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THE SPATIO-TEMPORAL  
MODELING OF URBAN GROWTH 

CASE STUDY: MAHABAD, IRAN 

 
ABSTRACT 
 
The simulation of urban growth can be considered 
as a useful way for analyzing the complex process of 
urban physical evolution. The aim of this study is to 
model and simulate the complex patterns of land 
use change by utilizing remote sensing and artificial 
intelligence techniques in the fast growing city of 
Mahabad, north-west of Iran which encountered 
with several environmental subsequences. The key 
subject is how to allocate optimized weight into 
effective parameters upon urban growth and 
subsequently achieving an improved simulation. 
Artificial Neural Networks (ANN) algorithm was used 
to allocate the weight via an iteration approach. In 
this way, weight allocation was carried out by the 
ANN training accomplishing through time-series 
satellite images representing urban growth process. 
Cellular Automata (CA) was used as the principal 
motor of the model and then ANN applied to find 
suitable scale of parameters and relations between 
potential factors affecting urban growth. The 
general accuracy of the suggested model and 
obtained Fuzzy Kappa Coefficient confirms achieving 
better results than classic CA models in simulating 
nonlinear urban evolution process.  
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1  INTRODUCTION 
The irregular expansion of urban land use can be considered as one of the biggest problems for urban managers 

and policy makers in different fields. Nowadays investigating the trend of converting of noun-urban land use to 

urban land use and determining the parameters which influence this trend are of great importance in long-term 

decision making and planning. In this way, exploring the rules and relations which are effective in changing lands 

into urban area and also the predicting the trend of city development in the future through reliable and efficient 

methods have received significant attention in urban researches. Land use change models are considered to be 

among the tools for identifying land use change (Onishi and Braimoh, 2007). Also land use change models are not 

only considered as approaches for the purpose of improving the quality of change identification and predicting the 

regimes dominating development patterns (Turner, 1994; Bockstael et al., 1995), but are also of use when it 

comes to analyzing the factors affecting land use change and choosing the most suitable development strategy 

(Erfu and Shaohong, 2005). Moreover, spatial models are useful tools for the purpose of a better perception of 

urban development and are also of use as tools assisting policy making, urban management, and tools providing 

information for evaluating environmental effects (He et al., 2008). 

Urban growth and its management are considered to be a multi-dimensional problem. Cities emerge as complex 

dynamic systems, with non-linear processes, which are unexpected and self-organizing (Allen, 1997; Portugali et 

al.1997; Batty, 2007). Additionally, most of the methods which have embarked on model making for cities have 

traditionally been static, linear, centralized, and based on simple systems theory with a top-down approach. 

Recent, improvements happened in urban simulation have been because introducing new approaches (techniques) 

such as CA Multi-agent Systems, Micro Simulation, and Connectionist Models. These all have turned the urban 

model making into a powerful tool to be used for the purpose of analyzing the complex structures of urban 

systems. In this paper, efforts have been taken to determine the dynamic land use change in the dimensions of 

time and space through the use of Non-linear modeling in hope of achieving the closest simulation to reality. Multi 

temporal images and zoning maps are among the main data of this study. GIS has been used in order to extract 

the spatial factors and analyze the data. Additionally, ANN algorithm has been used to determine the influential 

factors and to find suitable values of simulation parameters that can best fit actual development. In other hand 

Neural network can be used to replace the transition rules used by classical CA models. Therefore CA has been 

applied as the main simulation engine . 

2 CELLULAR AUTOMATION AND URBAN GROWTH MODELING 
Cellular automation (CA) has attracted the attention of the researchers significantly in the past two decades 

(Alkheder, 2006). CA has found a wide range of applications in predicting land use change due to its simple 

structure in modeling. CA is a discrete dynamic system in which the situation of each cell is determined in the time 

of t+1, and according to the neighbourhood situations in the time of t, corresponding with already-defined 

transition rules. CA possessing time-space dynamics is capable of simulating changes in two-dimensional aspects. 

This method has been used widely for many application areas specifically for urban growth and land use change. 

In other words, CA is a dynamic modeling technique which produces global patterns from local cells through the 

use of the four main elements of cells, states, neighbourhood, and transition rules (Batty et al., 1999). In a CA 

system, space is divided into a regular network of cells with the same form and size and generally in the shape of 

squares. Each cell possesses a value equal to 0 or 1 or a range of values in a scale from 0.0 to 1.0 and finds 

certain values in accordance with different uses (AL-Ahmadi et al. 2009). In an urban CA the situations or states 

can be as: a) binary values (urban, non-urban), b) discrete values which represent different land uses, c) 

quantitative values which can, represent for instance population density, the level of development (Li and Yeh, 

2002), the building cost (Cecchini and Rizzi, 2001), or a vector (Santé et al., 2010) of a number of features. The 
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state for each cell includes a number of discrete time steps which are controlled by a set of transition rules. These 

rules are generally defined based on the initial state of the cell and the status of the neighbouring cells.  

