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Abstract: 

We report the design, synthesis and computational investigation of a class of Ru(II)-dyes 

for use in dye-sensitized solar cells. These dyes are designed to preserve 

the optimal anchoring mode of the prototypical N719 sensitizer by three carboxylic groups, yet 

allowing for tunable optimization of their electronic and optical properties by selective substitution 

at one of the 4-4’ positions of a single bipyridine ligand with π-excessive heteroaromatic groups. 

We used Density Functional Theory/ Time Dependent Density Functional Theory  calculations to 

analyze the electronic structure and optical properties of the dye and to investigate the dye 

adsorption mode on a TiO2 nanoparticle model. Our results show that we are effectively able to 

introduce three carboxylic anchoring units into the dye and achieve at the same time an enhanced 

dye light harvesting, demonstrating the design concept. As a drawback of this type of dyes, the 

synthesis leads to a mixture of dye isomers, which are rather tedious to separate. 

 

Keywords  

Ru(II) dyes,  Density functional calculations, UV/Vis spectroscopy, Dye adsorption on TiO2. 
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1. Introduction 

Dye-sensitized Solar Cells (DSCs) are promising alternatives to conventional photovoltaics for the 

direct conversion of solar energy into electricity at low cost and with high efficiency[1-6]. In DSCs, 

a dye sensitizer, adsorbed on the surface of a mesoporous nanostructured semiconductor film, 

usually made of titanium dioxide (TiO2), absorbs the solar radiation then transferring a photoexcited 

electron to the semiconductor conduction band. The concomitant charge hole which is created on 

the dye is transferred to a liquid electrolyte or to a solid substrate functioning as hole conductor[7, 

8]. Ruthenium(II) complexes are widely employed as dye sensitizers[9-11], delivering record 

efficiencies in DSCs devices[12-14]. The Ru(NCS)2(dcbpyH2)2 (dcbpyH2 = 4,4’-dicarboxyl- 2,2’ 

bipyridine) dye and its doubly deprotonated tetrabutylammonium  salt, N3 and N719, respectively, 

have maintained a clear lead in DSCs technology, with efficiencies exceeding 11%[13, 15]. 

In these complexes, the thiocyanate ligands ensure fast regeneration of the photo-oxidized 

dye by the redox mediator, while the two equivalent 2,2’-bipyridine (bpy) ligands functionalized in 

their 4,4’ positions by carboxylic groups ensure stable anchoring to the TiO2 surface, allowing at 

the same time for the strong electronic coupling required for efficient excited state charge 

injection[13, 16, 17]. For further progress, however, higher conversion efficiencies need to be 

achieved. To this end,  sensitizers and a deeper understanding of the interaction between the dye 

and the TiO2 nanoparticle are essential.  

A problem with the otherwise highly optimized homoleptic N3/N719 dyes is that their absorption 

is mainly centered in the blue and green spectral regions, substantially missing harvesting of 

photons in the red or near infrared region of the spectrum. Heteroleptic sensitizers have been 

therefore devised in which one of the two bpys is specifically functionalized to obtain increased 

DSCs’ performances, in particular their light harvesting capability[18-24]. Quite unexpectedly,  

however, experiments have shown that the photovoltaic performances of DSCs employing such 
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heteroleptic dyes are significantly lower compared to those observed using the parent homoleptic 

dyes[13, 18-20]. 

For this family of dyes, it was found that the photocurrent obtained from TiO2 – sensitized 

films decreased when the fully protonated to fully deprotonated dyes were used to  the 

semiconductor film[25]. The DSCs open circuit voltage, on the other hand, showed an opposite 

trend, increasing from the fully protonated to the fully deprotonated dye. An optimal product of 

photocurrent and open circuit voltage was found for an intermediate number of protons, which 

allowed further device optimization leading to efficiency exceeding 11%[13]. 

