—a—sim(s; c]szo}

7. (sic)=str [(02 = Dﬁq)_s] = %Tdtts‘lstr{exp{(—t2 - Di)]}, (2.52)

where use has been made of the following integral:
J'xv‘le““dx =uT(v). (2.53)
0
The functionh corresponding to the heat-kernel (dz —Dﬁq) reads

hnk (S) - et[(s+(m/2))Z —CZ] . (254)

Therefore forg(u)

d®=§%fe“Ww@p+%}m=J%Eem{~%~c%+0n+ﬁg} (2.55)

This gives

_i —u? [4t-ct E_ E
G(u,)()—\/ﬁe [cost(m+1)2 )(cosrmz]

g(u)-g(-u)= %e‘”z R (s 1)% . (2.56)

Splitting the calculation ofm(S; C) into two terms corresponding to the identity tfanmation and
the length term, respectively, gives:

Z.(sc)=¢l(sc)+ ¢ (sc). (2.57)

Let us first calculate,
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1 (o)
F s ;[
- S|nh(m+ 7)Y m
(m) :_g o2 4t 2 coshmadu = (1-g)e ™Y e, (2.58
A \/_ '([ sinh% 2 ¢9) "Z:‘; o
2
hence:
o sinh(m+1)E m
J' s 1 1- 9 —c J' (u /4t) 2 COSHnEdUdt = (1— g)e_cztzekzt . (258b)
)s 0 sinh% 2 ko
2
Similarly:
m-2
AY=0 AM{t)=(g-1)e="Y et (m=23.). (2.59)
k=0

This gives for{, :

Furthermore, we can easily calculate

%Z,'n(s;C)ls:o =(9- )i“ﬂ(c2 -k?). (2.61)

Let us calculate/ in two alternative ways. The first is appropritdethe analysis of the spectrum,

the second to the calculation of the superdetemtsna
1) The supertrace formula for the heat-kernel nowsead

Z{ (Tl gt 2}}:(1-g)e‘°2§m‘,ek2t+

k=1

mzz yXy (k212 /at {cost{m+1) k| X coshni] (2.62)

yor k 1SInh l,
2

and the A, term appropriately replaced for negative integévgh the help of egs. (2.53), (2.58)
and the integral:

TX 16781y = z(yjm K, (2/By). (2.63)

we get for the supertrace formula of the generdliesolvent kernel:
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w e 1 . 1 o Iy/YI;m & s=(1/2)
%{M s ]S e ()

Yo
~112) Ck' {COS*[—kI j X, cosr(gklyﬂ. (2.64)

This gives explicitly fors= 1(m even):

o 1 1 mq 1 d Zo(r;+c+1jzo(c_g‘j
ZLZ‘(ﬂﬁ,m)z_cz—()l,f,m)z}(l_g)z T 2cae " . (2.65)

— K2 _
n=0 k=0C k 2c dc Zl(c + m;‘ 1jzl(c + 1 2mj

where the logarithmic derivative of the super Zetzctions has been used. For addm odd:

Z m+c+1jz[c—mj
. I 1 1—0I 1 b | —_— —_— S 1 1 d 1(2 ' 2
Z{ A )ZJ—(l 0 - 5+—-—In =51 (266)

2) Let first m be an even number. Let us consider the repregam{&Res(s) <1):

. 2 ¢ A+c .
51 = A+2kgy - (2.67
a9 2 @87

Therefore we get foerI'(c;s) with the help of eq. (2.62) and the representation
Koyo(2) = mi2ze

(sc)= sir;Tz*sT[/‘(/1 e y;g ,(A+c+1/2) { r( j cosl{ 5 klyﬂ =

m m
4 q ZO(2+/1+C+1JZO(/1 +c—2j

=S|n7BJ' 9in
7 s+ di zl(m”m +cjzl(m_1+/1 +cj
2

(2.68)

Let be f(s)=sin(rs)A(A +2c)]. Then f'(s),.,=7 and we get for¢"(0;c)(Re(s) > m):

m % d ZO(/}+m+c+1jZO(,1_m+cj
'(0:0)=(g -1 In(c? - k?)+ [dA - n 2 2
k=0

0o Zl()l + m;l + cjzl(A + 1_2m + cj
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=(g-1> In(c? -k?)-1 ZO(H“@Z{C_?)

n :
= Zl(c N m+1jzl(c L1- mj
2 2

Here it was used thatim Z ( ) 1, which follows at once from the Euler product es@ntation of

S— 00

(2.69)

the Selberg super zeta-functions. Therefone= 02,..):

sdefc® -2 = (;+1+1j gcmj - -Kk2J7°. (@270)
Zl(c+2jzl(c > j D

Similarly (m=24,..):

Zle-Mi1lz [+ M)
0 2 0 2 m-2 g-1
sdefc? -2, )= - @-k)*. @
m+1 1-m\1)_
Zl C+? Zl c+ 2 -

For m an odd number the roles &, and Z, are just reversed and it follows immediately
(m=13..):

Zl[c+1+ r;jzl[c—r;j . ]
sdet(c2 - Dzm) = (c2 - kz)L Y272

Similarly (m=13,..):

zl[c+1—mjzl[c+mj -
sdet(c2 —Dfm)z 2 2 j l" (c2 - kz)g_l. (2.73)

Zo(c £ M* 1jzo(c + i-m
2 2

Equations (2.70) — (2.73) are the starting poiotstiie calculation of determinants. Because the
super zeta- functions are meromorphic functioné jn the same holds for the superdeterminants.

Let us denote by O(t):= str [exdtm ) Then we have:

2 _—2)= _iiw s-1-tc? =
sdefc DO)—exp{ as[r(S)J;dtt e O(t]szo}}. (2.74)
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We can make some statement ab@utand can derive an equation express(hgby the zeta-
function Z, . Let us consider the supertrace formula for tiselkent kernel:

e - 14 AR
str(cz—mé)l=je’t° (9(t)dt=iZS(C)—g 1:2An° . (2.75)

This equation can be inverted by the theory of aegltransformations yielding:

. 171 zZie) g-1+an? ] L 1 T e g — (0
e(t)_Zﬂb_J‘iw[ZCZS(C) e —mlue (0 z Ju)du - (g -1+ An®),

(2.76)
where £ denotes the inverse Laplace transformation. Itiquéar this gives

8(0)=-(g-1+an?); (2.77)

this result is consistent with eq. (2.65). Equa{i@%5) gives also that far .  the supertrace for
the heat-kernel for? diverges according ttmIN)

0,(t)= str[exr(tmfn)] D(l— g —Anc(,o))emzt, (t - ). (2.78)

The starting points for the calculation of deteramits of the operator?, are egs. (2.70) — (2.73)
which all can be analytically continued = . Qet us first consider eq. (2.70) fan= .0
Performing the limitc — ¢ for |¢] <<1 one gets

L 220

sdet(— DS) =

=

Here we have denoted li{@j the appropriate derivative of residuumaf at szé, depending

WhetherAnc()O) <0 or Anc()o) >0 respectively. To make this quantity well-defined subtract from
sdet(—mé) the zero-mode which is denoted by priming the .stksing further the functional
relation for Z, and Z, we get finally:

2

For calculating the superdeterminant foreven andm= 2a subtraction of zero- or trivial-modes
is not necessary. Proceeding similarly asrfor wéget form= 24 ,..
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Similarly (m=24,..):

0] S5

2
Form=13,...
2
(7T ' 2 Zl(o).
sdef-2 )= (im!j z(m”j W (2.83)
° 2
andm=35,..

e )- (‘“";2”)“:{91) 2 o

2

The case oft?, must be treated separately because of the appeashzero-modes which must be
subtracted. Therefore denoting the omission of-e@ndes by priming the super determinant we get

~ 1 2
43)
sderf-c2)= (4P w0 2| 2 (e

The relevant string integrand is given bylet(— DS) and sdet(— mg). Equations (2.80) and (2.81)
yield:

-5

[se(- 2 **[sded- 2]} * = (-1 | 7o 1221[%) [z_rj z,(2)
(gt | s L) (”j 2,(2) Z@ (2.86)

) ¥ LY

2
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and we conclude that this expression is well defiffeurthermore forZ, of the following string
equation

= j d/JSWP[sdet(—Dé)]_m[sdet(—m;)]m, (2.86b)

9

where SM, is the super moduli spacely,, the super Weil-Peterson measure and the factor

[sdel(— Dg)]l/2 is the contribution from the Faddev-Poppov ghesedninant, we have that:

-5

bl bk (] < 2 )

(2.87).