The competence and attractiveness of this approach can be considered to be because of CA’s ability in showing, 

simulating, and realizing the patterns and behaviors of complex geographical phenomena and self-organizing 

systems through the use of a number of somewhat simple rules  (Torrens and O'Sullivan, 2001; Wu and 

Webster,1998). 

3  ARTIFICIAL NEURAL NETWORKS AND URBAN GROWTH MODELING 
One of the applications of Artificial Intelligence (AI), which has been studied in this study, is using AI techniques in 

optimizing urban growth modeling, specifically CA. Artificial Neural Network (ANN), as one of the components of 

computational intelligence has a structure including non-linear processing elements known as neurons which 

model the neural networks of human brain with connected weights. This network is a non-parametric algorithm 

and has characteristics such as learning, parallel processing, and the ability to generalize without needing an initial 

knowledge of the statistical distribution of data (unlike conventional statistical methods), which, This property is 

significant importance in space-time modeling.  

Additionally, ANN is capable of recognizing and classifying patterns through training and learning urban growth 

processes. Therefore, ANN can be used as a simple and effective replacement for the Transition Rules from the 

classic CA models (Yeh and Li, 2001).  

Capability and ability of applying ANN algorithm in urban development researches, is recently attracted some 

researches and scholars attention to itself. On the other hand, ANN are synthetically applied with other artificial 

intelligence techniques for urban modeling. Bilanowskia and his colleague assimilated an ANN with GIS to 

anticipate the earth control changes (Bilanowskia et al, 2002).  

In this model, the role of ANN was learning of development patterns in the region and capacity test and the ability 

of anticipating model. Multi-Layer Perceptron (MLP) which be created by Ramelhart and his colleges (1986), are 

the most applicable ANN that be used. MLP was formed of three layers, input, hidden and output layers (Fig 1). As 

these nets are three-layers, there is the possibility of recognition of nonlinear communications existing in nature 

(Mahini and others, 2010). 

Fig.1 The architecture of 3 layer MLP Network 
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4 CALIBRATING THE CA MODEL USING ANN  
Urban CA models are considered as tools highly capable of developing applied models for producing real urban 

patterns, hence it is possible to gain better comprehension of urban dynamics and theories. The majority of 

studies conducted on urban simulation through CA in the past three decades have focused on extracting or 

defining transition rules. In most of the cases, transition rules have been defined heuristically based on the realm 

of science and priority of the expert. 

Therefore, one of the key points in simulating urban growth is calibrating the model in order to find the proper 

weights for the simulating parameters. It is obvious that in the process of simulation, calibration calls for finding 

those weights of the simulating parameters which can have the highest level of conformity with real development. 

However, after several decades of the application of this method in urban planning and the efforts of researchers 

in finding a globally applicable model for the purpose of predicting urban complexities, one can still feel some 

shortcomings in the calibration of the CA model.  

In order to point to some studies conducted on the calibration of the CA model, one can mention the efforts of Wu 

and Webster (1998) in using multi criteria evaluation (MCE), Li (2006) in using the hierarchical analysis (AHP), Wu 

(2002) in regression logistics, AL-Ahmadi (2009) in fuzzy logic, and Li et al. (2008) in genetic algorithm, and Li and 

Yeh (2004) in decision making tree where CA produced different results.  

The values of the effective parameters in simulation are determined by holding other parameters constant. 

Calibration and validation of CA models are the key to their successful implementation due to the fact that the 

quality of the urban CA model depends on the adequacy of the transition rules which usually include a number of 

parameters to be calibrated (Wu, 2002; Straatman et al., 2004). Moreover ANN has been used to recognize the 

patterns in different studies such as pictures analysis (Fukushima et al., 1983), weather forecast (Drummond et 

al., 1998), classification feature of the land (Brown et al., 1998), remote sensing (Atkinson & Tantall, 1997) and 

earth control changes (Pijanowski et al., 2002).  

Based on these points and due to the non-linear and self-organizing nature of urban systems, the use of ANN for 

the purpose of calibrating the CA model has been examined in this paper. 

5 CALIBRATING CA MODEL THROUGH ANN 
Urban CA models are considered as tools highly capable of developing applied models for producing real urban 

patterns, hence it is possible to gain better comprehension of urban dynamics and theories.  

The majority of studies conducted on urban simulation through CA in the past three decades have focused on 

extracting or defining transition rules. In most of the cases, transition rules have been defined heuristically based 

on the realm of science and priority of the expert. 

