Introduction

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death from cancer in the United States. Conventional endoscopy represents the gold standard technique for the evaluation of colorectal diseases. Moreover, during direct visual examination it is possible to perform biopsy of suspected lesion and polypectomy.

Optical Colonoscopy (OC) is recommended in patients with colon malignancy, because the high rate of synchronous polyps and carcinoma (1). However, OC is an invasive, not well accepted examination, and often requires sedation.

In addition, about 6-26% of conventional colonoscopy examinations are incomplete and fail to reach the initial tract of the colon and cecum (2, 3, 28) for several reasons: redundant and tortuous colon with angulations or fixation of colonic loops, most commonly due to previous abdominal surgery, severe diverticular disease,
Role of virtual colonoscopy following incomplete optical colonoscopy: our experience

obstructing masses and strictures (4, 11). The reported rate of incomplete OC is 22-33% (5, 12) and it tends to increase in older patients.

In the last years Computed Tomography Colonography (CTC), also called "virtual colonoscopy", has been used. It is a non-invasive imaging technique with the advantages of rapid acquisition, minimal patient discomfort and no need for sedation.

The purpose of our study is to evaluate the role of CTC in patients with incomplete OC.

Patients and methods

From January 2007 to December 2009, 205 CTC examinations have been performed in our Department of Radiology in adult patients with or without symptoms. Sixty-eight of these patients (48 female, 20 male; mean age 60.4 years) were referred from the Service of Endoscopy of the Department of Integrated Therapies in Oncology of our Hospital, because of an incomplete OC; in other patients virtual colonoscopy was performed as screening for colorectal cancer. Indications for colonic evaluation were: rectal bleeding (n=8), history of polyps (n=23), anaemia (n=6), change in bowel habits (n=7), history of colon carcinoma (n=9), screening for colon cancer (n=13) and increased uptake of 18F-FDG in the area of cecum on PET (n=2) (Fig. 1).

Incomplete OC was caused by dolichocolon (9.7%), severe diverticular disease (25.2%), angulations and adherences due to previous abdominal surgery (46.9%), patient discomfort (15.5%) (Table 1).

CTC was performed on the same day of the OC, using just only one bowel preparation and colonic distension obtained during the previous examination, and after manual air insufflation if necessary (Table 2). Every patient underwent a standard bowel preparation by drinking 4L of polyethylene glycol (PEG) solution within the day before the procedure and a low-residue and/or clear fluid diet for 24–48 h prior to the examination. All the examinations were performed in agreement with the recommendations of our institutional review board. Preliminarily, the degree of colonic distension was assessed on axial images obtained by a CT scout-view of abdomen and pelvis. At the same time the adequacy of bowel preparation was evaluated by assessing the proportion of colonic segments containing residual faecal matter: fluid, solid or mixed for each patient (respectively 5, 11 and 8 patients). It was considered good in 44 patients. If the entire colon, particularly the sigmoid, was not well distended, we repeated the administration of gas according to maximum patient tolerance (Fig. 2). Following supine axial image acquisition, the patient was turned prone and another CT scout image was obtained with additional gaseous insufflation if segments of colon with suboptimal distension were noted. Then a prone acquisition was performed.

All CTC were performed by a 16-detector CT scanner (Sensation 16, Siemens, Erlangen, Germany) or a dual-source CT scanner (Definition, Siemens, Erlangen, Germany) using the following parameters: 50 or 30 mAs (supine or prone) without CareDose, 120 kV, collimation 16 x 0.75 mm or 64 x 0.75 mm, recon 1 mm with B30f or B10f kernel. Axial images were then post-processed by a computed software (Syngo Colon, Siemens, Erlangen, Germany), using MPR and SSD reconstructions.

Results

A complete CTC examination was achieved in all 68 patients. In relation to the diameter we classified the detected polyps in small (<5mm), medium (from 5 to 10mm) and large (>10mm) (Table 3). Then we compared the virtual colonoscopy findings to those obtained by conventional colonoscopy (Fig. 3).

In 19 patients (27.9%) no pathological finding was observed. CTC detected a total of 23 polyps: 3 of them were small, 12 medium, 8 large.

In 11 patients (16.2%) one or more polyps not de-
In 18 patients a diverticular disease was observed; among them, OC previously detected a diverticular disease in 15 cases (26.5%). In 8 patients (11.8%) it was associated to polyps.

In 12 patients (17.6%) a colonic stenosis or mass has been observed (Table 4).

Extra-colonic findings were found in 44 patients (64.7%); they were then studied with CT or US (Table 5).