Recently, we have correlated the dye adsorption mode on TiO2 with its photovoltaic 

performances; in particular, we found that heteroleptic dyes provide constantly reduced open circuit 

potentials compared to the homoleptic complex N719[26]. 

Experiments showed that the open-circuit potential of DSCs employing such heteroleptic dyes is 

significantly lower compared to that observed using the parent N719 dye, lying usually below 750 

mV[11, 18, 20, 23, 27, 28]. In particular, a series of homogeneous DSCs fabricated under the same 

conditions and with the same TiO2 paste/electrolyte formulation, but employing N719 or 

heteroleptic dyes[26], showed a consistently reduced open-circuit potential for cells employing the 

latter dyes, pointing at a precise dye effect in determining the cell open-circuit potential. 

We found that heteroleptic dyes necessarily adsorb on TiO2 using carboxylic groups residing on 

the same bpy ligand, while N719 effectively exploits three carboxylic groups residing on two 

different bipyridine ligands for grafting onto TiO2. We speculated that heteroleptic dyes, by means 

of their adsorption mode, induce an unfavorable interaction with the TiO2 semiconductor which 

leads to aTiO2 conduction band (CB) energy down-shift compared to homoleptic dyes, ultimately 

causing reduced photovoltages. This is possibly due to the unfavorable dipolar fields exerted on the 

TiO2 surface[26, 29, 30], This analysis was somehow confirmed by a very recent study by some of 

us[31], where  YE05 dye showing two equivalent bipyridine ligands (but replacing the thiocyanate 

ligands by a phenyl-pyridine cyclometallated ligand)[31] effectively delivered in DSCs an open 
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circuit potential of ca. 800 mV, close to the values of ca. 850 mV characteristic of highly optimized 

N719-based DSCs.  As a matter of fact, heteroleptic dyes show open circuit potentials below800 

mV even in the most favorable cases.  

Other than the TiO2 CB shift due to the sensitizer electrostatic interaction, i.e. dipolar field, with 

the semiconductor, a further possible reason for the larger open circuit potential in homoleptic dyes 

is that they negatively charge the TiO2 semiconductor by virtue of increased charge transfer from 

the three carboxylic groups contacting the surface, thus shifting the CB at higher energies[32]. 

Compared to heteroleptic complexes, homoleptic dyes can also form a more compact sensitizer 

monolayer on the TiO2 surface again by virtue of their adsorption geometry, which might contribute 

to prevent electron recombination from TiO2 to the oxidized electrolyte[33-35]. 

Altogether, these observations clearly suggest that the three carboxylic groups anchoring to TiO2, 

as peculiar for N3/N719 and the YE-05 cyclometallated complex, are essential for high open circuit 

potentials. It is therefore highly desirable to design  dyes which preserve the three anchoring 

groups, as so far possible only for homoleptic complexes, still allowing for shifting the dye 

absorption spectrum towards the red and/or increasing its molar absorption coefficient, as reported 

for heteroleptic complexes based on functionalized ancillary bipyridine ligands. To fulfill the above 

requirements we designed and synthesized  mixed bipyridine ligands which bear one carboxylic 

group and one conjugated π-excessive heteroaromatic substituent at the 4 and 4’ positions (Scheme 

1). By employing these ligands we synthesized the corresponding heteroleptic complex in 

combination with 2,2
’
-bipyridine-4,4

’
-dicarboxylate and two thiocyanate ligands (Scheme 2). This  

complex carries three carboxylic groups and one functionalized 4-bpy position for tuning of the 

sensitizer electronic and optical properties.  