This is thefermionic string integrand. We note the appearance of the various ratioseoBelberg
super zeta-functions.
In order to continue the discussion on the Sellsenger-zeta functions, let us first introduce the

classical Selberg zeta functiat{s) defined by

:l‘lfl[l—e_(s+k)'yl, R(s)>1. (2.88)
bk

As long as only the elliptic terms are maintaingd principal analytic structure is not very much
altered. However, the parabolic terms give risadditional poles and do in fact matter a lot. A
functional equation can be derived which has theafo

S )
2
where W, (s) is defined as

exp{%‘: 1L[—Li[2|—j |S+ S*' |+ 26)

“vsin(2kr/v) & | S— |

{KO In2+ z dfln‘l e } =i argA(%j} . (2.90)

a=1l=1+k,

Hence, we can write
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- AdimV jttanntdt

1 tr Uk ) k]T | S+| 1|
Xp{%" 1VSIn(2kn/v),z:;[ jln| 1|+(1 2s)
v dimV 1
{K°'n2+z D InfL— e q iargA(Ej . (2.90b)

a=1l=1+k,

Note the relation

R(s)R(-s):= > (i-(ksl)zz(zls—) 8 = (2sin7s)* ™"’ ”G - szj_l(o A(Al(-;)s) W (S)i =t (2.91)

Let us consider the two Selberg super-zeta funsti§nand Z,, respectively, defined by
” Hsde 1, —U (y)e = ] R(s)>1, (2.92)

)= ” usde 1, —U( y)(ye_(s+k)'V], R(s)>1. (2.93)

For convenience we will consider the functions

R L O NI CRR L

~—

and the analytic properties of th&, -functions can be easily derived from tRg, -functions. As
we shall see, only functional relations for tRg, -functions can be derived, but not for tig, -

functions.
We first discuss the functios,(s). In order to do this we choose the test funcfi®fs,a) > 1)

hl(%ﬂp,s,aj ZID( : 21 Zj’ (2.95)

s+p a+p

with the Fourier transformed functiag (u) given by

0,(u,s,a)= sign(u)(e‘s‘”‘ - e‘a‘”‘). (2.96)

The hyperbolic- and zero-length term has been aw@dlwith result

idimV %T_J; hl(ip +%,S, ajtanhipdp = dimV%[W[s+%j - W(a+%ﬂ ,  (2.97)
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%Zﬁ[gl(kly,s, a)+ 91(‘ K,,s, a)—)('; (91(k|y,S, a)e—my/z N 91(‘ dsa kly) ] _
= 2sinh—~

_R(s)_R(a)
"R RE) @9

Next we consider the elliptic terms. By the use of

[

_x -
j e dx = .2 Zsmlt (2.99)
» Coshx — cost sint = u+1

we obtain

_tolusae?+g(-usa)g’? _ 4 & 1 1
L | du = Cow;cos[(Zl +1)g] 1 |- (2.100)

s+l+= a+l+>
2 2

0 coshz; -cos @

Let us turn to the parabolic terms. Quite easilyhaee gl(O) =0, and hl[%,s, aj =0. Furthermore

o0

_J;fl[ip+%,s,aj[\IJ(1+ip)+\IJ(l—ip)]:O, Tgl(iu,s,a)du=i(é—§j. (2.101)

0

Let us consider the contour integral

S 70| N SO S S S|
ZHCA(Z)_Z—(S+9 z+[s—;j z—(a+;j z+(a—;j

where the contour is running from:%—iR to z:%+iR on the line®(z) :%, and closed by the

(2.102)

semi-circle going through the poimzszé—iR, z:%— R, z:%+iR and the points are given in

the direction they are tranversed by the contownstleringR - o, the integral over the semi-
circle vanishes due to the properties of the |dlgaric derivative ofA(z) and the choice of the test
function. The integral over the line yields by theuchy residue theorem
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Therefore we obtain the Selberg super-trace fordauléhe test functiorhl(ip +%,s, aj as follows:

Rls)_Rla)_ _pof 1 _ 1 |,

R(s) Ria & -

1 1 AdimV 1 1 1 1
1_ 1 - Wy S+§ -y a+§ +K | ———
stl+o a+l+o T S a

(2.104)

1
P 1 1 0" 0|
p,ﬂ<5 S— p_E S+ p—E a-— Io—E a+ IO—E

Here Anc()o) =ng —n; denotes the difference between the number of emed-odd zero-modes of

the Dirac-Laplace operatar.
The Selberg super-zeta function Ri(s) isa meromorphic function on A_ . Of course, eq. (2.104) can

be extended meromorphically to @lJA_ . The test functionshl(ip +%,s, aj is symmetric by the
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interchange s — —s. Therefore subtracting the trace formula fdm(ip+1,s,aj and

hl(ip +%,—s,aj yields the functional equation fd® in differential form

{R} k=1

—|n[R1 (- )] = -AdimV tan/s + =0/ ( zzzﬂu_] {ZI £ k”}

1 1 | (2105

1 1
S+l+= s—||+=
(3

The integrated functional equation therefore hasdhm

R (s)R(~s) = const(cos7s)* "™ '"st )y (s),  (2.106)

with the functionW,(s) given by

W (s)= exp{— 2zvz_lﬁuvk_(R)]X; xi {(2| +1) kV }m s —(| + ;) } . (2.107)
{R} k=1 1=0
Hence we can write:
R (s)R (- s) = const(cos7s)* ™ " g2l <o)
exp[— 2zvz_lﬂuvk—(R)] XEx ico{(Zl +1)k7”} In|s® - (| +%j } . (2.107b)
{R} k=1 1=0

We check easily the consistence of the functiogqab&on with respect to the analytical properties
of the Selberg super-zeta functi&).

Let us turn to the discussion of the Selberg sapéa-functionR,. We consider the test function
(®(s.2)>1)

ho(ip+%,s,aj:2(%+ipj o 11 . (2.108)

with the Fourier transforrrgo(u,s, a) given by

9,(u,s,a) = sign(u)e” z(e‘ﬂ”‘ - e‘a‘“‘). (2.109)
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Again a regularization term is needed to matchrélgelirements of a valid test function for the trace
formula. Similarly as forR we obtain the Selberg super trace formula for tést function

ho(ip + % S, aj as follows:

R(s)_Ra) _ A2 N A 1 ostrlU | (R)|
Ry(s) ( ZnZIL —( ) az—(AE)Z sz—(/}rf) a —()IF) :l {ZR}:zvsm(an/v)
xésin(zll:ﬂj[ T—l_ s+|1+1_ a+T —+ a+:IL +J - A(Eln;v [W(s)+w(s+1)-w(a)-w(a+1)]+

K| L, 1 11 +1t{5[1ﬂ O S S GRS RV
2 2 2 2 4 4
1 1 S 1 1 1
+Kp§;‘ {s ,0 s+,o a-p a+p} K;[sﬂ ) S— (Jj—l) a+(aj—1)+a—(aj—1)}
(2.110)

The Selberg super-zeta function R,(s) isa meromorphic function on A, . Of course, eq. (2.110) can

be extended meromorphically to allA_. The test functiorho(ip+%,s, aj IS symmetric with
respect to s » —s. Therefore subtracting the trace formulae (bg(ip+%,s,aj and

ho(ip+%,—s, aj from each other yields the functional equationtfeg R,-function in differential

form

o= Adlmviln(snrs) {A'(s) AI(HS)TH( 1,1 |,
T ds A °

SRR

_zzﬂLL > (lel/wj{ 1 o, 1 1 11)} (2.111)

5 & vsin(2knl/v) s+l-1 s—-(1-1) s+l+1 s—(+

In integrated form, this gives the functional edprat

R,(s)R,(- s) :const(sinIB)AdimV’”(A(ASJr1)J 7 In(s2 ——j_Ko W(s), (2.112)
with the functionW,(s) given by

= ex —ZVzﬂMi [2|knjln§(si:8—1)2)§}' (2.113)

& vsin(2kiv) &
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Hence, we can write
R(s)R,(- S)=const(sinzs)AdimV’”( +1)J 7 In 52 _lj .

x ex ZVZMEZ [Zlkﬂj ( 1)2)|} (2.113b)

{R} k=2 Sln(2k7T/I/) = ( I +1)2)‘ .

We check easily the consistence of the functiogab&on with respect to the analytical properties
of the Selberg super-zeta functiéj. Note the similarity of the corresponding relati@91) for

the classical Selberg zeta function.
We can also introduce the Selberg super-zeta fnantg(s) defined by

zs(s)=Mo(Sl+l). (2.114)
Zf[s+2j

The appropriate test function (®(s) >1)
= 1 . (2.115)

1
1 =
A:E+|p (Sz—lj—i + 2
4 ptp

hs(p,s):ﬂ

The corresponding Fourier transforgg is given by

1 u/2-sul
us)j=—e . (2.116
gs(u.s) o (2.116)

The evaluation of the various terms in the Sellsrger-trace formula is straightforward and we

obtain similarly to the previous two cases

‘(s) & 1 [(0) Adimle 1o strluR) < .[Zlkﬂj
i - A e D -
Z(s) ;s ( ) -1 T T )2 Zs%kzlv&n(an/v)Zsm v
4[1 XRCO{knD . . |y t{y@ﬂ
* s+l : +s+|—1+s+l+1_s+l +g[/?0+K_In|sdet(1—U(S))|]+K—2‘ 21 *
S—i
4
K1 K| 11 +&Hs+1j+w(s+§ﬂ-£”(1+s)+
25,1 4s| 1 _1| 2s 2 2)| 2sA(l+s)
2 2
M
- 2.117
K-;Sz_aj_lz+mpﬁ<lsz_pz (2.117)
2
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The Selberg super-zeta function Zg is a meromorphic function on A_ . Of course, eq. (2.117) can
be extended meromorphically to adllJA_.The test functionhs(ip+%,sj is symmetric with

respect tos — —s and therefore we can deduce the functional relatio

4[KO+K In|sdet(1U (S))

=conste

YT s+ Ds 3
]X(A(s)Al(su)j_ i r( er( Zj Ws(s).

