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Summary

Tropism and efficiency of skeletal muscle depend on the com-
plex balance between anabolic and catabolic factors. This ba-
lance gradually deteriorates with aging, leading to an age-re-
lated decline in muscle quantity and quality, called sarcopenia:
this condition plays a central role in physical and functional im-
pairment in late life. The knowledge of the mechanisms that in-
duce sarcopenia and the ability to prevent or counteract
them, therefore, can greatly contribute to the prevention of di-
sability and probably also mortality in the elderly. It is well known
that skeletal muscle is the target of numerous hormones, but
only in recent years studies have shown a role of skeletal mu-
scle as a secretory organ of cytokines and other peptides, de-
nominated myokines (IL6, IL8, IL15, Brain-derived neuro-
trophic factor, and leukaemia inhibitory factor), which have au-
tocrine, paracrine, or endocrine actions and are deeply invol-
ved in inflammatory processes. Physical inactivity promotes
an unbalance between these substances towards a pro-in-
flammatory status, thus favoring the vicious circle of sarcopenia,
accumulation of fat – especially visceral – and development of
cardiovascular diseases, type 2 diabetes mellitus, cancer, de-
mentia and depression, according to what has been called “the
diseasome of physical inactivity”.

KEY WORDS: skeletal muscle; sarcopenia; aging; myokine.

Skeletal muscle and aging

The dynamic balance between anabolic and catabolic status of

human skeletal muscle is related to many factors, such as me-

chanical and nervous stimuli, age, hormonal changes, and nu-

trient intake, which tightly interact to determine muscle vitality

and trophism. However, a decrease in skeletal muscle mass,

by 3-8 % per decade after the age of 30 years (1), is a univer-

sal consequence of aging. Since the mid-’90s, the age-related

“lack of flesh” has been termed sarcopenia (2), which indicates

a deterioration in muscle quantity and quality leading to a grad-

ual slowing of movement, a decline in strength and power, and

an increased risk of falls and fall-related injuries. These fea-

tures are considered distinctive components of sarcopenia and

they have been incorporated also in the recent definition of the

European Working Group on Sarcopenia in Older People

(EWGSOP) (3).

Based upon epidemiological studies, where sarcopenia was

defined as appendicular muscle mass two standard deviations

below gender-specific reference data for young adults, the

prevalence of this condition is estimated to be approximately

30% in individuals over 60 years of age and as high as 50% in

those over 80 years (1). Sarcopenia is considered a risk factor

for physical disability, independent of age, ethnicity, obesity,

socioeconomic status, morbidity, and health behaviors (1).

Thus, efforts are made to improve our understanding of the

mechanisms that induce sarcopenia, finalized to its prevention

or postponement, in the assumption that this would reduce

morbidity, disability and mortality in the elderly population. 

The myokines

Among other mechanisms involved in sarcopenia, the effects

of hormones on skeletal muscle have received a great deal of

attention. Thus, it has been known for decades that excessive

glucocorticoids and thyroid hormones, as well as diminished

testosterone, estrogen, and growth hormone, lead to muscle

atrophy. Subsequent investigations pointed out the anabolic

actions of IGF-1 and ghrelin (4,5). In addition, evidence has

been provided, in recent years, that skeletal muscles produce

a variety of molecules, denominated “myokines”, which act in

an autocrine, paracrine, or endocrine hormone-like fashion (6).

The most important of these substances are interleukin (IL)-6,

IL-8, IL-15, Brain-Derived Neurotrophic Factor (BDNF), and

Leukemia Inhibitory Factor (LIF). 

Physical activity has a favorable role in the delicate balance

between myokines, which is definitively pushed towards a pro-

inflammatory status by a sedentary lifestyle: inflammation, in

turn, enhances sarcopenia and accumulation of fat within the

context of skeletal muscle, in a vicious circle that decreases

muscle strength and further favors physical inactivity. More-

over, visceral fat accumulation is a risk factor for cardiovascu-

lar disease, type 2 diabetes mellitus, cancer, dementia, and

depression, according to what has been called “the diseasome

of physical inactivity” (Figure 1) (7): fat tissue, indeed, sustains

chronic inflammation, which is involved in the pathogenesis of

insulin resistance, atherosclerosis, neurodegeneration, and tu-

mor growth. Evidence suggests that the protective effect of ex-

ercise towards cardiovascular disease and other chronic de-

generative disorders may, to some extent, be ascribed to the

anti-inflammatory effect of regular exercise. The finding that

muscles produce and release myokines provides a plausible

biological explanation to the observation that exercise influ-

ences metabolism and exerts anti-inflammatory effects (8-10).