In this paper, we report a combined experimental and theoretical study of a  Ru(II) complex based 

on the  mixed bipyridine ligand. We propose the synthesis of a dye, of formula Ru-LL1 (NCS)2, 

where L=(4-4′-dicarboxy-2,2′-bipyridine) and L1= 4-carboxylate-4’-[(E)-2-EDOTvinyl]-2,2’-bpy, 

labeled MB, Scheme 2. In the synthesis of this  dye based on mixed bipyridine ligands we wish to 
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exploit the “three anchoring sites” concept which seems to be responsible of the unmatched 

performances of the N719 dye. Indeed a dcbpy is substituted by 4-carboxylate-4’-[(E)-2-

EDOTvinyl]-2,2’-bpy and then we introduce an additional carboxylic group.  

 

2. Experimental details 

2.1 General. NMR spectra were recorded on a Bruker AMX-500 instrument operating at 500.13 

(
1
H) and 125.77 MHz (

13
C). Coupling constants are given in Hz. 

13
C multiplicities were assigned on 

the basis of J-MOD experiments. High resolution mass spectra  were recorded on a Bruker 

Daltonics ICR-FTMS APEX II spectrometer equipped with an electrospray ionization  source. 

Flash chromatography was performed with Merck grade 9385 silica gel 230–400 mesh (60 Å). 

Reactions were performed under nitrogen in oven dried glassware and monitored by thin layer 

chromatography using UV light (254 nm and 365 nm) as visualizing agent. All reagents were 

obtained from commercial suppliers at the highest purity grade and used without further 

purification. Anhydrous solvent were purchased from Sigma Aldrich and used without further 

purification except for toluene that was degassed prior to use according to the freeze-pump-thaw 

procedure. Extracts were dried over Na2SO4 and filtered before removal of the solvent by 

evaporation.  

2.2 Synthesis of ligand 2b.  

Methyl 2-(trimethylstannyl) isonicotinate (5).Hexamethyldistannane (210 L, 334 mg, 1.02 

mmol) and tetrakis(triphenylphosphine)palladium (0) (70 mg, 0.06 mmol) were added to a solution 

of methyl 2-chloroisonicotinate (100 mg, 0.58 mmol) in toluene (10 ml) and the resulting mixture 

was refluxed for 3 h. AcOEt (50 mL) and water (100 mL) were added. The layers were separated, 

the organic layer was washed with water (5 x 100 mL), dried, and the solvent was removed by 
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rotary evaporation to leave an oily residue that was used for the next reaction without further 

purification. 

Methyl 4-[2-(3,4-ethylenedioxythien-2-yl)vinyl]-2,2'-bipyridine-4'-carboxylate (2b). Stannilate5 

(95 mg, 0.41 mmol) and  bromo derivative 4
1
 (105 mg, 0.32 mmol) were dissolved in toluene (10 

mL). Tetrakis(triphenylphosphine)palladium(0) (34 mg, 0.03 mmol) was added and the resulting 

mixture was refluxed for 20 h. A brown precipitate was collected upon filtration, extensively 

washed with toluene, and dried under vacuum, resulting in 85% pure 2b (65 mg, 53%) which was 

used without further purification for the next reaction. 
1
H NMR (CDCl3) δ8.97 (s, 1H), 8.87 (d, J = 

4.9 Hz, 1H), 8.65 (d, J = 5.1 Hz, 1H), 8.48 (s, 1H), 7.91 (d, J = 4.2 Hz, 1H), 7.49 (d, J = 16.1 Hz, 

1H), 7.37 (d, J = 4.4 Hz, 1H), 6.92 (d, J = 16.1 Hz, 1H), 6.36 (s, 1H), 4.36-4.34 (m, 2H), 4.28-4.26 

(m, 2H), 4.01 (s, 3H). 
13

C NMR (CDCl3) 165.8 (C, 1C), 157.3 (C, 1C), 156.8 (C, 1C), 149.9 (CH, 

1C), 149.7 (CH, 1C), 146.1 (C, 1C), 142.1 (C, 2C), 138.5 (C, 1C), 123.3 (CH, 1C), 123.0 (CH, 1C), 

122.9 (CH, 1C), 120.9 (CH, 1C), 120.6 (CH, 1C), 117.9 (CH 1C), 116.1 (C, 1C), 99.9 (CH, 1C) , 

64.9 (CH2, 1C), 64.6 (CH2, 1C), 52.7 (CH3, 1C). 