(2.118)
with the functionW(s) given by
strU - 20k
exp{ g‘ l|/S|n 2k7T/V Z;‘ [ j
+1|  |(s+1- s+| +1|
21-2 | +1In 2.119
H oot ot} e
Hence, we can write
o dyford)
k| g== MNs+=1s+—
ZS(S) ‘Conste [K0+K In|sdet(1U (S ))]x( 1 j S 2 [ 2 2
z.(-9) D) 3] | a3
2 2 2
strU - 21k
ex;{ ;k l|/S|n 2k7T/V Z;‘ [ j
|, nl(s+1 - s+| +1|
1-2 n/S* 2.119b
|: [ XRCOS—j n|s || |S |+1 |:|} ( )

We check easily the consistence of the functiogak&on with respect to the analytical properties
of the Selberg super-zeta functiahy. In the case, where only hyperbolic conjugacy sdasare

present in the super Fuchsian group, eq. (2.11Rices to the simple functional equation
Z(s)=2z4(-9). (2.120)

Let us note that the relation

: 1
o |z o |zeriziera|_ri, ree N5

n
ds Zl(s+ 1) ds Zl(s+ 3)
2 2
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provides a consistency check for the zeta functiBps R and Zg, respectively. This concludes

the discussion. With regard the mathematical caimmes; in theSection 5 we’ll show as some
equations of this Section are related with variegsations oSection landSection 4

3. On some equations concerning the ten-dimensional amaly cancellations and the
vanishing of cosmological constant.

3.1 The ten-dimensional anomaly cancellations [5]

Now we describe a simplified demonstration of tbe-dimensional anomaly cancellation. Gauge
and gravitational anomalies arising from loop déangs (with chiral particles going around the loop)
in D dimensions can be succinctly characterizeddnyge-invariant D + 2 forms, which are derived
form D +2 dimensional index theorems. These formes @nstructed out of Yang-Mills field
strengths and gravitational curvatures. In the laigg of forms, the Yang-Mills field strength is
given by

F=1F,d¢ Od¢ =dA+A®, (3.1)
2

where
A= Aj/iadx” . (3.2)

The matrix A% is anti-hermitian, and in this subsection it iketa to be in the adjoint representation
of the Yang-Mills algebra. The Lorentz-curvaturetierm is given by

R:%Rﬂvdx” Odx’ =dw+a”, (3.3)

where w=aw,dx" is al0x 10antisymmetric matrix (the spin connection), copeewding to the

fundamental representation of the Lorentz algel®&). We now consider N = 1 supergravity
coupled to N = 1 super Yang-Mills theory in ten dmsions, with a gauge groupds

All the Yang-Mills, gravitational, and mixed anongas due to these loops are characterized by a
12-form proportional to

|, =~ TrF® +—TrF4rR? —iTr|:2[4trR4 + 5(trR2)2]+ 1, n-a98) ey
15 24 960 32 13824
+ (E +0- 496}“ RArR* + (n_—496jtrR6 . (3.4)
8 5760 7560

We now demonstrate the existence of a local cotentarthat cancels the anomalies whenever eq.
(3.4) can be factorized into an expression of tmnf

I, = (rR? +KTrF2)X,, (3.5)

where X, is gauge-invariant eight-form made out of thes and R's. A crucial role is played in
the anomaly-cancellation mechanism by a second{aténtial

B=B,dx" Odx", (3.6)
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which is part of the N =1 D = 10 supergravity npliét. A three-form field strength

H=dB+w, +kaw, (3.7)
is formed from this potential, where the Chern-Sisilormsca,, andw, satisfy
daw, =trF*, (3.8a) dw, =trR*. (3.8b)

There also exist two-formsd, and «, such that under an infinitesimal Yang-Mills gauge
transformation

dwy, =-dad,  (3.92)
and under an infinitesimal local-Lorentz transfotiora
0w, =-daj, . (3.9b)
Substituting in eq. (3.7) it is clear thHt is a gauge invariant provided that
B=aw, +ka, . (3.10)

Now let us return to the expressiadp in eq. (3.5) and replac&, by X,, so that the analysis
applies for other dimensions as well. In analogthwi, and «2, we can introduce forms.,,_,
and X},,_, satisfying

Xon =dXony, (B11) Ky, = _dX;N—z- (3.12)

There are solutions of these equations for arlyitravariant forms X,,, such that the anomaly
associated witH ,, ,, is proportional to

G = [[2(ad, + kady )X, + NrRE +KTIF2)XE, . (3.13)
The problem then is to find a local interacti§n such that
& +G=0 (3.14)
The solution to this equation is easily seen tgilen by
S, = [[N(e, +kay )X~ (N +2)BX,,].  (3.15)

This result is unique up to terms that are gaugariant. Now let us investigate when eq. (3.4)
reduces to the form (3.5). Clearly, two necessanydtions are than=dimG,,= 49@&nd that

TrF® not be an independent sixth-order Casimir invaridrG,,. Both these properties are satisfied
by E, x E, and SO(32) = D,;. In the case of a singlE,
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1 2 1 3
TrE*=—(TrF?), (3.16) TrF®=——(TrF?). (3.17
1oc( ) (3.16) 720c( ) (3.17)

Neither of these is valid, of course, fg x E;. However, in that case the weaker condition

1

T (mr2f  (3.18)

TrE® = L TrE2TrF -
48

is satisfied. Remarkably, eq. (3.18) is also védid D,,. Substituting this relation and= 496to
eg. (3.4) gives a factorized expression of the formg. (3.5) with

1
k=—— (3.19
30 (3.19)
and
X, = —TrFt-— 2 (mE2f - L mrare + Lort + L (rREP.  (3.20)
24 720( 24( 8 32

This proves the cancellation of all anomalies fothbD,, and E; xE;. It is easy to show that

n=496 and eq. (3.18), with precisely the coefficientgegi, are both necessary and sufficient for
the factorization of eq. (3.4).
We found that the three-form field strength is gy

1
H= dB—%a%Y +tay, . (3.21)

The requirement thal be globally well-defined gives a topological camah on possible spatial
compactifications. Specifically, since

dH :—3—1OTrF2 TR, (3.22)

it is necessary that background fielgs, F, satisfy

| (tng —3i0TrF02j -0 (3.23)

My

for any closed four-dimensional submanifd¥tl, of the ten-dimensional space-time.

In the background specified bR, and F,, the effective six-dimensional theory has a reduce
gauge symmetry. Specifically, if the nonzero fields span a subgroupd O G,,, then there is a
unique maximal subalgebi@ of G, all of whose generators commute with thosd1afsuch that

G, O0GxH. (3.24)

The adjoint representation &, can be decomposed into a sum of representations
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adjoint of G, = Z(g .C), (3.25)

wherel; andC, are irreducible representations®@fand H , respectively. In particular,

Y dimL dimC, =dimG,, =496. (3.26)
If X is a matrix in the adjoint representation@f, that corresponds to a generator of the subgroup
G, it can be decomposed as follows

X = g(xi 01). (3.27a)

Similarly, if Y corresponds to a generatorldf

Y= Q(; 0Y). (3.27b)

From these formulas it is evident that

XY =YX = g(xi 0y,) (3.28)

and
Tr(XY)=>trXtrY, =0, (3.29)

since G, is semisimple. Therefore we have six-dimensiowveb-torms F with generators
restricted toG (i.e., of X type) and background fields, associated wittH (i.e., of Y type). The
total anomaly in six dimensions is characterized lbgrmal eight-form

| = ns/2|3/2 Nyl 1/2 +Z”1/2|1/2 (3.30)

|3, characterizes the anomaly due to a single lefdedrspin 3/2 field, which in the present case
is a singlet of the gauge gro. It is given by

o 1 [ 43; _,v. 49 _,
19, = —(477)4[ 288(trR) 72trR] (3.31)

The two-formR is a6x 6matrix in the fundamental representation of tlgelaia SO(5,1).
Ny, =g, —Ngp  (3.32)

is the net number of left-handed gravitinos in dimensions. This number is given by an index
theorem:

Ny, = ,72 284 jtrRO (3.33)
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This formula is a consequence of a spin 1/2 intdewrem, which is relevant since spin 3/2 in six
dimensions requires the internal part of the tenestisional gravitino field to be spin 1/2. It gives
the number of six-dimensional gravitinos for lefiAded gravitino in the D = 10 theory, but there is

only one of them. Similarly]., is the anomaly due to a left-handed singlet ggin fieRl in six
dimensions

o _ 1 1 2 1 .
19, = (4){288(trR) 360trR}. (3.34)

The net number of these fields in six dimensionsirag from one left-handed gravitino and one
right-handed spinor in the D = 10 supergravity mplet is given by a combination of the spin 1/2
and spin 3/2 index theorems in the internal spake.result is

N, =N, =N, = 8772 16 J-trl?0 (3.35)

The anomaly contribution of a multiplet of left-ltled spinors in the representatibnof G is

io_ 112 a1 2002 4 dimL, o, dimL, 4
|1,2_W[§trh|: St PR+ aM* (rref + o IR (3.36)

and the number of such multiplets is given by a g2 index theorem
1 1 dlmC
=nt-n"=—— || -Ztr.F/ + —yr 3.37
ni i i 8772 ’\;[|: 2 Ci I:\)0j| ( )

