Rehabilitation in peripheral non femoral fractures: a review

Giuseppe Mangone1
Marco Postiglione2
Pietro Pasquetti1

1 Recovery and Rehabilitation Agency, University Hospital of Careggi, Florence, Italy
2 Postgraduate Specialization School in Physical Medicine and Rehabilitation, Faculty of Medicine, University of Florence, Italy

Address for correspondence:
G. Mangone, MD
Recovery and Rehabilitation Agency,
University Hospital of Careggi, largo Palagi 1
50134 Florence, Italy
E-mail: mangoneg@aou-careggi.toscana.it
Tel: +39 055 7948459
Fax: +39 055 798414

Summary

This paper is a short review of the available information on peripheral non femoral fractures (PNFF) which are strictly related to osteoporosis. Particular attention is focused on wrist fractures in view of their frequent occurrence as indicated by world wide statistics. Of special interest is the definition of risk groups (old age, risk areas (developed countries) and risk factors. Reference is made to 2008 WHO guidelines for fracture risk assessment. PNFF are a serious concern to health authorities because their high incidence in constant growth causes a serious burden on the health budget. The pathway of patient care is described, from initial evaluation (including bone fragility, multi-morbidity and risk factors) to specific diagnosis and treatment. The multiplicity of etiological factors involved requires multidisciplinary approach. This aspect justifies the importance given to rehabilitation, which is the longest part of patient care and is strictly connected to preventive measures. There is ample reference to falls, to exercises, to appropriate sports, to complications and to active and passive mobilization. The paper suggests research in areas related to PNFF, to health economics, epidemiology, prevention, health education, training and multidisciplinary coordination.

KEY WORDS: osteoporosis, peripheral non femoral fractures, rehabilitation pathway.

Introduction

Low bone density and previous fractures are risk factors for almost all types of fractures but each type of fracture has its own unique risk factor. Fractures of the vertebrae (spine), proximal femur (hip) and distal forearm (wrist) have long been regarded as the main osteoporosis fractures (1). Osteoporosis is a systemic condition and adults who sustained a fracture are 50 to 100% more likely to have another one of a different type. In the year 2000 in the world there were an estimated 9 million osteoporosis fractures of which 1.6 million were at the hip, 1.7 million at the forearm and 1.4 million were vertebral fractures (2). Osteoporosis fractures are a significant cause of morbidity and mortality worldwide but particularly in developed countries. In Europe in 2000 were recorded almost 3.1 million new osteoporosis fractures of which 24% were at the forearm. In Italy there were 70 million femur, 20.000 vertebral and 19.000 wrist fractures. Colles’ fracture is the most common wrist fracture (almost 80% of the forearm fractures) and it is frequently the consequence of an indirect trauma due to fall on an outstretched, extended wrist. A previous wrist fracture increases the risk of a future wrist fracture and doubles the risk of other osteoporosis fractures. The relative risk of a future fracture is increased with age and around 80 years becomes slightly higher than that of the general population. Fortunately osteoporosis fractures are preventable. Epidemiological research could provide better understanding and could help focus efforts on prediction of fractures in people at greatest risk. Effective and cost effective treatments are available but they are not implemented. The majority of women does not receive any treatment during the year following a fracture. Failure to implement or tardy implementation of preventive measures as well as poor treatment compliance lead to deterioration of health economic outcome. Health economists estimate that osteoporosis-related costs will increase in Europe from 40 million Euro in 2000 to almost 80 million in 2050 (3). A 3 year follow-up study of 158.940 women showed that wrist fracture may have a predictive 3 year risk of any future osteoporosis fracture for older and younger postmenopausal women independent of baseline bone mineral density (BMD) and common osteoporosis risk factors. Therefore more consideration should be given to evaluating and managing osteoporosis in younger and older women with a history of wrist fracture independent of their BMD (4).

The rehabilitation pathway is a procedure that includes: management of patients presenting bone fragility, risk evaluation, diagnosis, treatment. The latter may be: basic, pharmacological, rehabilitation.