 

3. Results and discussion 

3.1Design and synthesis of the mixed ancillary ligand. 

A number of donor-functionalized bpy ancillary ligands (type A, Scheme3) have been so far 

reported in the literature, mostly carrying thiophene-based π-spacers[24]. In particular, we have 

described a number of ancillary bpy ligand conjugated with electron-rich and electron-poor 

heteroaromatic substituents[36]. Among these, a heteroleptic ruthenium complex containing an 

ancillary ligand carrying the electron-rich 3,4-ethylenedioxythiophene (EDOT) ring was used in 

DSCs, yielding a photovoltaic efficiency of 9.1%[23]. More recently, we have presented the  

example of a heteroarylvinylene π-conjugated quaterpyridine Ru(II) sensitizer (N1044), which 
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contained a conjugated EDOT moiety. The sensitizer, used in DSCs, exhibited an effective 

panchromatic absorption band, covering the entire visible spectrum up to the NIR region, and 

record IPCE curve ranging from 360 to 920 nm[37]. Based on these premises we have therefore 

designed the  mixed ligand 4-carboxylate-4’-[(E)-2-EDOTvinyl]-2,2’-bpy 2a and synthesized the 

corresponding heteroleptic complex [cis-(dithiocyanato)-Ru-(4,4
’
-dicarboxylate-2,2’-bpy)-[4-

carboxylate-4’-[(E)-2-EDOTvinyl]-2,2’-bpy] 3. 

The precursor ligand 2b, where the carboxylic functionality is protected via its methyl ester, 

was synthesized according to Scheme 4 via a Stille cross-coupling reaction of 4-[2-EDOTvinyl]-2-

bromopyridine (4)[37] with methyl  2-(trimethylstannyl)isonicotinate (5), obtained through a Pd 

catalyzed stannylation with hexamethyldistannane[38] of commercially available methyl 2-

chloroisonicotinate (6). The asymmetric ligand 2b was isolated as a crude precipitate from the 

reaction mixture. Due to its poor solubility, purification via recrystallization or chromatography was 

not viable and the crude compound was used as such in the subsequent formation of the Ru(II) 

complex. 

The heteroleptic complex 3 was prepared according to the route described in Scheme 5. 

 

 

3.2 Electronic structure and optical properties 

To gain insight into the electronic and optical properties of the investigated sensitizer, we 

performed Density Functional Theory/ Time Dependent Density Functional Theory (DFT/TDDFT) 

calculations in vacuum and ethanol solution. All the calculations have been performed by the 

GAUSSIAN 09 (G09) program package[39]. We optimized the molecular structure of MB in 

vacuum using the B3LYP exchange−correlation functional[40] and a 3-21G* basis set[41]. TDDFT 

calculations of the lowest singlet–singlet excitations were performed in ethanol solution on the 
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structure optimized in vacuum and using a DGDZVP basis set[42]. The nonequilibrium version of 

C-PCM[43-45] was employed for TDDFT calculations, as implemented in G09. To simulate the 

optical spectra, the 50 lowest spin-allowed singlet–singlet transitions were computed on the ground 

state geometry. Transition energies and oscillator strengths were interpolated by a Gaussian 

convolution with an σ value of 0.20 eV. 

Since the synthesis we obtained a mix of two isomers, we simulated the electronic and optical 

properties of both compounds. To avoid possible misinterpretations of the data due to the different 

dye protonation, we considered only the totally deprotonated species. To assess the stability of 

different isomers we compared their energy in solution, as obtained from DFT calculations. As 

expected from the synthesis results, the two isomers present approximately the same stability, the 

MB_1 is only 0.04 kcal/mol more stable compared to MB_2. We then investigated the electronic 

structure of both isomers; a schematic representation of the energy levels and the isodensity plots of 

selected frontier molecular orbitals of MB_1 complexes are shown in Figure 1. For comparison we 

also investigated the N3 complex considering the totally deprotonated species. 

