Introduction

Short or absent cystic duct is an unusual anatomical anomaly of biliary tree and its misidentification is associated to increased view of bile duct injuries (BDI) (1, 2). In presence of a short cystic duct, the possibilities of total section of the common bile duct, wrongly identified as cystic duct, or thermal lesion of an “unusual” Calot’s triangle are potentially increased (3). Results of an Italian survey on 56.591 cholecystectomies confirm that anatomical anomalies of biliary system are responsible of BDI during laparoscopic surgery in 12.9% of observed cases, and misidentification of the common bile duct for the cystic duct is reported most commonly.
as the cause of BDI with an incidence of 36.8% (4). Early recognition of BDI and adequate multidisciplinary approaches (endoscopic stenting, percutaneous transhepatic dilatation and surgical reconstruction) are key points for the optimal final outcome of patients (6,7). Retrospective studies have suggested that in the presence of bile duct leakage or stricture, endoscopic stent treatment should be regarded as the first choice treatment according to the favourable long term outcomes demonstrated (6).

The aim of this report is to outline our strategies and techniques for the management of bile duct leakage sustained by the unusual anatomy as a short cystic duct, early recognized during laparoscopy in our case and successfully controlled by sequential biliary endoprosthesis insertion.

The multidisciplinary approach in the management of BDI, the careful operative technique to prevent BDI, the experience in laparoscopic surgery, are emphasized together with a revision of the concerning scientific literature.

Case report

A 40-year-old woman with a history of recurrent right upper quadrant postprandial pain was referred to our department. Physical examination reveals no abdominal signs and blood cell count, liver function and serum amylase levels were normal. Her past history included only a cystic mass of the uterus surgically treated. Abdominal ultrasonography (US) revealed choledolithiasis and gallbladder wall with radiographic signs of chronic inflammation.

A laparoscopic cholecystectomy was performed. At surgery, the gallbladder was dissected free from the liver bed by sharp and blunt dissection according to the infundibular-cystic technique. During the dissection, an unusual arrangement of biliary tract anatomy was diagnosed. No visceral adherences was observed and gallbladder wall appeared not fibrotic. Intraoperatively, we were able to recognize the anomaly of a very short cystic duct at the junction of the common hepatic duct and the common bile duct (Fig. 1) confirmed by radiological imaging. During gallbladder dissection, a bile duct laceration was leaded at the common bile duct level due to the difficulties in isolating main bile duct from the infundibulum wall. The injury caused by the thermal dissection of “unusual” Calot’s triangle structures was recognized during laparoscopy. The laparoscopic approach was not converted to open surgery and the cystic artery and the anomalous duct, together with a portion of infundibulum, were clipped in the normal fashion. Cholangiography confirmed the intraoperative diagnosis of biliary leakage at the common bile duct level without revealing associated lesions. At the end of laparoscopy the bile leakage was evaluated by endoscopic retrograde cholangio-pancreatography (ERCP). Sphincterotomy of Oddi papilla was performed and 11 cm -10 French (Fr) size stent (COOK Medical, Cotton-Leung® -Amsterdam- Biliary Stent) was inserted by-passing the bile leakage site localized to the common bile duct.

In 2nd postoperative day, a moderate fluid collection containing bile was detected in drainage left on the gallbladder bed. Clinical symptoms were aspecific and the abdomen was normal. Effective in controlling bile secretion. Bile filtration coming through the external wall of the stent and the duct epithelium was the cause of fluid collection detected from the abdomen drainage.

For the differences in the bile duct and stent calibre, two 8,5 Fr biliary stents were placed for each liver hemisystem by-passing the confluence. Drainage of the gallbladder bed was left in situ.

Fig. 1 - Laparoscopic cholecystectomy: an extremely short cystic duct connects the infundibulum to the common bile duct.

Fig. 2 - Biliary stenting: for a definitive bile leakage control, two selective 8,5 Fr biliary stents were placed for each liver hemisystem by-passing the confluence. Drainage of the gallbladder bed was left in situ.
After 12 weeks from the hospital discharge, the selective biliary stents were radiologically evaluated and then endoscopically removed (Fig. 3). At 12 months from endoscopic procedure, no evidence of complication was reported. The patient was remained in good health without any further problem.