These results can now be assembled to give theletemgxpressiorl of eq. (3.30). Combining
egs. (3.30-3.37) gives

4 1 1 11
= S JA[—ETrF“FOZ+§TrF2F02trR2—m(trRz)zTrFoz z(trRz) trRZ +

1 4 2 1 4. 1 2.
—trRTrk; + =trRtrRy + —TrF *tr TrF 2rR%r 3.38
180 6 RO 18 RO 72 RO} ( )

To simplify this expression we note first that €818) applied to an arbitrary linear combinatidn o
F andF,, and eq. (3.29) imply that

TrF4F?2 =1—;CTrF2TrF2F02 +7i2cTrF02TrF4 - TrE2(TrE2f . (3.39)

00(

Using this and eq. (3.23) gives
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1 1 2 22 1 222, 1 2 2 1 2 20 o2 L 2 \2 2}
| = -—TrFTrF°F; + TrE°JtrRy + —trRTrF“F; = —TrFtrRUrRy ———{trR"J trRy | =
2(4m)° MI[ 90 ° 1800( JuR 3 ° 72 " 12( JR

1 > 1 2 1 o2 1 2 1 2 2}
= trR°——TrF =TrF°F, ——trRTrF* ——trRtrR° |.  (3.40
2(477)6[ 30 M[s ° 60 R 12 R (3.40)

Since this is a factorized expression of the saype &s in eq. (3.5), a local counterterm of thenfor
in eg. (3.15) (now using N = 2) can be constructedreby showing that all anomalies cancel.
Using egs. (3.23), (3.26), (3.33), and (3.37) oae show that the net number of left-handed spin
1/2 fermions arising from the D = 10 Yang-Mills sumultiplet is

Zq dimL =-224n,,,. (3.41)

3.2 The vanishing of cosmological constant. [6] [7] [8] [9]

In the Section 1 we have described some equations regarding the-thimensional pure quantum
gravity with negative cosmological constant. Now we consider some equations concerning the
Coleman’s approach that describes that wormholee lize effect of makinghe cosmological
constant vanish and some equations regarding the cosmologicaltaonproblem in Kaluza-Klein
theories, describing a mechanism to solve thislprmlby allowing extra time-like variables D =

11 supergravity. Furthermore, we describe also raersecting brane configuration in six-
dimensional space with one extra space-like andextia time-like dimensionsWVith a certain
additional symmetry imposed on the extra space-tiveeobtain thateffective four-dimensional
cosmological constant vanishes automatically.

We start by considering pure gravity and will fedcColeman’s argument in application to the d-
dimensional Euclidean space-time. The Euclideah pa¢gral for quantum gravity is

[e'@Dg  (3.42)
where g,,, iS the metric,A are coupling constants anlC(g,A) is the action functional. The

integration overDg includes summation over all compact topologieshef d-dimensional space-
time M?. The integral (3.42) will be dominated by the daling expression

J' dap(a)es.

Here a = (a,) are wormholes parameterg(a) is a probability function and the effective actign
has the form

s:éjdd\/ﬁ(z/\ -R). (3.43)
This action is calculated at the stationary poihtal is a solution of the Einstein equation

1
RMN _EgMNR-'-/\gMN =0. (3-433)
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Here the parameteiG and A depend oz and the dimensionalitg . The probability functiono
is

where
Z(a)=[Dge ") =e>. (3.43b)

In the last integral the integration is performedlyoover smooth large universes without
wormholes. Therefore
pla)=eSexpe®).

Now transform eq. (3.43) to a more simple form.rrmeg. (3.43a) one gets

R= de . (3.430)

Substituting this into eq. (3.43) we find

=4 ‘_V;)G [Vod'x. (3.49)

Note that from egs. (3.43a) and (3.43c) one gets

2N\
Run = m G - (3.44b)

Let us find the value of the action (3.44) for thephere. For the d-sphere of radiusn has

d-1
Run = (2 Oun - (3.44c)

Therefore egs. (3.44b) and (3.44c) yield
2 _ (d _1)(d _2)
2N\

r

and the action (3.44) for the sphere is equal to

an (d 1)9 (d Z)E_lQ
s:—(d_Z)Grde:— ;_2 E_zl d . (3.45)
22 "GN?

Here Q, is the volume of the unite d-sphere

d+
27T 2
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Hence, for eq. (3.45), the eq. (3.44) can be valte

d d

A\ (A o)1

S:_(d4/;)ef@d"x=-(d 10-2:70, g 4
- —-2 -1

22 GN\2?

Equation (3.45) implies that p(a) is infinitely peaked on the values of a; for which the

cosmological constant A vanishes. This is Coleman’s solution to the cosmologicahstant
problem in d-dimensional space-time. If there esisteral solutions of the Einstein eq. (3.43a),
then instead eq. (3.43b) one would obtain

Z(a)= J. Dge™ (94+4) = >e™  (3.459

where S, is the action functional on the corresponding sofunumbern. Now the probability
function is

ola)= [Zﬂ: e jexp{zn: e j . (3.45d)

We consider solutions which correspond to the spwuus compactifications of the form
MY=M"xB'".

It is clear from eq. (3.45d) that the more probagkition corresponds to the smaller value of the
Euclidean action.

Wormholes are topology-changing configurations utliElean quantum gravity. Coleman showed
that if wormholes exist, they have the effect oking the cosmological constant vanish.

Now, we describe some equations concerning thigesulnd their mathematical connections with
the Hartle-Hawking wave function.

We begin with some (possibly disconnected) manjfditl, with long-wavelength background
fields. We also specify the initial number of balyiverses of each typ&,, and the final number,

n . We then integrate over the fluctuations and swer all possible locations of the wormholes.
The result of this process is

> e‘S:<ni,n'2..‘e_35“‘nl,n2...>. (3.46)

fluctuations
andwor mhol es

n; ,n; fixed

Here,
smzhdwj@%, (3.47)

where

Ly =L+ (d+a)e, (348)

£, is the result of integration over the fluctuatipasd
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L=e%K,. (3.49)
Hence, we can write eq. (3.47) also

Sq =], d%/08+Y (@ +a K, . (3.49b)

It will be useful to have an explicit formula refey A eigenstates to baby-universe-number
eigenstates:

(a0, n,..) = [1¢- (ai /\/E), (3.50)

where (//n(q) is the " energy eigenfunction of the harmonic oscillatoH :%(p2 +q2). If we

rewrite eq. (3.46) in terms oA -eigenstates, we find
<ai..‘e_39“ ‘al...> =g (@) [ J(cri' - ai) , (3.51)

where

Sal@)=] d“x@(ﬁo + Zgaij . (3.52)
Let us define an amplitude

A(B.B,t)=>e"®, (3.53)

where S is the (gauge-invariant) Euclidean action andstin@ is over all motions that go froi,
to B, in Euclidean time . This amplitude obeys a composition law

[AB.B,,t)du(B,)A(B,, B,,t') = A(B, Byt +t), (3.54)
for appropriate measurg(B). Further, given any functio®(B),
W(B,t)= j A(B,B't)o(B)du(B), (3.55)

is a possible wave function of the universetfor . 0
Hartle and Hawking showed that

¥(B)= [ AB,B)0(B)du(B), (3.56)
is a possible wave function of the universe, foy & and any measurg . Hartle and Hawking

paid special attention to the wave function defitgdthe simplest boundary condition of all, no
boundaries. In our notatio(B) is proportional tod,, , and

W (B) = A(B,0)= A(0,B)". (3.57)

52



They suggested that this was in a sense the grstatel-wave function of the universe. A naive
generalization of the composition law, eq. (3.54uld lead us to believe that

A(B,B,)= [ A(B,,B,)du(B,)AB,.B,), (3.58)
for appropriate measurg . If we define an inner product between allowab&v&/functions by
(W, w,)= [W(B)w,(B)du(B), (3.59)
then it follows from egs. (3.56) and (3.58) that
(W, W)= [ o B,)®,(B,)du(B )du(B,). (3.60)

Now, we shall attempt to compute the Hartle-Hawkimgve function of the universe in the
presence of wormholes. Let us consider a theoryhith the action inS, (a), for some fixed

value of thea $, and in which we integrate only over configunasidhat are slowly varying on the
wormhole scale. In this case, the Hartle-Hawkingenvinction is

W)=Y e, (3.61)

where the sum is over all manifolds that go fromboandary toB (B is slowly varying on the
wormhole scale). A general manifold will have sevecomponents. Some of these will be
connected toB (only one, if Bis itself connected). However, there may be otl@nmonents
which are closed, that is to say, which have nmnbdawy at all. The action is a sum over the various
components. Thus the sum over four-manifolds fater

wr(B)=¢"(B)z(a), (3.62)

wherey" is given by the sum over manifolds connecte@tcand
z(@)=Y e (3.63)
CcM
whereCM denotes closed manifolds. Hence, the eq. (3.62peaewritten also:
W (B) =gt (B) Y e ™. (3.63b)
CM
Let us now compute the expectation value of sorataséeld, ¢ . By following equation

Alx,%)=>€e®, (3.64)

paths

we have that
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The denominator is jusZ(a) again. Hence,
e yx)= (9" z(a). (3.66)
CM