The set of quasidegenerate Highest Occupied Molecular Orbitals (HOMO, HOMO-1 and 

HOMO-2) of all the investigated complexes have essentially Ru t2g character while the  Lowest 

Unoccupied Molecular Orbitals (LUMOs) of the complexes are bipyridine π* orbitals. For the three 

considered complexes, we note that the HOMO level are essentially the same energy (5.08-5.02 eV) 

because are the same orbitals, while the LUMO level of N3 are destabilized by 0.37 eV respect to 

the LUMO of MB. This destabilization is due to the different localization of the LUMO orbitals, 

which in MB are localized on the L1 ligand, while in the N3 the LUMOs are delocalized on both 

bipyridine ligands[16]. 

The UV-vis absorption spectrum of the  MB complex is compared to that of the standard 

deprotonated dye [15, 46] in Figure 2. As it can be noticed, the MB dye shows an absorption 

maximum  at 534 nm, 0.11 eV red shifted absorption compared to N3 (λmax = 510 nm) and also 
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shows a substantially more intense band on the blue-wing of the spectrum. This confirms that the 

introduction of the mixed bipyridine ligand in the  MB complex effectively achieves the desired 

enhancement of the dye light-harvesting capability. 

We now move to the calculated optical properties of the investigated systems. The absorption 

spectra for the investigated MB_1 and MB_2 species have been computed throughout the visible 

and UV region, thus allowing us to compare calculated and experimental data, the results are 

reported in Figure 3. 

As it can be noticed, the two MB isomers have rather different optical properties in the long 

wavelength region (500-600 nm). For both compounds, MB_1 and MB_2, in this region we 

computed the same transitions (at 615nm) even if with different oscillator strength (f), 0.0113 and 

0.1288, respectively.  On the other hand both isomers present a similar absorption for the bands 

computed at ca. 530 and 410 nm. Comparing Figure 2 and 3, we notice the best match with the 

experimental spectrum is obtained for the 1:1 average spectrum of the two isomers, although the 

calculated spectrum of MB_1 also resembles the experimental one while that of MB_2 shows rather 

different features. 

To better visualize this and to assign the experimental spectrum, we report in Figure 4 a comparison 

between the experimental and calculated spectra for MB_1. For the MB_1 species, the first band, 

experimentally found at 534 nm, is computed at 528 nm, only 0.03 eV blue-shifted with respect to 

the experimental data, and appears to be composed of two transitions at 551 and 530 nm, which 

originated from the HOMO-1/HOMO (Ru-SCN) couple to the LUMO (π* on L1). We assign the 

transitions as having Metal to Ligand Charge Transfer (MLCT) character. The second band, 

experimentally found at 389 nm, is computed at 411 nm only 0.17 eV red-shifted with respect to the 

experimental data, and is composed essentially by one transitions at 413 nm, which originated from 

the HOMO-3/HOMO (NCS-EDOT/Ru-SCN) couple to the LUMO/LUMO+2 (π* on L1). We 

assign this transitions as having mixing ππ*/MLCT character. The third band, experimentally 
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found at 313 nm, is computed at 343 nm 0.34 eV red-shifted with respect to the experimental data, 

and is composed essentially by one transitions at 339 nm, which originated from the HOMO-3 

(NCS-EDOT) couple to the LUMO+2 (π* on L1). We assign this transitions as having ππ* 

character.  

 

3.3 Dye adsorption on TiO2 and electronic structure 

To check whether the proposed dye design could effectively lead to dye adsorption on TiO2 by 

means of three anchoring groups, we calculated the interaction between the MB_1 dye and a model 

(TiO2)38 nanoparticle[48, 49]. Geometry optimizations of the dye@TiO2 complex were performed 

by the ADF code[50] using the PBE exchange-correlation potential and a DZ basis set for all atoms. 

