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Subcutaneous adipocytes may become osteoblasts
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Summary

Commonly, mesenchymal stem cells derived from bone
marrow (BMSCs) are mainly utilized in regenerative medici-
ne field. BMSCs are able to differentiate into several lineages,
showing immunosuppressive properties, and they are gene-
tically stable in long-term cultures. In the last years, another
mesenchymal stem cells population, obtained from adipose
tissue, defined adipose-derived stem/stromal cells (ASCs), it
is under assessment of scientific research, as alternative to
BMSCs. In fact, ASCs show similar capacity to BMSCs, but un-
like BMSCs can be harvested more easily with an higher yield
and with less invasive manipulation. In this review the abili-
ties of ASCs to differentiate in osteoblasts cells are shown.

KEY  WORDS: adipose-derived stem/stromal cells; adipose tissue; osteobla-
st; osteogenic differentiation.

Introduction

The adipose tissue derives from the mesoderm layer and it is one
of the most abundant human tissue types. Initially, it was simply
considerated a metabolic reservoir of high-energy substrates (1).
Subsequent studies have shown that this tissue can secrete many
hormones, growth factors and cytokines (2, 3), and it also contains
a large amount of mesenchymal stem cells. These cells have been
defined adipose-derived stem/stromal cells (ASCs) (4-6). These
cells can be easily harvested with non invasive technique and in
great amounts from fat tissue, i.e. with cosmetic liposuction, ap-
proximately ~5000 cell/ml fat can be obtained (7). Moreover, ASCs
are characterized by their ability of self-renews and generating mul-

tilinage cells (8, 4, 5, 9), included osteoblasts cells. In fact, if see-
ded in osteogenic medium, they express typical markers of osteo-
blast phenotype including alkaline phosphatase (ALP), type I col-
lagen, Osteopontin (OPN), Osteonectin (ON), Runt-related tran-
scription factor 2 (RUNX2), mothers against decapentaplegic ho-
molog1 (SMAD1), Bone Morphogenetic Proteins (BMP) 2, BMP-
4, BMP receptors I and II (5, 2, 10-14) and calcium deposits (15).
In addition, some in vitro studies show that ASCs seeded on ti-
tanium allows in presence of osteogenic medium, are able to adhe-
re, to proliferate and to acquire an osteoblastic-like phenotype (15,
16). These results suggest that these cells, together with their im-
munosuppressive capacities (17), could be a real and important
tool for bone tissue repair, and bone tissue engineering. Ne-
vertheless, again many studies have to be conducted for  assess
safety of ASCs. The aim of this review is to examine the osteo-
genic differentiative capacity of ASCs.

Mesenchymal stem cells

Stem cells are divided in two groups: embryonic stem cells (ESCs)
and adult stem cells (18). Both are capable to duplicate themselves
indefinitely while maintaining toti/multipotency and to differentia-
te into cells of several lineages (19, 20, 8), but contrary to adult
stem cells, ESCs utilization is limited for ethical issues and for their
higher tumorigenicity (21, 22). The first stem cells described were
the hematopoietic cells (HSCs) (23). These cells are present in
the bone marrow and can differentiate into all blood cell lineages
(24). Subsequent studies have shown the existence of another type
of stem cells, including in bone marrow, with spindle-shaped
morphology (25), able to adhere on plastic surface, and with mul-
tilineage mesodermal potentials (26, 27). These cells were defi-
ned mesenchymal stem cells (MSCs) (28). Subsequent resear-
ches have demonstrated that MSCs can be obtained from many
other tissues (29-32). 

Mesenchymal stem cells from adipose tissue

In early 2000, a research group published a paper in which was
reported the existence of stem cell populations within adipose tis-
sue (4, 5), defined by the term preadipocytes or ASCs (33, 34).
These cells, that can be easily obtained, and in great amounts from
fat tissue (7, 35), have a spindle form, the ability to adhere to pla-
stic surface and the capacity to differentiate into many multilineage
cell types (4, 5, 8), both of mesodermal, but also of endodermal
and ectodermal origin (36-38). In vitro, they express typical me-
senchymal stem linage markers as: CD13, CD29, CD44, CD73,
CD90, CD105, CD133 and CD166, while they not express he-
matopoietic cell-surface markers as: CD14, CD11b, CD34,
CD45, CD19, CD79 (5). Therefore, ASCs matches the criteria for
the identification of mesenchymal stem cells, proposed by the Me-
senchymal and Tissue Stem Cell Committee of the International
Society for Cellular Therapy (39): they have to be plastic-adhe-
rent when seeded in specific medium; they must have the ability
to osteogenic, adipogenic, and chondrogenic differentiation; they
must express typical mesenchymal markers, but they must lack
the expression of hematopoietic markers.
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ASCs can be isolated from adipose tissue coming from plastic bio-
psies or surgeries. In our lab, after the obtainment of informed con-
sent in accordance with the Institutional Review Board protocol,
the adipose tissue biopsies were minced into small pieces (0.2–
0.5mm) and the fragments were washed with McCOY’S 5A me-
dium, centrifuged at 200g for 10 min, resuspended in Ham’s F12
Coon’s modification medium supplemented with 20% FBS and 3
mg/ml collagenase type I, digested for 3 h at 37°C, mechanical-
ly dispersed and passed through a sterile 230-mm stainless steel
tissue sieve. The undigested tissue trapped in the sieve was di-
scarded, while the infranatant containing the preadipocyte frac-
tion was collected and the cells were sedimented by centrifuga-
tion at 300g for 5 min. The pellet was incubated with an erythrocytes
lysis buffer for 2 min at room temperature and the remaining cel-
ls were cultured in 100mm culture plates in growth medium: Ham’s
F12 Coon’s modification medium supplemented with 10% FBS,
100 IU/ml penicillin, 100 µg/ml streptomycin and 1 ng/ml basic fi-
broblast growth factor and incubated at 37°C in humid atmosphere
with 5% CO2. The medium was refreshed twice a week (15).