According to Pedersen, contracting skeletal muscles release

myokines, which work in a hormone-like fashion, exerting spe-
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cific endocrine effects on visceral fat. Other myokines act local-

ly, i.e. within the muscle, via paracrine mechanisms, working

on signaling pathways involved in fat oxidation.

IL-6 was the first cytokine to be proposed as a myokine by

Pedersen et al. in 2003 (11): in the year 2000 it was observed

that IL-6 plasma levels increase with exercise (12), but only

subsequent research highlighted that muscle-derived IL-6 is an

important player in metabolism (13). It was later shown that the

production of IL-6 during exercise is particularly high when

muscle levels of glycogen are low, as a possible response of

the muscle itself to a specific metabolic demand (14). IL-6 is

produced by both type I and II fibres in response to muscle

contraction (14-17) and it subsequently exerts its effects locally

and remotely. Within skeletal muscle, IL-6 activates AMPK

and/or PI3-kinase to increase glucose uptake and fat oxidation,

but it is also released into the bloodstream to reach the liver,

where it increases glucose production during exercise, and the

adipose tissue, where it enhances lipolysis (Figure 2) (18).

Taken together, local and distant actions of muscle-derived IL-

6  synergistically increase the availability of energetic sub-

strates to contracting muscles. 

Further evidence supports the role of IL-6 on glucose metabo-

lism in the liver. Indeed, it has been shown that this myokine

inhibits glycogen synthase and accelerates glycogen phospho-

rylase activity (19). Moreover, it may increase basal and in-

sulin-stimulated glucose uptake  via increased GLUT4 translo-

cation from the intracellular compartment to the plasma mem-

brane of muscle cells  (20), suggesting an important role of this

myokine and of skeletal muscle in maintaining glucose home-

ostasis. These data have been confirmed by other studies,

which showed delayed onset of diabetes mellitus and in-

creased survival in transgenic non-obese diabetic (NOD) mice

that overexpress IL-6, compared to NOD mice with normal IL-6

expression (21), whereas IL-6-deficient mice have higher basal

blood glucose and markedly impaired glucose disposal during

intravenous glucose tolerance test (22). It, therefore, appears

the IL-6 would be produced by skeletal muscle in order to

maintain glucose homeostasis during periods of altered meta-

bolic demand or under insulin stimulus (20).

IL-6 has been always considered a pro-inflammatory cytokine:

this is, indeed, its role when it is produced by monocyte-

macrophages in response to infectious stimuli. However, con-

traction-induced production of IL-6 by skeletal muscles occurs

in the absence of other inflammatory mediators, mainly IL-10

and TNF-a indicating that the cytokine cascade induced by

physical activity is not resembling inflammation (13); quite the

opposite, exercise increases circulating levels of anti-inflamma-
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Figure 1 - Biological role of contrac-

tion-induced IL-6. Modified from Feb-

braio MA, et al. (18). 