Discussion

Most CRC arise from pre-existing adenomatous polyps that undergo malignant transformation in 10 to 15 years (17). Due to its natural history, colorectal cancer is an ideal candidate for screening.

So an accurate and complete visualization of the whole colon is necessary. Particularly, a well-done examination is important also for a correct treatment, overall in case of synchronous adenomas and adenocarcinoma, found respectively in 14-48% and 2-9% (18, 19).

Several studies showed that double-contrast barium enema (DBCE) has a low accuracy for the detection of colonic neoplasm, with a sensitivity of 45-50% for ≥9 mm adenomas (20).

Optical Colonoscopy (OC) is regarded as the gold standard for the evaluation of the colon (16). In a complete colonoscopy examination, all the colonic segments from rectum to cecum must be evaluated. Although the rate of incomplete colonoscopy depends on the operator’s interpretation, it occurs in 2-10% of cases (11). In our experience it is about 10%. The rate of incomplete OC and the number of relative contraindications to...
Role of virtual colonoscopy following incomplete optical colonoscopy: our experience

OC tend to increase with the patient’s age (13).

Redundant colon, colonic spasm, severe diverticulosis, obstructing masses or strictures, angulations or fixation of colonic loops are often the causes of failed OC (11, 12). DBCE has been used to image colon after failed or incomplete OC; when performed immediately after OC, the visualization of the entire colon can be reached in 77-94% of cases (14, 15).

CTC is indeed a relatively new imaging technique with the advantage of combining cross-sectional imaging data with computer software that postprocesses the data to generate both 2- and 3-D endoluminal images of the colon for analysis. The key element for a high diagnostic-quality CT colonography examination is a well-cleaned bowel preparation. All patients suffering from diverticulitis or obstructive ileus are not considered candidates for CTC. Techniques can be used to aid the diagnostic yield of CTC examination, for example, oral contrast agents or water enemas, or by applying specific bowel preparatory regimens in selected patients with complex anatomical obstructions (16).

Gastroenterologists Association (AGA) recommends CTC as an alternative tool when it is not possible to perform a complete OC (8, 9). Although some controversies, there is evidence that sensitivity of CTC compares favourably with OC in the detection of colorectal neoplasm (10).

CTC is indeed a relatively new imaging technique with the advantage of combining cross-sectional imaging data with computer software that postprocesses the data to generate both 2- and 3-D endoluminal images of the colon for analysis. The key element for a high diagnostic-quality CT colonography examination is a well-cleaned bowel preparation. All patients suffering from diverticulitis or obstructive ileus are not considered candidates for CTC. Techniques can be used to aid the diagnostic yield of CTC examination, for example, oral contrast agents or water enemas, or by applying specific bowel preparatory regimens in selected patients with complex anatomical obstructions (16).

Gastroenterologists Association (AGA) recommends CTC as an alternative tool when it is not possible to perform a complete OC (8, 9). Although some controversies, there is evidence that sensitivity of CTC compares favourably with OC in the detection of colorectal neoplasm (10).
sed and well-distended colon, particularly if fecal and fluid tagging is not employed. When the colon contains residual fluid and/or stool or it is poorly distended, false-negative and false-positive results can occur; the diagnostic usefulness of computer-aided detection algorithms will be limited too.

In our practice patients are typically scanned in two opposing positions (supine and prone) so that portions of the colon that have residual material or poor distension in one position may be re-evaluated in the opposing view.

CTC is also well tolerated by patients because it is a non invasive examination and leads to diagnosis of polyps with 5mm or greater diameter.

Although CTC is operator-and technique-dependent, it has a relatively high specificity (21).

Unlike OC or DBCE, this examination depicts simultaneously all the intra-abdominal structures with the advantage of incidental extra-colonic findings, which can be observed with an overall prevalence of 15 to 85%, whereas the prevalence of high important findings ranged from 4.5 to 13% (22).

Moreover CTC can be performed on the same day of the incomplete OC using its previous bowel preparation and air insufflation, without any discomfort or contraindication for the patient (23, 24).

However, CTC has some limitations: flat lesions may be more difficult to be detected on 3D endoluminal imaging. The lack of informations about hyperaemia, inflammatory infiltration and mucosal erosion is another limitation that is unable to provide a pathological specimen (25, 26). Anyway, CTC has the potential to become an accepted technique for the evaluation of non visualized part of colon after an incomplete OC and it can increase the diagnostic yield in the evaluation of colorectal cancer.

Conclusion

Our study demonstrated that CTC should actually become the most feasible, well-tolerated and useful technique for the assessment of the entire colon, when it is not possible to perform a complete OC, according to the most recent literature (27).

References

Role of virtual colonoscopy following incomplete optical colonoscopy: our experience