Introduction

Despite the emergence of breast conservation surgery and the sentinel node biopsy, axillary dissection (AD) remains the most commonly performed operative procedure on lymphatic system for breast cancer today (1). Conventional AD using electrocautery or ultrasound scissors is associated with a moderate degree of operative morbidity in 35-50% of patients (2, 3). Much of this morbidity has been attributed to the large post lymphadenectomy raw area, cut lymphatics and use of electrocautery (4, 5). Ultrasonic dissection using the ultrasound scissors versus electrocautery in axillary dissection: our experience

A. SANGUINETTI1, G. DOCIMO2, M. RAGUSA1, F. CALZOLARI1, F. D’AJELLO1, R. RUGGIERO2, D. PARMEGGIANI2, A. PEZZOLLA3, E. PROCACCINI2, N. AVENIA1

SUMMARY: Ultrasound scissors versus electrocautery in axillary dissection: our experience.


The ultrasound scissors are recently emerging as an alternative surgical tool for dissection and haemostasis and have been extensively used in the field of minimally invasive surgery. We studied the utility and advantages of this instrument compared with electrocautery to perform axillary dissection. The operative and morbidity details of thirty-five breast cancer patients who underwent axillary dissection using the ultrasound scissors were compared with 35 matched controls operated with electrocautery by the same surgical team. There was no significant difference in the operating time between the ultrasound scissors and electrocautery group (36 and 30 mins, p>0.05). The blood loss (60 ± 35 ml and 294 ± 155 ml, p<0.001) and drainage volume (200 ± 130 ml and 450 ± 230 ml, p<0.001) were significantly lower in the ultrasound scissors group. There was a significant reduction of draining days in ultrasound scissors group (mean one and four days, respectively p<0.05). There was significant difference in the seroma rate between the two groups (10% and 30%, respectively). Axillary dissection using harmonic scalpel is feasible and the learning curve is short. Ultrasound scissors significantly reduces the blood loss and duration of drainage as compared to electrocautery.

KEY WORDS: Axillary dissection - Ultrasound scissors.
Dissezione ascellare - Forbici ad ultrasuoni.

Introduction

Despite the emergence of breast conservation surgery and the sentinel node biopsy, axillary dissection (AD) remains the most commonly performed operative procedure on lymphatic system for breast cancer today (1). Conventional AD using electrocautery or ultrasound scissors is associated with a moderate degree of operative morbidity in 35-50% of patients (2, 3). Much of this morbidity has been attributed to the large post lymphadenectomy raw area, cut lymphatics and use of electrocautery (4, 5). Ultrasonic dissection using the ultrasound scissors versus electrocautery in axillary dissection: our experience.


Le forbici ad ultrasuoni da qualche tempo vengono impiegate come strumento chirurgico per dissezione ed emostasi. Fino ad ora impiegate nella chirurgia minimalmente invasiva, ne abbiamo testato efficacia ed utilità nella dissezione ascellare, paragonando i dati emersi dal loro utilizzo in 35 cancri della mammella con 35 casi controllo nei quali è stato impiegato l’elettrobisturi.

Non sono emerse differenze nel tempo di esecuzione dell’intervento, al contrario sono state registrate significative differenze nella riduzione del sanguinamento e del drenaggio post-operatorio.

Le forbici ad ultrasuoni, in conclusione, si sono dimostrate uno strumento chirurgico di facile utilizzo che agevola l’esecuzione della dissezione ascellare.

KEY WORDS: Axillary dissection - Ultrasound scissors.
Dissezione ascellare - Forbici ad ultrasuoni.
scissors has recently emerged as a safe alternative to elec-
trocautery. This has been used extensively in laparosco-
pic surgery for surgical dissection (6), and initial expe-
rience in “open” surgery suggests that it could signifi-
cantly diminish the blood and serum loss and the ope-
ration time (7).

With this background we have initiated the work with 
ultrasound scissors AD in our Units and standardised 
the operative technique (8). In this study we compared 
the operative details and morbidity of 35 ultrasound scis-
or ADs with 35 matched controls undergoing AD with 
electrocautery.

Patients and methods

Thirty-five operable breast cancer patients planned for surgery 
between January 2008 and September 2008 underwent AD with ul-
trasound scissors (Harmonic Wave 18 S, Ethicon, Endosurgery Inc., 
USA) after an informed consent. The control group consisted of 35 
breast cancer patients, matched for age, body surface area (BSA) and 
stage of disease, operated by the same surgical team using electrocautery during the same period. Blood loss was estimated by weighing the dry sponges pre-operatively and subtracting such weight from the weight of the used sponges (9). A record of operating time, blood loss, 24-hours drain volume and drain days was kept. Drains were removed when the drainage volume was less than 30 ml/24 hours. All the patients were evaluated for the development of haematoma, flap necrosis, wound infection and seroma during follow-up.