Furthermore, we have that

D S
! ZCCM e_Seﬁ “ |

where CCM denotes closed connected manifolds. This equaetinus that, if thea s are
constants, we make no error if we simply ignorecalmected closed components in the path
integral. Now let us turn to the real thing, thedhy with wormholes. The argument ®&f is now
not just B, but also the number of baby universes. EquaB8d0j tell us how to write the no-baby-
universe state in terms of tlees: '

(3.67)

(alo)=€e"", (3.68)

times an irrelevant normalization constant. Thusoare directly aplly the wormhole summation
formula, eq. (3.51), to find

Wi (B,a)=e "y (B)Z(a). (3.69

This equation strongly suggests tI'Za('ra) governs the probability of finding given values @fin

the Hartle-Hawking state. To get a more precisa mfewvhat is going on, let us compu(tp)HH . For

this computation, we must sum over closed manifoldiais both the initial and final state contain
no baby universes. It then follows from the worngh®limmation formula and eq. (3.66) that

_ [dae (@)1 2(a)
[daez(a)

(@

(3.70)

We see that the probability distributiondn is
dP=e“"?Z(a)da, @.7)

up to a normalization.
We shall now show thaZ(a) displays the announced peak. We have that

Z(a)=ex ze‘sﬁf(")} . (3.72)

The sum over closed connected manifolds can beeeged in terms of a background-gravitational-

field effective action,I” . The path integral o&™° is then equal te™ , evaluated at the stationary
point of ' . The sum in eq. (3.72) runs over manifolds opalsible topologies.
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Thus we will define an independent effective actimmeach topology, and write

ze_seff (@) — ze—ra(g) , (3.73)

CCM topol .

where g denotes the background metric on each topology, eath term on the right is to be
evaluated at its stationary point. The leading term for large volume is given by

r :Ajd4x\/§+..., (3.74)

where A isthe cosmological constant. The first correction to eg. (3.73) is also known,

= (g -t
r=[d x\/g[/] 167IGR}+..., (3.75)

where G is Newton’s constant, again including all renorzetion effects of all interactions. The
stationary points of eq. (3.75) are Einstein spaces

R, =87GAg,, . (3.76)

For these,

= —/]J'd“x\/a. (3.77)

Thus for positiveA we want the Einstein space of maximum volume, fegative A that of
minimum volume. For positivel , the space of maximum volume is known; it is therfsphere of

radius+/3/87GA |, for which
3
[=——n—. 3.78
8G%A ( )

For sufficiently smallA, the neglected terms in eq. (3.75) are negligddmpared to this. For
negative A, the minimum volume space is not known. Neverggelavhatever it is, it makes a
positive contribution td™ proportional tal/ A . Thus,

3/(8(32/1) +
In Z{De A =0 579)

- 04 -0.

If an infrared cutoff is introduced, say by reding the path integral to manifolds with diameters

less than some maximum valug, I approaches a finite limit, proportional /G, asA goes

to zero.If, in the presence of such a cutoff, we normalize the probability distribution in a, eqg.
(3.71) and then let D go to infinity, the probability distribution becomes concentrated on that
submanifold of a space on which A vanishes.

We note that the egs. (3.45b), (3.45c), (3.69) @ndl), can be mathematically connected. Indeed,
we have:

an (d-2z(d-2)2 0
—_ dy — _ =1)2\d —2)2 d
M 2)(3I Vod™x i, 4.

22 GAZ
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= Z(a)=[Dge ') =3 e = W™ (B,a)=e" "y (B)z(a) =
=dP=e"?Z(a)da. (3.79b)

Now it will be shown that extra time-like coordieatcan solve the cosmological constant problem
in D = 11 supergravity. We will obtain it by a ddeluse of the Freund-Rubin ansatz in the internal
seven-dimensional space. Contributions to the Eimsequations from the antisymmetric field
strength tensors depend on the signature and aermaing mechanism may take place. It is
known that compactified time-like dimensions, asuée, cause the appearance of ghosts and
tachyons in the effective four-dimensional thedrye massive ghosts and tachyons can be ignored,
because their masses are of the Planck scaleisliKétuza-Klein approach we deal only with the
massless sector. Therefore it is enough to aveidgipearance of massless ghosts only.

The vacuum solutions of D = 11 supergravity withrozeosmological constant presented now,
satisfy the above mentioned criteria.

The equations of motion for the bosonic part of D1=supergravity are:

1 1 1
Ruv =% 9wR =§[FMPQRFNPQR =5 G FrorsF PQRS] (3.80)
1
DMFM“PQ=—(—576 Igljf“”l"'W“PQFMl._MAFMS_._MB, (3.81)

with the Bianchi identity
G[M FNPQR] =0, (382)

where M,N,...=01,...,10Q
Suppose that the eleven-dimensional manifold haslitect product form

ME=M,xM3xMixM3, (3.83)

where upper indices denote dimensionality of mamsfand lower indices denote the number of
time-like coordinates. This topology yields theddaliagonal form of the metric tensor

9, (X) 0
Ja(Y)
0 O (Z)
()

. (3.84)

O =

where u,v = 01,23 a,b= 456;mn= 8910 Non-zero components of the rank-four field sttbag

are
1/2

Foo = Alo(y.2)[%ess. (3858)  Fu = Aflow,2)] * 6y, (3.85)

where
o(y.2)= g,(2)detg,(y), o(w.2)=g,(2)detg, (W), &b,&d= 4567;mA p,G= 78910.
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The right hand-side of eq. (3.81) vanishes duevarlapping the seventh coordinate in the ansatze
(3.85a) and (3.85b). The left hand-side of eq.1Bi8 also zero, so eq. (3.81) is really satisfidue
Bianchi identity is true by virtue of the suppogedology (3.84). Egs. (3.80) take the form

Rw(x):—%(/]f—ag)gw(x), (3.86a) &b(y)zg(Z/}f+/1§)gab(y), (3.86b)

Ro(d) =20k - £)o(2).  (3860) R, (w)=-2(k +2E)g,(w). (3.860)

Since the left hand-side of eq. (3.86¢) is zerfplibws that
X=x=F. (3.87)
Therefore egs. (3.86) get the form

R,(X)=0, (388a) R,(y)=2Fg,(y). (3.880) R, (w)=-2Fg,w). (3.88c)

To avoid the appearance of ghosts in the masstessdfimensional theory, the internal space with
time-like compactified coordinates should sati$fg following conditions:

0] the internal space has no Killing vectors, and

(i) all Betti numberds,, ,, of the internal space vanish fak +1<| if antisymmetric tensor

fields of rankl are present.
If we take M are the quotient spac® /T with a discrete group of isometfy acting onS® non-

freely, then the conditions (i) and (i) are sagédf In this caseM? is a finite-volume manifold with
singular points. So, we have the following comgdauttion:

M;'=M/!xS*xS'xS*/T,

where M, is a Minkowski space-time. According to the stamdKaluza-Klein ansatz such a
compactification leads to the appearance of thggdields with theSO(4)><U (1) group.
The result obtained can be generalized to the cotifipation of the form

M =M/ xMZxS'xM?, (3.89)

where the lower indices denote the numbers of ime-like dimensions in the corresponding
manifolds (T =1+t +t,). In this case eq. (3.80) takes the form

Ru (=20 + (0 o, (0, Raly)=2[-0 2% - (-0 Elaa(y).
Ro(d)= 20 + (0 Eofa). Ruw)= 2|0 - (-0 2o, ). @:00)

We have a Ricci flat four-dimensional space-timelff= 22 = #* and (-1)" +(-1)* =0.
Among many vacuum solutions, which follow from e{(%.90), we wish to point out one (3.83),
because it is the most favourable. This solutioanalogous to the Minkowski four-dimensional
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one in non-chiral N = 2, D = 10 supergravity, ob&al taking twice (without overlappindj,,, in

the internal six-dimensional space.
We note that the eq. (3.81) can be mathematicalyected with the egs. (3.31), (3.34), (3.36) and
(3.38). Indeed, we have:

0, FMNQ = _(i
M 576

1 [ 43¢ oy, 49 11 ooy, 1,
:>(477)4[ 28R 72”R} (an)’ [288( wRef + 360”@:>

- 14FtrL,F“—3trL,F2trR2 dlmL‘(t Rf + dImL'trR“}
(4m)'|3° " 6" 288 360

M,..MgNPQ
|g|j£ Fu, .m, Fug v, =

1 4 a2, 1 2 242 1 22 2 _ 11 2
= —F -—TrF"F +=TrFFtrR*  ———I\trR°J TrF trR°J trRs +
2(4n) j [ 3 ° 3 ° 144( ) ° 2( ) R
1 4 1 A, 4, 2 2
-—1trR TrF + =trRtrR; + — TrF tr TrF trRtr 3.90b
= SuRtR; + LTrE R - Ro} (3.90b)

We have also that:

1 1 43 > 49
O, EMvRe _(_ ngl---MsNPQF Fooo— —{ R trR“} 3.90c
M 576 |g| M;..M, " M;5..Mg 2(4”)4 576( ) 144 ( )

We note thatc76=24x 24and that the number 24 correspond to the Ramarfujention that has
24 “modes” that correspond to the physical vibraiof a bosonic string.
Indeed, we have that:

© COSTEXW _ 2 dx
0 Coshm D\/142

_n? t*w
& " . (itw)

|Og{ \/[10?11[2}* \/(107 ﬁﬂ .