Therefore, one of the key points in simulating urban growth is calibrating the model in order to find the proper 

weights for the simulating parameters. It is obvious that in the process of simulation, calibration calls for finding 

those weights of the simulating parameters which can have the highest level of conformity with real development.  

Calibrating CA model can be done in two ways (Li & Yeh, 2002).  

A method is in base of statistical data such as Logistic Regression operation which is presented by WU (2002) and 

techniques such as genetic algorithm which is represented by Alkhadar (2008). The other method is calibrating in 

base of trial and error method such as visual tests (Clarke et al., 1997; Ward et al., 2000) computer simulation 

comparison (Clarke and Gaydos, 1998). Because of the absence of similar structures and objects, however, in 

these models, there is no popular method to calibrate CA model (Straatman et al., 2004).  

In this paper, we were exploited from ANN algorithm to calibrate CA model. After calibrating, a set of optimized 

values have been allocated to simulator parameters (Fig 2). 
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Fig. 2  Generating Weights and Development probability based on ANN 

 

CA simulation is designed in base of ANN algorithm. At each of iteration of CA, ANN will recognize the 

development, which is subject to the  input of site attributes and weights. A cell may be had ݊ characteristic:  ሺݏଵ, ,ଶݏ ,ଷݏ ,ସݏ ,ହݏ ݏ … ,  ሻ          (1)ݏ

 

A neural network can be designed to estimate the probability of development in each period of CA iteration. In the 

ANN, three layers have been recognized: input layer, hidden layer and output layer.  

Input layer has ݊ neurons in base of characteristics of site. Hidden layer may also have	݊ neurons, while in output 

layer; there is just one neuron which calculates the probability of development.  

In each period, iteration of the characteristics of site for each cell is as the first layer input and ANN recognize the 

probability of development unto that layer. 

Most of the basic data before entering in model as the ANN input, are scaled into domain of	ሾ0,1ሿ. Scaling gives 

each cell same significance and creates the same numerical value in input data and causes the compatibility of 

these data with activation function: ݏᇱ ൌ ሺݏ െ ݉݅݊ሻ/ሺ݉ܽݔ െ݉݅݊ሻ   (2) 

 

The algorithm which is incorporated with CA model consists of a simple three-layer net. In ANN, received signal 

has been calculated by the neuron ݆ hidden layer of the first input layer for each cell as follow: ݊݁ݐሺݔ, ሻݐ ൌ ∑ 	,ݓ ,ݔᇱሺݏ  ሻ    (3)ݐ

 

Where ݔ is a cell and ݊݁ݐ is received signal by neuron ݆ belonging to ݔ cell in time, and ݏᇱሺݔ,  ሻ is theݐ

characteristics of the slightly site for parameter (neuron)  ݅.  
Activation function of the hidden layer is: ଵଵାషೕሺೣ,ሻ      (4) 

 

Probability of development ( ௗܲ) also defines for each ݔ cell as:  ௗܲሺݔ, ሻݐ ൌ ∑ ܹ ଵଵାషೕሺೣ,ሻ     (5) 
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The simulation is loop-based. In each iteration period, probability of development has calculated by the ANN in 

base of the characteristics of the site attributes. Probable perturbation (error net) is an expression which can be 

applied for representation of unknown errors during simulation, that it seems necessary to generate patterns 

coincident to reality, the probability of variation each cell has recognized by the probability of development.  

Error net (RA) has been determined by: ܴܣ ൌ 1  ሺെߛ݊ܮሻఈ     (6) 

 

Where ߛ is uniform random variable in domain of	ሼ0,1ሽ, and ߙ is a parameter to control the probable deviation 

scale and also can be used as dispersion factor in this simulation.   

In this base, the probability of development function has been modified as: ௗܲᇱ 		ሺݔ, ሻݐ ൌ ∑ܣܴ ܹ ଵଵାషೕሺೣ,ሻ    (7) 

 ൌ ሺ1  ሺെߛ݊ܮሻఈሻ ൈ	∑ ܹ ଵଵାషೕሺೣ,ሻ   (8) 

  

The probability of urbanizing of each cell is more probable in higher weight than probability of development during 

simulation process.  

A threshold value is also defined by each cell before starting the process in order to accept the alteration. If a cell 

has higher probability of development than threshold value, the cell will change and expand. The number of 

expanded cell in defined neighborhood recalculates and the characteristics of site updates at the end of each 

iteration period. Simulation has maintained as long as the amount of total altered cells equal to amount of 

consumed land (Yeh And Li, 2002). 

6  STUDY AREA AND DATA PREPARATION 
The city of Mahabad in Western Azarbayjan province, Iran has been selected as the case study to simulate urban 

growth process. According to census, its population was 201,104, in 41,000 families. The city's population is 

predominantly Kurdish, with the city lying south of Lake Uremia in a narrow valley 1,300 meters above sea level in 

Iranian Kurdistan (fig. 3).  

