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Summary

Objective: the purpose of this study was to introduce 
new procedure to determine the magnitude of function-
al recovery after knee surgery. Design: we compared 
the performance in the leg extension test and the re-
sponse in the sEMG activity to vibration in the oper-
ated to the non-operated leg. Thirty-eight patients with 
knee operation and 14 healthy subjects participated in 
these experiments. Results: during leg extension test, 
the mechanical power of the operated leg showed a 
lower value (P<0.001) than the contralateral one, while 
no differences were noted in the sEMG activity. The 
sEMG activity during vibration treatment was higher in 
the operated compared to non-operated leg (P<0.001). 
It has been suggested that the reduced motility trigger 
functional adaptations that are exhibited via the vibra-
tion test. Conclusions: results of our study suggest that 
combination of vibration and sEMG recordings may de-

tect the impairment as well as monitoring progress of 
the rehabilitation programs.

Key words: sEMG, whole body vibration, leg extension test, 
knee surgery recovery.

Introduction

Reparative knee joint surgery is usually followed, in a high 
percent of patients, by a long period of weakness of leg ex-
tensor muscles1, 2. It is likely that the strength modulation is 
the result of many factors such as increased pain sensitivity, 
the reduction in peripheral receptor input and the effects of 
disuse and immobility of the muscle tissue. Most rehabilita-
tion programs, after knee surgery, usually involve isokinetic 
training, and most of the muscular evaluation assessments 
have been performed with constant speed dynamometers, 
even though such systems exhibit some limitations3- 5. The 
maximal speed allowed by the isokinetic apparatus is how-
ever lower than 25% of the maximal speed achieved during 
natural leg extension6. Consequently, patients were asked 
to develop a remarkably high muscle strength; however, a 
high level of muscle tension is strongly influenced by the 
patient’s pain threshold. Therefore, functional dynamic tests 
requiring very low muscular strength should be used more 
often in injury rehabilitation of the lower extremities. Pfeifer 
and Banzer7 have reported that sEMG different test condi-
tions (stair descending, one-legged drop jump, one-legged 
cyclic hops) reveal different and persisting changes of the 
motor performance that cannot be detected by kinematics 
parameters alone. However, the assessment of neuromus-
cular function is far from sufficient for covering the large 
spectrum of biological changes, which occur with injures 
and after surgery. In this respect, a new technique consist-
ing of monitoring the electromyographic activity of the leg 
muscles during a whole body vibration treatment is suggest-
ed. This method allows the possibility to detect and quantify 
proprioceptor function and altered neural strategy of motor 
pool recruitment after injury or surgery. 
Therefore, the aim of the present investigation was to eval-
uate and quantify the magnitude of muscular power and 
sEMG activity developed during voluntary movement and 
proprioceptor functions induced by mechanical perturbation 
caused by vibration, following knee surgery. This procedure 
consist of two different tests; 1) the leg extension test mea-
suring muscle power and monitor sEMG recordings and 2) 
the sEMG response to vertical sinusoidal whole body vibra-
tion (WBV).

Materials and methods

Subjects
A group of thirty-eight male and female subjects (age 24.1 
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± 3,9 yrs; weight 74.9 ± 10.8 kg; height 175.4 ± 10.2 cm) 
who previously underwent unilateral operation of the knee 
joint resulting from different types of injuries (e.g. anterior, 
and/or posterior ligament ruptures, meniscectomy, lateral 
and medial ligament surgery) volunteered to participate in 
this study. The Ethics Committee of the Italian Society for 
Movement Science approved the study and all subjects 
signed a written consent form before they were subjected 
to any testing. Patients were postoperatively tested from 6 
to 270 weeks after surgery. The schedule consisted of three 
consecutive phases: 1) a period a warming up and stretch-
ing; 2) five trials of maximal leg extension; 3) two trials of 
10 s training on the vertical sinusoidal whole body vibration 
(WBV). In addition, fourteen healthy subjects of similar age, 
height, and body weight, also participated in the experiment 
and were subjected to the same protocol. 

Testing procedures
The testing session started with the anthropometric mea-
surements of height and body weight followed by 10 min 
of warm up. The latter consisted of 10 min cycle ergometer 
pedaling at a speed of 21 km h-1 and at 50 watts (W) fol-
lowed by 5 min stretching of the quadriceps and the triceps 
surae muscles.