Furthermore, if the (3.81) is an equation of mofienthe bosonic part of D = 11 supergravity, then
it is possible also the mathematical connectiorik tie fundamental equation of Palumbo-Nardelli
model:

anti log

.[dZGX\/_{ 1676 _gﬂpngr(GWGpa)f((”)_

1 H
~—a*o =
1676 8 g ﬂwvw}

2

[

1
=J.2/(2

0 10

J‘dlo _~\2 20 u _1 i 2_K120 2
X(-G)"2e™*| R+49,00*d - Z|H,| -~ [F,[° )|,
2 10

Thence, we have the following connections:

58



MNPQ _ _| i M;..MgNPQ 1 [ 43 2\2 49 4}
HuF (576 |g|j£ Pt Pt = 2(4n) 576(trR ) Y14

j © COSTEXW _ 2, dx
0 Coshm \/142
t?w

antilog
e_T @, itw)

oA

= -[d*xg [ e 89”"9“"Tr(GwGpa)f(40)—19’”0#@#}:

:Tizjdmx(— vz ‘2{R+46 PO P - —\H \ 1°Trq 2|2)] (3.90d)
o 2K1o 910

This equation can be related easily also with 2@.00).
Now, we consider 6-dimensional space-tiMé4'2) with one extra time-like dimension and one

extra dimensiony, i.e. space-time with a signature (4,2). Suppbagethere are two branes with a

world-volume signature (4,1) (“time brane”) and2)3(“space brane”) embedded M (42) with
tensions T, and T,, respectively. The intersection of these branesiclvwe take to be at

(y Or= 0) point for definiteness, is a 4-dimensional subsp@&cbrane) ofv *2) with signature
(3,1) which can be identified with a visible worlthe relevant action describing such a set-up is:

S = [d°x/detg (é R- /\bj - [d®x/detg [r.6(r)+T,8(y) = [ (0 d*xdydz/detg (é R- /\bj +
6 6
~ [ d*xdyy/~detg™T, - | . d*xdr,/detg’T,. (3.91)

Here xZ =167M.*, where M, is the six-dimensional fundamental scale of treoty andA, is a
bulk cosmological constant. We can rewrite the(8@1) also

1 — _
S= .[M un d*xdydz/detg (W R- /\bJ - .[M oy d¥xdyy/—detg™"T, - IM 10 xd7/detg”™T, .

(3.91b)

The induced metrics on the branggjo(a,b = U, y) and gggo(a,ﬁ = U, r), are defined as:

05" = 0w, vi7=0), g5’ =g,0 y=07), (3.92)

where gy, ,M,N = /,1( 0;L2,3), y,T, is a six-dimensional metric. We use metric withsthopositive
signature(— + + + + -). The field equations followed from the above ati{8.91) are:

2
RY —%Jﬁ,"RzK—ZGTNM . (3.93)
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where the energy momentum tendgf is expressed through the bulk cosmological comstan
and brane tensiong andT, as:

—detg™™® M detg”™° M
- |——=—Td(r)o." o¢ — .| ——T,0ly)o." o . (3.94
o oot - S T el @)

Hence, the eq. (3.93) can be rewritten also

v 1 owe K w _ |—detg™® v sa |detg’™ M sa
Ry —=0y R==%| -AJ —.|——T.0lr)d, o5 — .| ———T.0ly)d, o5 |. (3.94b
2 N 2 [ b™~N detg T ( ) a —N detg y (y) a —N ] ( )

We are looking for a static solution of the abowpiaions (3.93) that respects 4-dimensional
Poincare invariance in the” direction.
A 6-dimensional line element satisfying this ansata be written as:

ds’ = A%(y,7)p,, dx“dx’ + B2(y,7)dy’ - C*(y,7)dz?, (3.95)

where 7, is a 4-dimensional flat Minkowski metric. It is meoconvenient, however, to perform
the actual calculations within a conformally flagtmc ansatz

ds® = A*(z,0)7,,,dx"dx", (3.96)
which can be obtained from (3.95) by the followowprdinate transformations:

B C
dz=—ady, dé=—dr. (3.97
A A (3.97)

Now using the well-known conformal transformati@nrhulae for the Einstein tensor
M M 1 M
Gy =Ry _55'“ R

Gy =Gy +4(0,, INAD INA-0,,0,In A)+4/7MN[DZ|n A+§(Dln A)Zj, (3.98)

we easily obtain:

G/ :iz (ﬁj _(_Aj +2(£—;Aﬂ5f, (3.99) GF%HAJ —(—Aj —25} (3.100)
A2 LA A A A AZ| LA A A

B N2 N2 " A NI At
Gl=2 -5&] +(%j +2i], (3.101) G;:—Gf:%[Z%—%] (3.102)
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where primes and overdots denote the derivativéls mspect to space-like and time-like 8
coordinates, respectively. Taking the conformaldawarp factor) in (3.96) as

-t
e O

one can easily check that non-diagonal elementd023. of the Einstein tensor vanish,
GZ=-G?=0, and thus(z6) Einstein’s equations are satisfied identically,lestthe remaining
equations will be satisfied if the following relais are fulfilled:

KZT 2
(3104) k=", (3.105) k - Kelr

k?-k? = ——KgAb y .

o 10

(3.106)

Here we will assume that the space brane has éveonsionT, > Q while the time brane the
negative one,T, < 0 so that bothk, and k. are positive.If we demand that the Einstein

equations (3.93) are invariant under the 6 - z exchange than among the solutions (3.103 —
3.106) the one with A, =0 survives. The fine tuning problem now is resolved sinhe above

invariance demands T, =-T, and ensures automatic cancellation of the 4-dimensional
cosmological constant. Now, we start from the more general ansatz bintpk

-2
g“wz(l—%quwx“x“j N, (3.107)

instead of the flat 4-dimensional metrg, in (3.96). HereH is a “Hubble constant” on the
intersection. Now the ansatz (3.96) with (3.10%tead of;,, describes maximally symmetric 4-

dimensional space-times of the intersection of ésan.e. de Sitter(H2>O) or anti-de Sitter
(H2 <O). Then the components of the Einstein tensor (3a88) (3.100), (3.101) will be changed

2 2

by the additional term 3H J)' and +%, respectively, while (3.102) will remain unchangkd
A

A2

is easy to see that the corresponding Einstein equations will remain invariant under the discrete
symmetry 6 ~ z ifandonlyif H =0 and A, =0. This can be easily understood from the fact that
the origin for the non-zero Hubble constant is a-mero 4-dimensional cosmological constant on
the intersection of branes which in turn is indderbidden if one demands that the theory is
invariant under the discrete symmetry imposed abokie above invariance can be viewed as a
constraint imposed on the system described by the action (3.91)which holds for the special class
of metrics g,,, including the background one given by (3.96, 3.103 — 3.106)ith A, =0. Notice

that the vanishing of the bulk cosmological constak, =0, and the relationl, =-T, emerge

merely from the discrete symmetry imposed and ateonsequence of any fine-tuning.
In conclusion, with regard the action (3.91), weenihat it is possible the mathematical connection
with the egs. (3.81), (3.90b) and (3.90d). Themaepbtain:

S= Jdﬁx,/detg (Kié R- /\bj - J'dﬁx,/detg [T,J(r) + Tyé(y)] = J'M . d*xdyd7,/detg (Kié R- Abj +
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- -[M (41) d4Xdy\/?tgr:OTr - .[M (3.2) d*xd T\/ng:o-ry =

— DM FMNPQ — _(%6 |g|j£M1"'M8NPQFM1,,,M4FMS...MS =

- [ A3 frref + 49trR4} ﬁ[ 2 frref + B—EOtrR“}:

(4m)*| 288 72 288
= L 20 oLy perre s AMb e AN e
(4n)* 3™ 6" 288 360
1 4 a2, 1 2 242 1 2 \2 2 _ 11 2
=>—F | | —=TrF'F, +=TrF°F1rR* ———trR° | TrF, trR°J trRS +
2(4n)6j[ 3 ° 3 ° 144( ) ° 2( ) R
1 4 1 A, 4, 2. 2.
-—trR TrF +—trRtrR; +— TrF tr TrF trRtr
180 6 R 18 R~ 72 RO}
o COSTEXW _ 2, dx
antilog™ COSW /142
A, t2w
e * %(ltw)
= =
0 10+1W2), [[10+742
4 4
1
d?®x — —=g*g"“Tr|G,, G |flp)-=g*0 =
= - J_[ e 89 0"T1(G,.G )t (-5 0 y@m}
[ee] _~ 2
= = J'dlox(—G)llze'z“’{R+40ﬂ¢6”q>—E‘HS‘Z—K—lz"Trquzf)}. (3.108)
02K10 2 glO

Note that also the relation (3.79b) can be mathieaibt connected with this last relation.