For each fracture consideration is first given to the trauma scheme and to risk evaluation. The trauma may be inadequate, with or without risk factors. Anamnesis and clinical examination lead to the diagnosis of primary osteoporosis. The following examinations are then performed: laboratory, X-ray of the spine, Thoraco-lombar MOC.

If the trauma is adequate (with or without risk factors) there is no further evaluation. Then anamnesis and clinical examination will lead to the diagnosis of secondary osteoporosis and to further evaluation. The pathway ends with the formulation of the pharmacological treatment and of a rehabilitation protocol. The treatment may be conservative or surgical.

For the risk evaluation reference is made to recent WHO guidelines (2008) called FRAX (Fracture Risk Assessment Tool). The guidelines relate to the absolute risk of fracture within 10 years and take into account not only bone densitometry but also 12 clinical risk factors specific for osteoporosis and related fractures. The risk factors used are the following: age, sex, weight, height, previous fracture, parent fractured hip, current smoking, glucocorticoids, rheumatoid arthritis, secondary osteoporosis, alcohol (3 or more units per day), BMD (5).

BMD measurement is an important component of the evaluation.
of risk fracture. However this approach is rather limited because
it considers only the "actual risk" of fracture rather than the "life
time risk" or the risk projected in a realistic time period (example
10 years) and does not take into account the influence of other
very critical risk factors.

During anamnesis/clinical examination the following information
is collected: weight/height, menarche/ menopause, nutrition, phar-
maceutical therapy (past and present), level of activity, fractures
in the anamnesis, falls in the anamnesis, risk factors for secondary
osteoporosis.

The following are considered high risks for secondary osteoporosis:
liver and kidney severe chronic pathology, steroid drugs (>7.5 mg
for more than 6 months), malabsorption (Chro n disease), rheuma-
toid arthritis, systemic inflammatory syndromes, hyperthyroidism,
primary hyperparathyroidism, antiepileptic drugs.

The rehabilitation protocol is global and specific. The objectives
of the general therapeutic exercise are: prevention of fractures in
all skeletal sites, increase of bone mass in all districts, maintenance
or improvement of bone quality, improvement of balance with re-
duction of falls, maintenance of effectiveness during the years of
treatment.

For the mechanical modulation of bone metabolism, osteocytes,
submitted to mechanical weight through various factors, are ca-
pable to exercise osteogenic activity on other bone cells (7).

Prevention of falls in older persons has been given particular
attention by an international panel of geriatricians and orthopedic
surgeons in 2001. Risk factors for falls identified in 16 studies that
examined risk factors are: muscle weakness, history of falls, gait
deficit, balance deficit, use of assistive device, visual deficit, arthri-
tis, impaired ADL, depression, cognitive impairment and age above
80 years. Among the risk factors: history of falls, muscle weak-
ness and gait deficit achieve the highest score.

Falls are among the most common and serious problems facing
the elderly persons. Multifactorial interventions can be considered
for the prevention of falls among the community dwelling older per-
sons, in long term care and assisted living settings. There is good
evidence of benefits from exercise in falls prevention. Exercise needs
to be sustained for sustained benefit. There is preliminary evidence
to support the use of Tai Chi Chuan (a Chinese martial art con-
sidered also a therapeutic exercise). Consideration for preven-
tion of falls is also given to: environmental modifications, medications,
assistive devices, behavioral and educational programs. Other po-
tential interventions may regard: bone strengthening medications,
cardiovascular, visual, footwear interventions (6).

Among sports, tennis, aerobics, gymnastics and power training
are advisable. However in older persons it is more appropriate to
walk, climb stairs, dance, gymnastics for the elderly and calisthenic
exercises (7).

Objectives of the specific rehabilitation treatment are: regaining
of global function, reacquisition of characteristics of agility and dext-
ernity of hand, wrist and elbow, and of the capacity both of artic-
ular and mioarticular parts, prevention of complications.

Complications of Colles’ fracture may be: rigidity, algodistrophy,
functional limitation. Treatment planning considers the following
aspects: type of fracture, stability, presence of possible associ-
at ed lesions, type of patient. Functional resolution is faster in young
patients than in older ones. In the rehabilitation pathway consid-
eration is given to the type of surgical intervention.