Leg extension assessment for mechanical power cal-
culation
All subjects, previously accustomed to exercises, performed 
a maximal dynamic leg extension exercise on the leg exten-
sor rehabilitation machine without additional resistive load. 
The weight of the calf and the foot represents resistance of 
approximately 5% of the individual body weight and needed 
to be overcome by all patients. For each leg, five attempts 
were performed at 1 min inter trial interval. Since 2 or 3 tri-
als were needed to reach a performance plateau, the last 2 
trials of each set of measurements recorded (trial 4 and trial 
5) were used for calculation of test re-test reliability2, 8 while 
best individual performance was used for statistical analy-
sis. During the leg extension movement the displacement of 
the lower limb was monitored with a sensor (encoder) ma-
chine (Muscle Lab- Ergotest Technology A. S. Langensund, 
Norway), interfaced with a PC. When a subject moved a 
foot, a signal was transmitted by the sensor every 3 mm of 
foot displacement. From the obtained data, it was possible 
to calculate several variables, i.e. average velocity, accel-
eration, average force (F), and average power (P), corre-
sponding to the load displacements. However, it has been 
shown that the P is the most sensitive variable among all 
the mechanical variables studied, therefore, only the P was 
considered for statistical analysis8. 

sEMG analysis
The electrical activity from the vastus lateralis and vastus 
medialis muscles of each leg was recorded during the leg 
extension movements by bipolar surface electrodes (inter-
electrode distance=1.2 cm) fixed longitudinally over the 
muscle belly and amplified (gain 600, input impedance 2 
Giga-ohm, CMMR 100dB, band-pass filter 6-1500Hz). The 
sEMG raw signal was converted to a DC signal through 
the MuscleLab built in RMS converter (frequency response 

450kHz, averaging constant 100ms, total error ± 0.5%). The 
resulting DC signal, representing the average power of the 
raw sEMG signal during the past 100ms, was then sampled 
at 100Hz simultaneously with other related biomechanical 
parameters. The sEMG was expressed as a function of time 
(mV).
The subjects wore a skin suit to prevent the sEMG cables 
from swinging and to reduce or eliminate any movement arti-
fact. A personal computer (PC PentiumII 366MHz) was used 
to collect and store the data. The sEMG values of both vastus 
lateralis and vastus medialis muscles were averaged for sta-
tistical analysis, as suggested earlier9,10. The values of trial 1 
and trial 2 were also averaged for statistical analysis.

Whole body vibration treatment procedure
Immediately after the leg extension assessment, all subjects 
were exposed to vertical sinusoidal whole body vibration 
(WBV) using the NEMES L-C (KB - Ergotest KY, Jyvaskyla, 
Finland) device as follows: vibration frequency=40Hz; verti-
cal displacement=±4.0mm; acceleration=51.5m/s2; training 
duration:10s; number of trials =2; inter trial interval=120s. 
The vibratory stimuli were applied while the subjects were 
in standing position with the toes on the vibration platform; 
the knee angle was pre-set at a flexion of 100°. The sEMG 
activity was recorded from both vastus lateralis and vastus 
medialis muscles from the same place and with the same 
gain and amplification as during leg extension and in ab-
sence and in presence of vibratory stimuli. 

Statistics 
Standard statistical methods were employed, including 
mean +SD. The Pearson Product Moment Correlation Co-
efficient (r) was used for test re-test measurement reliability. 
The CV of test re-test measurements was calculated using 
the following equation11:

CV= (200 · SD) · (x1 + x2)-1

Where x1 and x2 are the mean values of two successive 
measurements and +SD is the standard deviation of the 
mean difference between test re-test measurements. Uni-
variate and multivariate paired comparisons procedure with 
suitably defined contrasts; Wilcoxon and Friedman’s non-
parametric tests were also used. The level of statistical sig-
nificance was set at P<0.05.

Results

Table 1 shows the reliability of power and the sEMG val-
ues of the last two trials during the maximal leg extension, 
while Table 2 shows the reliability of sEMG values during 
the whole body vibration (WBV) in non-operated and the 
operated leg. During the leg extension test, the mechani-
cal power of the operated leg showed a significantly lower 
value (P<0.001) than the controlateral leg (Tab. 3), while 
no differences were noted in the sEMG activity that was re-
corded simultaneously. The sEMG activity recorded during 
the WBV treatment was significantly higher (P<0.001) in the 
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operated compared to non-operated leg (Tab. 3). The great-
er response in the operated side occurred at the beginning 
of the vibratory stimuli and lasted throughout the entire time 
of stimulation (Fig. 1). The sEMG differences during WBV 
between the two legs did not occur in either healthy subjects 
(Tab. 4, vastus lateralis and vastus medialis muscles) or in 
patients whose sEMG activity was recorded in the muscles 
below the knee (medial and lateral gastrocnemious mus-
cles). The recovery of the mechanical function in the operat-
ed limb, represented by the ratio and expressed in percent 
(%) in operated/non-operated leg power, showed a positive 
relationship with the time elapsed since knee joint opera-
tion (Fig. 2). The same Figure 2 shows that in 10 patients 
the mechanical power developed in the operated leg was 
similar (within 5-7%) to that developed in the non-operated 
leg. The functional recovery of the operated leg showed a 
negative relationship with the sEMG activity induced by the 
WBV treatment (r = –0.45; P<0.006). When the sEMG ac-
tivity was expressed as a percent of the baseline, no differ-
ences between the two legs were recorded in the leg exten-
sion test, while during WBV the operated limb demonstrated 
larger values (P<0.01) than the controlateral non-operated 
one (Fig. 3). In five patients, (6, 7, 9, 13, and 19 in Fig. 4) 
the sEMG activity during the WBV and the power developed 
during the leg extensor assessment was about the same 