4. On some equations concerning p-adic strings, p-adiand adelic zeta functions, zeta
strings and zeta nonlocal scalar field410] [11] [12] [13] [14]

Like in the ordinary string theory, the startingirngoof p-adic strings is a construction of the
corresponding scattering amplitudes. Recall tha& dndinary crossing symmetric Veneziano

amplitude can be presented in the following forms:

o (@r), rere), rer@]. ¢a-a¢a-bsa-c)_
A.(a,b)= 9I|X| L-X, dx=g {r(a+b) F(b+c) F(c+a)} J Z(@) <¢b) (o)

= g?[ DX ex;{—i]dzoﬂ"x#aax")ﬁjdzq explikl!X*), (4.1-4.4)
-

where 7=1, T=1/n, and a=-a(s)=-1--, b=-at), c=-a(u) with the condition

N »

s+t+u=-8,i.e.a+tb+c=1
The p-adic generalization of the above expression
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Afab)= g7 [ -,

A(ab)=g? IQP|><12‘1|1— X dx,  (4.5)

where|..|p denotes p-adic absolute value. In this casg stnhg world-sheet parameteris treated

as p-adic variable, and all other quantities hae& usual (real) valuation.
Now, we remember that the Gauss integrals satdd#li@aproduct formula

J.R)(m(ax2+bx)dwx|_UQ )(p(ax2+bX)de=1, allQ*, bOQ, (4.6)
poP <P

what follows from

2

ol soceAia ). veozp @)
These Gauss integrals apply in evaluation of thafan path integrals
X't J. )(V( J. (a.a, t)dtj Jd, (4.8)

for kernels Kv(x“,t“;x',t') of the evolution operator in adelic quantum meatgfior quadratic
Lagrangians. In the case of Lagrangian

22

L(@Cl)%(-q;-ﬁqﬂj,

for the de Sitter cosmological model one obtains

Km(x“,T;x',O)rl K (x"T;x'0)=1, x"x,A0Q,TOQ", (4.9)

where

Kv(x",T;x',o)=Av(—8T)|4T|;iX{_ 3+[/1(x"+x) 2] +(X8TX)J. (4.10)

Also here we have the number 24 that correspondetdRamanujan function that has 24 “modes”,
e., the physical vibrations of a bosonic strildence, we obtain the following mathematical
connection:

+[A(x"+x) 2] NS X)J:

e = Af-aar g - >
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© COSTEXW _ 2, dx
0 Coshm \/142

L t*w
e £ " . (itw)

= . (4.10b)
Iogl\/(lmilﬁJ +\/{1o+47\/§ﬂ

The adelic wave function for the simplest grourateshas the form

antilog

L(x),xOz

wA(x)=ww(x)r|;!>f20xlp)={olxm'Q\Z, (4.11)

where Q(}xlp):l if |><Ip <1 and Q(]xlp):o if |x|p >1. Since this wave function is non-zero only in

integer points it can be interpreted as discreterdsthe space due to p-adic effects in adelic
approach. The Gel'fand-Graev-Tate gamma and betifins are:

fi-a) ) 0=t aaz)

—-a

()= IRIXIZ_l)(w (). x

b)= [ X - X d.x =T (a)". (o). c), (413)
=I o dpx =1 () () ). (4.14)

where a,b,c0C with condition a+b+c= 1and ¢(a) is the Riemann zeta function. With a
regularization of the product of p-adic gamma fiored one has adelic products:

Fw(u)rlrp(u):1, Bw(a,b)an(a,b):l, uz 0L u=ahb,c, (4.15)

wherea+b+c= 1 We note thai, (a,b) and B (a,b) are the crossing symmetric standard and p-

adic Veneziano amplitudes for scattering of tworofchyon strings. Introducing real, p-adic and
adelic zeta functions as

= IRexd— mzlxﬁ_ldwx = n_zr(g) (4.16)
1 a-1 1
¢ @)=, A b a e Reax 1 @)
- m(a)ryp(a)%(a)i(a). (4.18)

one obtains
A 1-a)=7¢,(a), (4.19)

where ¢ ,(a) can be called adelic zeta function. We have 4lab t
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@4 =2 @K a)= Jexd-me X x j ol{ 4 d,x. (4.190)

Let us note thaExd— mz) and Qﬂxlp) are analogous functions in real and p-adic ca&dslic

harmonic oscillator has connection with the Riemaata function. The simplest vacuum state of
the adelic harmonic oscillator is the following S8atz-Bruhat function:

L
=24¢ QQpr\p), (4.20)

whose the Fourier transform
j)(A ke, (X) rLQOk\ ) (4.21)

has the same form &, (x). The Mellin transform ofy, (x) is

a) = [@a ()X dix = [ . (}) X dx |‘11_ _1 0 X x= (gjn'iz(a) (4.22)

and the same fozy/A(k). Then according to the Tate formula one obtaink¢
The exact tree-level Lagrangian for effective scdield ¢ which describes open p-adic string
tachyon is

_1p’ "
L = 2 P21, (4.23
P g% p-1 { ¢p ¢+ p+l¢ } ( )

where p is any prime number,=-d> + [ is the D-dimensional d’Alambertian and we adopt

metric with signature(— +...+). Now, we want to show a model which incorporates p-adic
string Lagrangians in a restricted adelic way. ustake the following Lagrangian

L=YcL=Y""1p - [ Zo>n ¢1+Z +1¢“+1}. (4.24)

=1 =1 n? =1 =10

Recall that the Riemann zeta function is defined as

|_| , s=o+ir, o>1 (4.25)
1-p~°

nz1 n

Employing usual expansion for the logarithmic fumctand definition (4.25) we can rewrite (4.24)
in the form

E@@w o+ Infi- (o)} . (4.26)

=L

g
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where|g<1. ¢ (%) acts as pseudodifferential operator in the foltayivay:

O _ 1 ixk _k_2~ k2= K2 |2
o = g fe°e| 5 e, 0 gotozes, 2

where (k)= [€™*)g(x)dx is the Fourier transform gix).

Dynamics of this fieldg is encoded in the (pseudo)differential form of Riemann zeta function.

When the d’Alambertian is an argument of the Rieman zeta function we shall call such
string a “zeta string”. Consequently, the abowe is an open scalar zeta string. The equation of

motion for the zeta string is

— 1 |xk kz - — ¢
-— lplk)dk =——, @.2
Z( jw ( ) J.k2 —k2>2+¢ Z( 2 Jw( ) 1—(0 ( &

which has an evident solutign= .0

For the case of time dependent spatially homogensolutions, we have the following equation of
motion

z(‘f jqb(t) = o] Iko>me‘ik°‘z(ﬁjw(ko) K, = ‘”(2 @29

2

With regard the open and closed scalar zeta strihg equations of motion are

z@ j'*kz( j()dk 56 g, @3

nz1

n(n-1)

e 4

=1 2(n

=+

and one can easily see trivial solutiprr 6= . 0

The exact tree-level Lagrangian of effective scdield ¢, which describes open p-adic string
tachyon, is:

2

D
_M p
p 2

p

= [ ~op 2“‘p¢+ ¢} (4.32)

9, P~
where p is any prime number,=-d> + [ is the D-dimensional d’Alambertian and we adopt
metric with signature(- +...+), as above. Now, we want to introduce a model wiicorporates
all the above string Lagrangians (4.32) wipphreplaced bynON . Thence, we take the sum of all
Lagrangiansg, in the form

66



o R mr? n? 1 _2:12 1 +1
L=>CL=>C 2 -= "+ —— . (4.33
>c=3c, _1{ S igr Lgnl (433)

whose explicit realization depends on particulasich of coefficientsC,, massesn, and coupling

constantsg, .

Now, we consider the following case
C = n-1

n= _2+h’
rl+

(4.34)

whereh is a real number. The corresponding Lagrangiadsrea
1 & —%—h +00 n—h
-y n™ g+y —g"| (435
240; @ ;nﬂqf (4.35)

and it depends on parameter According to the Euler product formula one caitevr

_Zm —
Sn |‘| —. (4.36)
1 p 2m

n1

Recall that standard definition of the Riemann fetetion is

Z(s):iizﬂ L , S=o+ir, o>1, (4.37)

which has analytic continuation to the entire caempt plane, excluding the poird= , Wvhere it
has a simple pole with residue 1. Employing debnit(4.37) we can rewrite (4.35) in the form

mP| 1 0 &ont
L="(-1 +hlp+S D gl (438
= a e B e

O
Here
Z( 2m’

j acts as a pseudodifferential operator

gt

where g(k)= [ g{x)dx is the Fourier transform a#(x) .

}p(k)dk, (4.39)

We consider Lagrangian (4.38) with analytic conditions of the zeta function and the power series

Zn-l-l(dwl -

+00 n—h
+ACY — |, (4.40
jw ;mw } (4.40)
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where AC denotes analytic continuation.
Potential of the above zeta scalar field (4.4@qeal to—-L, at= 0, i.e.

(8 ) A
Vo= F<0)- ST wan

where h# 1since (1) =w. The term with -function vanishes ah=-2-4,-6 ,..The equation
of motion in differential and integral form is

U — \- -h zn
Z(2m2+hj¢)_ ACY ng", (4.42)

n=1

e el acEre s

respectively.