To check the influence of dye protonation on the interaction with the TiO2 surface we modeled the 

dyes carrying 1, 2 and 3 protons, the latter corresponding to the neutral complex. The resulting 

optimized geometries are reported in Figure 5. 

As it can be noticed, out of the three carboxylic groups, the dye maintains in all cases one bridged 

bidentate adsorption and two monodentate adsorption modes, which can be protonated  (as in the 

case with 3 protons) and/or hydrogen-bonding to surface-bound protons (e.g. for the case with 2 and 

3 protons). This type of interaction with the TiO2 surface is similar to what was found for the N719 

dye on the same (TiO2)38 model and on a larger (TiO2)82 model[17], suggesting an effectively 

similar type of interfacial properties. 

We then evaluated the electronic properties of the dye-sensitized TiO2 models by performing 

B3LYP/DGDZVP single point calculations in ethanol solution on the optimized structures of the 

MB_1 dye adsorbed on TiO2, considering 1, 2 and 3 protons. For comparative purposes, we also 

performed a similar calculation for the N3 dye on the same TiO2 model carrying 3 protons. The 

results are reported in Figure 6. As it can be noticed, by increasing the number of protons carried by 

the dye, an energy down-shift of the TiO2 conduction band (CB) is observed. Notice that this effect 
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is not limited to the CB edge but it involves the entire manifold of unoccupied states. This proton-

induced TiO2 CB down-shift has already been documented [17] and is related to the Nernstian 

dependence of the TiO2 flat band potential upon the pH, with a reported CB energy down-shift by 

reducing the pH. 

It is also interesting to compare our calculated data for MB_1 against the same data obtained for the 

prototypical N3 dye. For the sake of comparison we focus here on the system carrying 3 protons. 

The results, reported in Figure 6, show essentially the same TiO2 CB DOS for the MB_1 and the N3 

dye (the two DOS curves are almost superimposable), indicating that the details of the dye structure 

only slightly modulate the TiO2 CB DOS by virtue of the dye dipole. The TiO2 CB DOS is  on the 

other hand sizably affected by the dye adsorption mode and by the dye coverage[32], in addition to 

the number of surface-adsorbed protons, as discussed above. 

 

4. Conclusions 

We have reported the design, synthesis and computational investigation of a  class of Ru(II)- dyes 

based on mixed bipyridine ligands  for use in dye-sensitized solar cells. These dyes were designed 

to preserve the optimal anchoring mode of the prototypical N719 sensitizer by three carboxylic 

groups, yet allowing for tunable optimization of their electronic and optical properties by selective 

substitution at one of the 4-4’ positions of a single bipyridine ligand with π-excessive 

heteroaromatic groups. A problem with the otherwise highly optimized homoleptic N3/N719 dyes 

is indeed that their absorption is mainly centered in the blue and green spectral regions, 

substantially missing harvesting of photons in the red or near infrared region of the spectrum. 

Heteroleptic sensitizers have been therefore devised in which one of the two bpys is specifically 

functionalized to obtain increased DSCs’ performances, in particular their light harvesting 

capability. Quite unexpectedly, however, experiments have shown that the photovoltaic 

performances, especially the open circuit voltage, of DSCs employing such heteroleptic dyes are 
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significantly lower compared to those observed using the parent homoleptic dyes. Thus the  design 

rule we propose here combines the three anchoring site of N719 and the enhanced light-harvesting 

and flexibility of heteroleptic dyes. We thus synthesized a  mixed bipyridine L1 ligand (4-

carboxylate-4’-[(E)-2-EDOTvinyl]-2,2’-bpy) and the corresponding Ru-LL1 (NCS)2 complex, 

labeled MB, where L=(4-4′-dicarboxy-2,2′-bipyridine). Unfortunately, the synthesis of the 

ruthenium complex led to a mixture of isomers (MB_1 and MB_2) which have not been possible to 

separate, thus preventing a precise characterization of this  dye.  We then resorted to DFT/TDDFT 

calculations to analyze the electronic structure and optical properties of this  dye and to investigate 

the dye adsorption mode on a TiO2 nanoparticle model. The best match between calculated data and 

the experimental absorption spectrum of the crude complex was found with the 1:1 average of the 

calculated spectra for the two isomers, in line with the results of the synthesis.  