A matched pair analysis was performed between two groups using a computerised statistical package (Statistix Version 4.0, Analytical software Co Ltd, USA). The Wilcoxon sign rank test and McNemar’s test were used as appropriate and “p”<0.05 was taken as significant.

Ultrasound scissors AD

Flaps were raised using the coagulating shears (CS) attachment of harmonic scalpel. The blunt edge of the open CS blade was used for flap dissection and coaptive coagulation mode was used to oc-
clude and transect the blood vessels more than 3 mm diameter. Axil-
mary dissection was performed using the ultrasound scissors. During the 
axillary dissection coaptive coagulation mode with a power set-
ing of 3/5 was used to achieve a better sealing of lymphatics and 
blood vessels. A standard level III clearance was performed. No su-
ture material or electrocautery was used for haemostasis (8).

Electrocautery AD

AD was performed in a standard fashion using electrocautery 
(Valley Lab, USA). Haemostasis was secured using electrocautery or 
silk ties as appropriate.

Results

The age, body surface area and stage of the two grou-
ps were comparable. There was no significant differen-
ce in the operating time between the ultrasound scissors and electrocautery group (36 and 30 mins, p>0.05).

Blood loss was significantly lower in the ultrasound scissors group as compared to electrocautery group (60 ± 35 ml and 294 ± 155 ml, p<0.001). Total volume of drai-
nage in the ultrasound scissors group was significantly lower than in the electrocautery group (200 ± 130 ml and 450 ± 230 ml, p<0.05) and the average number of drain days was also significantly less in the ultrasound scissors group (two and four days, p<0.001). None of the patients in both groups developed wound infection, flap necrosis or post-operative haematoma. Three patients in the ultrasound scissors group developed seromas compared to five patients in the electrocautery group. This was not statistically significant (p>0.05).

Discussion

AD performed using electrocautery is associated with a moderate degree of morbidity (2, 3) as blood loss, hae-
matoma, flap necrosis, seroma and prolonged axillary drainage. Tejler et al. (2) reported a post-axillary dis-
section morbidity rate of 35% in a series of 385 breast cancer patients and found that 17% of the total hospital stay was due to post axillary dissection morbidity. Re-
cent studies (4, 5) have shown that cautery associated thermal tissue injury causes damage of subdermal va-
sular plexus and incomplete occlusion of vascular and lymphatic channels, leading to increased morbidity.

Recently ultrasound scissors are emerging as an alter-
native surgical tool for dissection and haemostasis espe-
cially in the field of minimally invasive surgery. Ultraso-
nic waves at a frequency of 55,000/second are generated by the ultrasound scissors for tissue dissection and haemostasis. Although it has been extensively used in laparosco-
pic surgery (6), experience with the ultrasound scissors in “open” surgery is limited. The ultrasound scissors have recently been used in thyroid surgery and found to be associated with lower operating time and blood loss (7). Initially the ultrasound scissors procedure took a lon-
ger time than conventional axillary dissection; however the operating time decreased with experience and the mean operating time is presently comparable with electrocautery.

The blood loss and drain days were significantly lower in the ultrasound scissors group. Ultrasonic energy ge-
erated by the ultrasound scissors causes the breakdown of hydrogen bonds and formation of denatured protein coagulum. This coagulum seals off the vessels and lymphatics inducing decreased blood loss and lymphatic drainage. Lateral thermal injury has been shown to be halved with the harmonic scalpel as compared to electrocautery in animal models (10), potentially decreasing the flap necrosis rate. We did not register flap necrosis in either group. Historical data from the authors’ unit show a flap necrosis rate of 4% using electrocautery. The small num-
ber of patients could explain this apparent difference in
outcome. Apart from being a better haemostatic tool than electrocautery, the ultrasound scissors have an added advantage of multifunctionality, avoiding frequent instrument changes and use of sutures. Haemostasis was achieved in all patients of the ultrasound scissors group without ligature, clamp or cautery.

**Conclusion**

Axillary dissection can be safely performed using ultrasound scissors with a significant reduction in the blood and serum loss and duration of drainage compared to electrocautery.

**References**

L. Micheletti, F. Bogliatto, A.C. Levi

LA LINFOADENECTOMIA INGUINO-FEMORALE
Fondamenti embriologici, anatomotopografici, anatomochirurgici sulla preservazione della fascia femorale

Volume brossurato
di 66 pagine
f.to cm 21x29
€ 40,00

per acquisti online
www.gruppocic.com