Now, we consider five values oh, which seem to be the most interesting, regarding
Lagrangian (4.400h= 0Oh=zx1 andh=x+2 For h=-2, the corresponding equation of motion
now read:

O _ 1 ixk k? - - (ﬂ((ﬂ 1)
2 olp= ~ X 2ok = . @4
Z(Zmz jw (P .[Roe Z( o1 j¢( )d (i-of @.49
This equation has two trivial solutiong{x)=0 and ¢(x)=-1. Solution ¢(x)=-1 can be also

shown taking @(k) = -6(k)(277)° and ¢(-2)=0 in (4.44).
For h=-1, the corresponding equation of motion is:

Z[iz‘ljf”:ﬁkoém{‘ l?nz-l]é(k)o"w Y . @49

1

1

The equation of motion (4.45) has a constant trs@tution only forg(x)=0.
For h = 0, the equation of motion is

where ¢(-1)=-

I PR S S L S e/ WO
Z(Zmzj(o_ (Zﬂ)D _[Roe Z( ZmZJ(”(k)dk 1_¢- (4-4@

It has two solutionsg = @nd ¢ = 3 The solutiong = 3follows from the Taylor expansion of the
Riemann zeta function operator

Z[ - j:z(0)+25(n)_(0)[ D} (4.47)

2m’? 2m

as well as fromp(k) = (277)°35(k).
For h =1, the equation of motion is:
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1 ixk _k_2 - :_1 -0V

whereZ(1)= gives V(@) =.
In conclusion, forh= 2we have the following equation of motion:

1 o K ~ __ein(-w)
(2P IRDe ¢ ( 2m2+2j¢)(k)dk— J.O—ZW dw. @4.49

Since holds equality

—Illn(l_w)dWZ::liff(Z)

0 W n

one has trivial solutiog = in (4.49).
2

: n
Now, we want to analyze the following casg; =

et In this case, from the Lagrangian (4.33),

_m°| 1 o O @
L—?{ 2¢{Z(2m2 1}+Z[2m2j}¢+1_¢] (4.50)

The corresponding potential is:

we obtain:

Vig=-" 8179 o o
() 924(1_@# (4.51)

We note that 7 and 31 are prime natural numbersém+ 1with n=1 and 5, with 1 and 5 that are
Fibonacci’'s numbers. Furthermore the number 24lsted to the Ramanujan function that has 24
“modes” that correspond to the physical vibratioha bosonic string. Thence, we obtain:

P 31-7 V142
V(g)= - 20" g i

- .
g 241-¢) N(muﬂi} \/[10+ NEH
og .||l ————|+.]|——
4 4
The equation of motion is:

)l o oo

Its weak field approximation is:

O O _
{Z(zmz _1J+Z(2m2j_2}”'0’ (4.53)

which implies condition on the mass spectrum

(4.51b)

69



M2 M2 ) _
Z(zmz —1] +Z(2m2j =2. (4.54)

From (4.54) it follows one solution favi? > &t M* = 279m” and many tachyon solutions when
M? < -38n7.
We note that the number 2.79 in connected withgttend @, i.e. the “aureo” numbers. Indeed, we

have that:
(\/5 +1j (\/ 1} 0278
2 2

With regard the extension by ordinary Lagrangiae, vave the Lagrangian, potential, equation of
2

motion and mass spectrum condition that, Wh"@rxn—z_l, are.
n

L=rg—z[§{% ([2 1j Z(Zrmnzj—l}¢+%lngﬂ2+£] (4.55)
__ﬁ{ +1—|n¢2—1_i] (4.56)
[Z( - —1)+Z(2aj—ri 1lp= qolnqa2+go+(¢ 522, (4.57)

2m°
Z( M —1}+(( MZJ:M—ZZ. (4.58)
m

2m 2m

In addition to many tachyon solutions, equatiorb®}.has two solutions with positive mass:

M? = 267m% and M ? = 466n7.
We note, also here, that the numbers 2.67 andaté6elated to the “aureo” numbers. Indeed, we

have that:
2
JBH1) | 1 (NB-1) ) e
2B 2

2

(\/§+1j2 +(\/§+1j+ 1 [*/g”j 04.64057,
2

2 2 202

5. Mamatical connections

In this section we want to show some interestingheraatical connections that we have obtained
between various equations regarding 8estions 1 2 and4. Before of this, we want to describe
about the Ramanujan’s sum for the mathematical ections concerning some equations of

Section 1
In mathematics, Ramanujan’s sum, named for Sriai\R&mManujan and usually denoteAm), is

defined to be
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c,(m)= > e = Zex;{ZnFJ, (5.1)

h%(a)

where h runs through the residuedatively primeto q, which is important in the representation of
numbers by the sums of squares(dfq) =1 (i.e., q and q 'arereatively prime), then

cqq.(m) =C, (m)cq.(m) , (5.2)
hence, the Ramanujan’s sum is multiplicative. Fgument 1, we have:
6(1)=ub). (53)

where 1 is the Mobius Function and, for general we have:

cb(m)=w{(b'bm)] ‘{‘”(E) j (5.4)

(b,m)

S. Ramanujan in his paper “Modular equations argtagmations toz” (1914), gives various
series concernind/zn and related to the Ramanujan’s sum. Now, we sbBome interesting
equations concerning this important argument. Wesha

i (2+f)(3+rs) _ /130
= \/130 g{ } (5.5) hence 12—IO (2+\/§)(3+\/1_3) . (5.6)
1 2
n:%log{\/[lwrilﬁ)+\/(10+47\/§j], (5.7) hence
24= 142 . (5.8)
Iog[\/(loul\/ij +\/[1o+ 7&]]
4 4

3 1 2 K\
1-—-2 + +...|=|— | Ak), (5.9) hence
mn e _1 g1 j (ﬂj k). 9

24{1—(%)2/&(@—”35}@( . +1 5 +j (5.10)

eznﬁ -1 e4nﬁ -1

We remember that the number 24 (hence also 12 2),2ddrrespond to the Ramanujan function
that has 24 “modes” that correspond to the physitaations of a bosonic string.
Now, from the eq. (1.7b), we obtain the followingtimematical connection:
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16;1GId X\/_(R’L_j =C =C,=3/2G =24k =

+ + \/_ 1 . 5 . .
|ongoélllﬁJ+ J[lojﬁﬂ o e ]
(5.11)

Also the egs. (1.11), (1.12), (1.15) and (1.74)-{).can be connected with egs. (5.8) and (5.10).

Hence, we obtain:
=
[\/ 10+11f \/ 10+7\/§H
4

1/ 24

n(r)=q

(5.12)

+...
Z"I -1 e“”f 1 j

201(T): |I7(sz|qq| (k- l/24)|1 q|2 =
| 10+11/2 10+7+2 77 wn ( o, 2 +j
Og 4 + 4 eZIT«/E _1 e ﬂf 1
(5.13)
i v ag <2 —
Zo,(r)=|a" E!(l—q ) |q i |,7( )‘| | .

7142 .

e s

=

4 e2ﬂ\/ﬁ _1 e4”\/ﬁ _1

(5.14)

G(T) = Z(|Q|_km+3/24‘l+ qllz‘2 |'7|,(7T(Z/_)T‘?|2 }‘y —
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=

4 eZIT«/E -1 e4n«/ﬁ -1

o N A~

(5.15)

clr)= 0L (o ) -

1/2|,7( )|
%( E(k° - 3/240)+ E(k +1- 3/240)+ E(k+ 1/2- 3/241/2) + Bk + 1/2 - 3/24-1/2))=
m/142 1

qEE R

4 4 eann -1 e4nfn -1

(5.16)

With regard the Ramanujan’s sum, we have the fallgwnathematical connections between the
egs. (1.30h) and (1.36) and (5.1), (5.8) and (5.10)

s(A;c) = 3 eie = u(c)=> cq(m): ZeZﬁhmlq - Z F{Zn‘ hmj:>
h“(a)

do(z/cz)” h(q) q

/142 {_(5j2 )-_2 1
= =1 Alk e .
+ + V4 m/n 1 4 2 N
logw(lo ilﬁjJrJ(lo 47&}] (eZ”“ SR j
(5.17)

0(z/cz)”

2rifd/c _ = eimia = § oy ﬂm N
000 6= u0)= on)= T - oef 2a'T)

m/142 EJZA(k)_ 3 }j 1

|og[ J(lmilfz} \/[10+47\/§ﬂ:{1_(ﬂ ﬂx/ﬁ( T, 2 )

eann -1 e4nfn -1
With regard the Selberg zeta function, we haveftfiewing mathematical connections between
egs. (1.27), (1.28), (1.29), (1.30c), (1.32), (1.33.34), (1.42), (1.85), (1.87) @ection 1and
various equations ofection 2 and Section 4 With regard theSection 2 we have some

mathematical connections with the egs. (2.68)9R.@.76), (2.87), (2.90b), (2.107b), (2.113b) and
(2.119b). Indeed, we have obtained that:

(5.18)
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N

K_—Kg

[(1 ZXRcos—jlnIz :I II(

expl — strlU*(R)] <
p{ Z{ZR}:kzi‘vsm(Zkﬂlv)zz“
+1 -
-1+

In conclusion, we have various mathematical conoestwith some equations &ection 4 It is
possible to obtain connections between eqgs. (4428)%), (4.43)-(4.46), (4.48)-(4.49), and egs.
(5.21)-(5.24). Indeed, as example most importamtshave that:

r(s-1/2)¢(2s-1)
= ey
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