Immobilization phase: the conservative treatment lasts 5 weeks.
Osteosynthesis with plate lasts 2 weeks. Externalfixing: neu-
ralization for the first 4 weeks, dinamization for the successive
3 weeks. The rehabilitation treatment starts during the period of
immobilization whatever the treatment (invasive or otherwise). Care
should be taken of oedema of the hand and of the articulations
not involved in the process (8). The latter must be mobilized ac-
tively and passively in order to maintain the integrity of the joint
capsule and to prevent tendon thickening and adhesions.

The rehabilitation protocol states that after removal of the immo-
bilization it is necessary to proceed to active, passive and coun-
ter resistance exercises (with or without tutors) under the guid-
ance of the rehabilitation therapist. Exercises must be progres-
sive, but must be initiated early already on first or second day.
Lympho-drenage is needed in case of oedema which is frequent
and related to invasive treatment. Its presence reduces the mo-
bility of the whole upper limb with negative effect in all directions.
Global mobilization of the wrist includes: flexion and extension,
abduction (ulnarization) and adduction (radialization), longitudi-
nal rotation, prono-supination of the forearm, mobilization against
resistance for regaining of strength. Sessions should be daily for
30 minutes for 2 weeks. Exercises of auto-posture aim at producing
tension of periarticular and articular elements. They involve flex-
ion with ulnar inclination (subject standing with forearm in supina-
tion, hand dorso-faced lying on table top then forearm is vertically
pressing on the table) and extension associated to radial inclination
(subject standing, palm of hand on the table then forearm in ver-
tical position, arm and forearm in pronation).

Exercises at home are an essential part of the rehabilitation treat-
ment. The program of active exercises to perform at home con-
ists of grasping with rubber aid (hand group) of variable and in-
creasing density to perform at least 4 to 6 times a day for 2 to 3
weeks. Specific exercises are mirror therapy, continue passive mo-
bilization, exercises with materials with different elastic coefficient.
Thus in dealing with the rehabilitation treatment of Colles fracture
it is fundamental not to limit ourselves to the specific post-fracture
protocol but also to establish a rehabilitation pathway which fore-
sees the global care of the patient with fragility fractures. An im-
portant aspect of such pathway is represented by the education
of the patient explaining to him/her the problem without drama-
tizing but suggesting on the most appropriate solutions. In this con-
text the recommendations of the National Osteoporosis Foundation
(NO F) may be very useful. NOF Recommendations concerning
health of the bone in 5 steps are: take Ca and vitamin D, avoid
smoking and alcohol, talk to your doctor on bone health, test bone
density and take medication if necessary, control your weight and
muscle development.

The present brief overview on peripheral non femoral fractures
(PNFF) emphasizes the importance of this pathology from the epi-
demiological and the economic view points. PNFF are strictly con-
ected to osteoporosis, prevail in elderly people mainly in devel-
oped countries which justifies the expectation of their increase in
the future. A multiplicity of factors are involved in their etiology,
which explains the involvement of different types of specialized
professions, whose coordination is difficult to achieve, in spite of
the availability of effective preventive, therapeutic and rehabilita-
tion measures. While therapy (invasive or otherwise) is limited in time,
prevention and particularly rehabilitation require attention for longer
periods and greater involvement in the patient care. Several prob-
lems arise from the above situation, particularly as regards co-
ordination, definition of responsibilities, availability of peripheral
services and, most of all, from costs. It seems desirable, espe-
cially for health planners to give greater attention to the economic
aspects, stimulating and supporting public health research and
health economists involvement.

References

1. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic
2. Johnell O, Kanis JA.; An estimate of the worldwide prevalence and
disability associated with osteoporotic fractures. In: Osteoporos Int.
concepts for measuring the costs of illness of osteoporosis: an in-
ternational comparison. Wien Med Wochenschr. 2009 May;159(9-
10):253-61.
4. Barrett-Connor E, Sajjan SG, et al. Wrist fracture as a predictor of fu-