Our computational analysis shows that we are effectively able to introduce three carboxylic 

anchoring units into the dye, which are exploited for dye anchoring, and achieve at the same time an 

enhanced dye light harvesting, demonstrating the design concept. Upon solving the synthetic 

challenges associated with the obtainment of the pure complex we expect this class of dyes to 

deliver enhanced photovoltaic performances compared to standard ruthenium dyes. 
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List of scheme, figure and table captions: 

 

Scheme 1: Ligand design paradigm for Ru(II)-sensitizers. Left: two differently functionalized 

bipyridine ligands for heteroleptic complexes. Right:  ligand design for Ru(II)-sensitizers including 

homoleptic and heteroleptic dyes. 

Scheme 2.Chemical structure of the MB ruthenium sensitizer. Notice the three carboxylic 

anchoring groups. 
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Scheme 3. Chemical structure of the 4,4′-bis[(E)-2-(3,4-ethylenedioxythien-2-yl)vinyl]-2,2′-

bipyridine (1) and 4-carboxylate-4’-[(E)-2-EDOTvinyl]-2,2’-bpy (2). 

Scheme 4. Synthesis of the methyl ester protected ancillary mixed ligand 2b. 

Scheme 5. Synthetic route used for the MB sensitizer.  

Scheme 6. Chemical structure of isomers MB_1 and MB_2 

 

Figure 1.Schematic representation of the energy levels of the MB_1, MB_2 and N3 complexes, 

considering energies in ethanol solution. Isodensity surface plots (isodensity contour: 0.035 a.u.) of 

selected MB_1 molecular orbitals are also shown. 

Figure 2. Experimental absorption spectra of the deprotonated MB (black lines) and N3[47] (blue 

lines) dyes measured in ethanol solution. 

Figure 3. Top: Calculated UV-vis absorption spectrum for MB_1. Middle: Calculated UV-vis 

absorption spectrum for MB_2. Vertical red lines correspond to calculated excitation energies and 

oscillator strengths.  Bottom: Average absorption spectrum of MB_1 and MB_2 in 1:1 ratio. 

Figure 4.Comparison between the simulated spectrum of MB_1 (red line) and the experimental 

spectrum (black line). Vertical red lines correspond to calculated excitation energies and oscillator 

strengths.  

Figure 5. Optimized geometrical structures for the MB_1 dye adsorbed onto a (TiO2)38 nanoparticle 

model. Top, middle and bottom panels refer to the dye carrying 1, 2 and 3 protons, respectively. 

Figure 6. Upper panel: Calculated density of states (DOS) in the TiO2 conduction band region for 

the MB_1 dye adsorbed onto a (TiO2)38 nanoparticle model, carrying 1, 2 and 3 protons. Bottom: 

Comparison between the DOS calculated for MB_1 and N3, both carrying 3 protons. 
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Figure 6  
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Scheme 1  
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Scheme 2  
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Scheme 3  
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Scheme 4  
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Scheme 5  
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Scheme 6  
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Highlights 

We designed a heteroleptic Ru(II) sensitizers with three carboxylic anchoring groups. 

The three carboxylic anchoring groups are essential for high open circuit potentials. 

Introduction of the mixed bipyridine ligand increases the dye light absorption. 

Computational simulations confirm  the three anchoring sites on TiO2.  