Bone tissue and osteoblast cells

Bone tissue is constituted by cells embedded in an mineralized
extracellular matrix made of collagen and not-collagen proteins.
These cells are represented by osteoclasts, osteoblasts and
osteocytes. The osteoblast cells have the role to secerne the or-
ganic components of the bone extracellular matrix and promote
its mineralization. These cells derive from stromal progenitors pre-
sent in bone marrow (BMSCs) and their differentiation process is
regulated by specific hormones and growth factors. Two major si-
gnaling pathways that regulate the differentiation of these cells are
represented by WNT and TGF-β signaling.
WNT signaling: this pathway is constituted by WNT proteins that
build a complex with Frizzled transmembrane receptors and low
density lipoprotein receptor-related protein 5/6 (LRP 5/6), inducing
a cascade of signals that bring to the activation of RUNX2, a key
transcription factor involved in the osteogenic differentiation (35,
37, 40).
TGF-β signaling: TGF-β superfamily consists of several molecu-
les, the ones important for osteogenic differentiation are the BMP
(41). The BMP work in two different  manners, one SMAD-de-
pendent and one SMAD-independent. In the first case, specific
BMP bind to specific SMAD proteins  activating the expression of
genes that have a key role in osteogenic differentiation as
RUNX2 and OSTERIX (OSX) (42, 43). In the second case, other
BMP involving MAP-kinases signaling, regulate the phosphata-
sis alkaline and osteocalcin (OCN) expression in osteoblastic cel-
ls (44). 
Among the most important transcription factors that participate to
the osteogenic differentiation there are RUNX2 and OSX. RUNX2
is a member of the runt-relate factor family and it is considered
the key switch of the osteoblastic differentiation (34); in fact, it re-
gulates the time-dependent activation and/or the inhibition of es-
sential genes involved in this process; his lack indeed causes the
formation of a cartilage skeleton in the RUNX2 knock out mices
(38). RUNX2 is a necessary but not enough factor for the osteo-
blastic differentiation; in fact, in knock out mices for OSX, but not
for RUNX2, the cells are not able to differentiate in osteoblast and
to deposit bone matrix (35). 

ASCs can differentiate in osteoblasts cells

The title of this section does not end with a question mark, but if
we want to assign a punctuation, we could put an exclamation point.
In fact, as described above, many studies report results that clearly
show how ASCs can differentiate in osteoblasts cells (2, 5, 8, 45).

In fact, these cells in vitro can differentiate into the osteoblast li-
neage, utilizing specifics culture mediums supplemented with ap-
propriate factors that stimulate osteogenesis. We use in our la-
boratory, Ham’s F12 Coon’s modification medium supplemented
with 10% FBS, 100 IU/ml penicillin, 100 mg/ml streptomycin, 10
nM dexamethasone, 0.2mM 2-phosphate ascorbate, and 10mM
β-glycerolphosphate (15). Other factors that can be utilized to in-
duce ASCs osteogenic differentiation are 1,25 vitamin D3 and BMP-
2 (8, 12, 46-48). In the presence of these factors, ASCs in time-
dependent manner express genes and proteins associated with
the osteoblast phenotype, including ALP, Type I Collagen, OPN,
ON, RUNX2, BMP-2, BMP-4 and BMP receptors I and II (2, 5, 10-
14). Also, during the time between 2 and 4 weeks of culture, the
extracellular matrix mineralization begins and proceeds through
the activity of ALP, which hydrolyze phosphate esters making avai-
lable inorganic phosphate to form hydroxyapatite (4, 5). The ex-
pression of these phenotypic traits are regulated by signaling
pathways practically identical to those involved in the regulation
of BMSCs differentiation in mature osteoblasts. In fact, many stu-
dies show that TGF-β (49, 50) and WNT (51) signaling are hea-
vily involved in this differentiative process. 

Conclusions

Going back to the title of the last paragraph, if a question should
had been formulated: can the preadipocytes differentiate in
osteoblasts? The answer would be obvious. In fact, as described
above, ASCs in presence of specific osteoinductive medium ex-
press time-dependent typical markers of osteoblastic lineage and
share with the progenitors of these cells, BMSCs, signaling
pathways that regulate their osteodifferentiation. Moreover, in our
laboratory, we have studied the growing and the osteogenic dif-
ferentiation ability of ASCs on titanium allows (Ti6Al4V), usually
used in prothesic replacements (15). Results show an excellent
cell adhesion on Ti6Al4V allow surface, and when seeded in pre-
sence of osteogenic medium, ASCs express typical osteoblastic
phenotype markers. All these features, easy cells collection with
minimal invasive procedures and large yields, differentiative and
transdifferentiative potentiality, and immunosuppressive capacity,
make ASCs a real alternative to BMSCs for tissue engineering ap-
plications.
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