Fig. 3  Case study area, City of Mahabad. 
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Mahabad with the area of 2‘541 square kilometers is the fifth county of this province.  

Historical studies show that Mahabad is not a very old city and it was founded at the beginning of Safavi epoch.  

Mahabad which was called Mokri Savojbolaq in the past, started to grow since the beginning of this century and 

then was developing following the permanently settling the tribes and establishing modern organizations and 

gradually was added to the new districts.  

After the Islamic Revolution (1978), it was faced with rapid unplanned development as the consequence of 

political and social transformation.  

The city’s visage changed completely. At that time, eastern and southern areas of the city were developed 

irregularly. In 1989, Mahabad had an area of 591 hectares which is three times bigger than its area in 1966.  

Between 1989 to 2005, city’s area reached to 1‘434 hectares that is two times of its area in 1989. In fact Mahabad 

is considered as one of very fast growing urban region of the country (fig. 4). 

Over the past two decades, rapid urbanization has threatened the agricultural land and ecologically sensitive 

landscapes located around Mahabad (fig. 5). The rapid un- planned growth of Mahabad during recent decade 

makes it a suitable case for model growth. 

Fig. 4  The population growth of Mahabad 1986-2005. 
 

Fig. 5  The land use change statistics of Mahabad. 

In this study, remote sensing and GIS techniques were used to provide spatial parameters and land use data, to 

characterize the relationships exist between site attributes and urban growth. Satellite Images were acquired on 

1989 (TM), 2000 (ETM+), and 2005 (ETM+).  

The Minimum Distance Supervised Classification (MDSC) approach was employed for land use classification (fig.6).  

 Fig. 6 The classification of satellite images of 1989, 2000, 2005. 

To extract the land use layers, fuzzy logic was used for classifying images. For this purpose, fuzzy toolbox of 

MATLAB package was used.   

The Mamdani's Fuzzy Inference method was applied to classify the images. Spatial parameters were calculated by 

use of Euclidean Function in Spatial Analyst Toolbox of ESRI ArcGIS9.3 (fig. 7).  
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Factor Parameters 

Physical attribute 
Slope of the area 

altitude model 

Accessibility and Neighborhood 

Accessibility to local road 

Accessibility to main road 

Accessibility to CBD 

Accessibility to local centers 

Accessibility to business and community centers 

Zoning 
Planed area 

Protected area 

Data related to land use 
Land use classes: 

Urban, arid, green, water 

Table. 1 The explanation of the spatial factors and corresponding driving forces. 

8 SIMULATION OF URBAN DEVELOPMENT 
The final step of modeling was prediction of urban growth. Based on the parameters and results of model 

validation, the prediction of future urban growth for 2025 was predicted (fig. 8).  

The CA-ANN model using calibrated with the actual urban growth pattern between 1989 and 2005, and then used 

to predict urban growth in 2025. 

 
Fig. 8  (A) Actual urban land use in 2000, (B) simulated urban land use, (C) actual urban land use in 2005, 

(D) simulated urban land use in 2005 and (E) predicted urban land use in 2025. 
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9 DISCUSSIONS AND CONCLUSION 
The result of the study showed that urban growth modeling through CA-ANN is an effective and useful way to 

analyze complex processes of urban evolutions. While classic CA model is associated with fixed transition rules and 

complicated calculation, this study was based on the growth of a procedure which calibrated the initial global 

probability surface from sequential land use data and then modifies the global probability with the local probability 

that was updated at each of iterations. 

The applied approach of this study, integration of CA with ANN offers an easier and more flexible way instead. 

Because of the flexibility of the model with non-liner systems and uncertainty caused by spatial data, a higher level 

of confidence is achievable comparing to classic statistical model. In other hand, taking the advantage of ANN’s 

capacity of dealing with nonlinear systems, this ANN-CA model can be calibrated without heavy computing 

overhead and subjective human interference.   

This model can be considered as a helpful tool for policy making and planning. In fact, the results of this study can 

provide planners and decision-makers with influential information about alternative urban growth under various 

scenarios. Further, it can be easily combined with environmental models in hope of impact assessment. The model 

is reputable in other urban contexts using related data and circumstance.  

This study can be improved in several ways. Since land use transformation is a multifaceted process, improving 

transition rules would enhance the classification accuracy and running efficiency.  

Furthermore, if the CA simulation is calibrated through the desired pattern of changes, then the desired 

relationship can be incorporated into future growth evaluation for the purpose of simulating alternative scenarios. 

Furthermore, unsteadiness of the calibration process basing on ANN may bring superfluous parameters for the 

simulation model, which also points out the further research direction of this study. 
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