Figure 2 - The pathogenic hypothesis of “diseasoma of physical inactivi-

ty”. Modified from Pedersen BK, et al. (7).
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tory cytokines, such as IL-1ra, IL-10, and soluble TNF-R, a nat-
urally occurring inhibitor of TNF-a (13). During exercise, IL-6 it-
self might display anti-inflammatory effects, as data suggest
that this myokine is able to suppress IL-1 and TNF-a synthesis
(23) and stimulate production of IL-1ra and IL-10 (24). In con-
clusion, it can be hypothesized that physical activity, by stimu-
lating IL-6 production, counteracts systemic inflammation and
modulates glucose and lipid metabolism through the mecha-
nisms described above: this would explain the well-known fa-
vorable effects of physical activity towards the diseases associ-
ated with a sedentary lifestyle (7) (Figure 2). 
IL-15 was identified as an anabolic factor, because it can stim-
ulate muscle growth. In addition, it is seemingly implicated in
lipid metabolism (25), as an inverse correlation has been
shown between plasma levels of IL-15 and trunk fat mass, and
overexpression of skeletal muscle IL-15 determines a reduc-
tion of visceral fat in murine models (26). 
Another myokine whose production is increased after exercise
is the BDNF (27), a protein that may play a crucial role in regu-
lating survival, growth, and maintenance of neurons, therefore
interfering with information processing, learning and memory.
Individuals with Alzheimer’s disease have low levels of plasma
BDNF (28), whereas post-mortem studies have found de-
creased BDNF expression in hippocampal specimens from
their brains (29). Decreased blood levels of BDNF have been
shown also in subjects suffering from major depression (30),
acute coronary syndromes (31), and type 2 diabetes mellitus
(32). Although BDNF mRNA and protein increase in human
skeletal muscle with physical exercise (27), this myokine, un-
like others, is not released into the circulation. Its biological ef-
fect is to enhance fat oxidation in an AMPK-dependent fashion,
within skeletal muscles, with a consequent reduction of adi-
pose tissue bulk (27). 
Taken together, the available evidence indicates that muscle
activity would improve lipid metabolism and reduce visceral fat,
thus ultimately reducing the risk of cardiovascular diseases, di-
abetes mellitus, dementia (33), and some types of cancer
(34,35), at least in part by stimulating the production of BDNF
and IL-15.
IL-8 is a well-known chemokine for neutrophils, but it also acts
as an angiogenic factor. Plasma levels of IL-8 increase in re-
sponse to exhaustive exercise which involves eccentric muscle
contractions (36) but not during regular physical activity (37),
suggesting that it is a myokine with paracrine activity. What is
its role within the muscle is to be clarified further.
Finally, LIF is a pleiotropic cytokine that has been suggested to
have positive effects on myogenesis (38) by increasing survival

of myoblasts (39).

Conclusions

According to some authors (40,41), a major component of the

aging phenotype may be explained by an imbalance between

inflammatory and anti-inflammatory networks, resulting in the

low-grade, chronic pro-inflammatory status that Franceschi and

Bonafè called  inflammaging (42). Systemic low-grade inflam-

mation, defined as two- to four-fold elevation in circulating lev-

els of pro-inflammatory and anti-inflammatory cytokines, ap-

pears to contribute to the development of atherosclerosis, in-

sulin resistance, tumor growth, and neurodegeneration (43).

High levels of IL-6 are associated with lower muscle strength

and mass (44) and with a two- to three-fold increased risk of

muscle strength decline in older persons (45). Thus, it has

been hypothesized that inflammation plays a causal role in the

functional decline associated with aging, likely through sar-

copenia (45). Low-grade inflammation has been associated al-

so with frailty, defined as a multi-system impairment with in-

creased vulnerability to stress in old age, distinct from, al-
though inter-related with, comorbidity and disability (46,47).
Within this perspective, data collected by Baggio et al., show-
ing high levels of IL-6 in healthy centenarians, represent an ap-
parent paradox (48), which might be explained by a shift in the
biological significance of this cytokine in centenarians; indeed,
it can be speculated that in the very old plasma IL-6 is mainly
produced by skeletal muscle as a myokine, thus with a com-
pletely different biological impact. 
Over the past decades, several studies have shown a protec-
tive effect of regular physical activity on morbidity and all-cause
mortality (49), and myokines released by contracting skeletal
muscles, by creating a systemic anti-inflammatory environment
and exerting endocrine effects on visceral fat and glucose and
lipid metabolism, may be, at least partially, responsible for the
beneficial effects of exercise. In this light, healthy aging can be
viewed as the ability not only to power the age-associated pro-
inflammatory state, but also to stimulate and potentiate anti-in-
flammatory mechanisms. Many studies are still needed, but the
evidence collected so far clearly indicates that skeletal muscle,
under the simple, physiological stimulus of exercise, may be-
have as an endocrine organ, producing a variety of agents with
favorable metabolic actions. This shed some light to the mech-
anisms through which physical exercise protects against the
development of disease and promotes longevity, thus opening
fascinating venues to research on prevention and treatment.
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