Discussion and conclusions

Despite consolidated experiences in laparoscopic cholecystectomy, the frequency of BDI is not decreased and represents a current surgical problem. BDI occurs in 0.5% after laparoscopic cholecystectomy resulting in increased morbidity and poor long-term quality of life (4-7). Operative risk variables potentially related to biliary damage are represented by the learning curve phase in laparoscopic surgery, coexisting inflammatory process, presence of impacted stones and unusual biliary anatomy (4, 7).

A short or absent cystic duct is a uncommon contributing factor (5, 8). One of the earlier descriptions of a short or absent cystic duct dates 40 years ago (5). Its misidentification, together with other anatomic variants, happens much more frequently in laparoscopic surgery compared to conventional approach (4, 9). A short cystic duct, defined as a structure less than 5 mm in length, or an absent cystic duct may be draining into right hepatic duct or common hepatic duct. In 5% of cases, it connects the infundibulum with the common bile duct by only few millimetres in length (10).

Our experience refers a case of BDI during laparoscopic cholecystectomy, type B according to Amsterdam classification (8). Recently, the incidence of type B injury was demonstrated to be around 17% of cases (7).

In our case, the lesion was sustained by cautersy dissection of the gallbladder strongly connected to the common bile duct by an extremely short cystic duct. The experience of the surgeon who performed laparoscopic cholecystectomy was relevant in the immediate identification of the biliary anomaly finally confirmed by cholangiography. The expertise of the surgeon in BDI repair is a critical point because the decision to continue the laparoscopic surgery depends on the balance between surgeon ability and anatomical complexity of the biliary injury. In our case, the trained operator has contributed to minimize the severity of the biliary damage preventing an additional laparotomy with the related consequences.

To minimize the risk of BDI, an accurate assessment of the biliary tree has to be advocated intraoperatorily by cholangiography together with particular surgical technique arrangements (4, 10, 11). Results on the advantages of routine vs selective use of intraoperative cholangiography in preventing BDI are diverging and the incorrect execution or individual interpretation of cholangiography often are responsible of wronged diagnosis (4). In our case, intraoperative cholangiography was particularly helpful in confirming the site of bile leakage and the absence of additional lesions.

The basic surgical principles have to respect the dissection of gallbladder that should be performed close to its wall, especially in the region of the infundibulum, showing any structure before ligation or section. A critical point is the good exposure of the cystic duct together with the hepatic pedicle; only after the correct identification and preparation of these anatomical structures the surgeon can proceed with dissection (4).

The dissection of soft structures by thermal coagulation, such as the common bile in our situation, may be a critical phase during laparoscopic exposure, also when all the anatomical structural changes have been well recognized at surgery.

In the management of a short cystic duct some authors have underlined the need of EndoGIA ligation to avoid a subsequent stricture (10). In our situation, no transfixed suture was applied and the short cystic duct was adequate closed by clips respecting common bile duct lumen.

We have advocated the use of endoscopic sphincterotomy and biliary stents to by-pass the bile leakage. Several reports have confirmed that insertion of endoprosthesis proved successful in 71% of major bile ducts cases after cholecystectomy in expert centres of biliary surgery (7). The 10 Fr endoscopic stent used failed in controlling bile leakage due the differences of the bile flow.
duct as regards endoprosthesis calibre. The definitive strategy has consisted in the use of two selective 8,5 Fr biliary stents left in situ for each liver biliary hemi-system together with the use of naso-biliary drain in aspiration.

The follow up was programmed according to the therapeutic algorithms proposed by Gouma and colleagues (8). Traditionally, bile leakage is treated by surgery with an elective hepatojejunostomy. We have preferred to attempt sequential endoscopies and the rationale was to selectively remove fluid coming from each biliary hemi-system before resorting secondary reconstructive surgery.

The efficacy of multidisciplinary approach of radiologists, gastroenterologists and surgeons in BDI cases has been clearly discussed and extensively confirmed by clinical results (7).

The impact of a multidisciplinary team in BDI patient on survival, underling the importance of a standard algorithms in repairing procedures, has been well analyzed (6). Leakage from the main bile duct can be successfully controlled by endoscopic stenting and retrospective studies have concluded that surgery and endoscopy were equally successful in BDI management (7, 9).

Since any cholecystectomy has to be considered a simple routine surgical procedure without BDI risk, the clinicians should every time suspect uncommon situations, establish the correct timing of interventional procedures for each case and respect therapeutic algorithms for the management of BDI patients.

References


232

References