Table 1. Reliability of two consecutive trials (trials 4 and 5). Values are mean SD of average mechanical power and the 

electromyogram mean square root (sEMG measured during leg extension performance of both operated and non-operated limbs. r = 

Pearson Product Moment Correlation Coefficient; CV = Coefficient of Variation for repeated measures; * P<0.001). 

 

Variables 
 

Trial 4 Trial 5 r CV 

Operated leg     

Power (W) 
 

71.2  20.9 71.8  22.6 0.97* 5.7 

EMG (µV) 206.1  92.7 209.5  112.7 0.97* 4.5 

Non-operated leg 
 

    

Power (W) 
 

80.9  21.7 80.7  22.7 0.92* 15.3 

sEMG (µV) 226.6  115.0 219.3  90.1 0.87* 18.9 
Values are mean + SD. 
* significant at P<0.001 
 
 
 
 
 
 
 
 
 
 Table 2. Test re-test reliability for operated subjects (N = 38) in basic conditions and during whole body vibration (WBV) treatment.  

The sEMG was collected for 10s in both conditions, from vastus lateralis and vastus medialis muscles of both legs.  

Values are mean SD.  

 

Variables Treatment 1 Treatment 2 r CV 

Non-operated leg 

Basic sEMG (µV)  

Operated leg 

47.6  16.9 

 

42.1  16.3 

48.9  18.8 

 

44.1  17.3 

0.82 

 

0.83 

11.4 

 

13.1 

Non-operated leg 

WBV sEMG (µV)  

Operated leg  

91.5  48.5 

 

158.7  27.3 

94.2  51.6 

 

150.6 131.7 

0.94 

 

0.96 

8.7 

 

12.0 

Values are mean +SD. 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Reliability of two consecutive trials (trials 4 and 5). 
Values are mean ±SD of average mechanical power and the 
electromyogram mean square root (sEMG measured during 
leg extension performance of both operated and non-operated 
limbs. r = Pearson Product Moment Correlation Coefficient; CV 
= Coefficient of Variation for repeated measures; * P<0.001).

Table 2. Test re-test reliability for operated subjects (N = 38) in 
basic conditions and during whole body vibration (WBV) treat-
ment. The sEMG was collected for 10s in both conditions, from 
vastus lateralis and vastus medialis muscles of both legs. Val-
ues are mean ±SD.

Table 3. The mean values ( SD) of sEMG ( V) recorded in millimeters. Vastus lateralis and vastus medialis before (Basic) and during 

vibration treatment and during leg extension performances together with the mechanical power (Watts) are presented 

for the operated and non-operated legs of all subjects studied (N=38).  The asterisks indicate statistical significance 

*P<0.05; **P<0.001. The statistical significance between basic and vibration treatment and basic and leg extension 

performance is also indicated § P<0.001. 

 

Variables Leg 
 

Vibration 
 

Operated                          Non operated 
 

Basic sEMG ( V) 43.1  16.7                      48.2  17.8 * 
 

Treatment sEMG ( V) §154.6  134.4                § 92.7  49.8 ** 
 

Leg extension 
 

 

Basic sEMG ( V) 29.7  15.5                       30.0  15.1 
 

Performance sEMG ( V) § 211.9  106.0              § 230.4  123.9 
 

Mechanical Power (W) 73.8  24.4                     82.1  24.1** 
 

Values are mean + SD. 
Significance * = P<0.05; ** = P<0.001; § = P<0.001 

 
 
 
 

 

Table 4. Test–retest for healthy subjects (N=14), in basic conditions and during whole body vibration (WBV) treatments. The sEMG 

was collected for 10s in both conditions, from vastus lateralis and vastus medialis muscles of both legs. Values are 

mean SD.  

 

Variables  Trial 1 Trial 2 r CV 

Dominant 

Basic sEMG (µV)  

Non-dominant  

47.1 + 9.9 
 
 

45.7 + 11.4 

49.6 + 10.1 
 
 

48.9 + 11.5 

0.86 
 
 

0.96 

12.1 
 
 

4.7 
 

Dominant 

WBV sEMG (µV)  

Non-dominant 

82.5 + 24.7 
 
 

79.3 + 27.3 

88.2 + 25.5 
 
 

84.3 + 30.6 

0.94 
 
 

0.95 

7.4 
 
 

8.5 

Values are mean +SD. 
 

Table 3. The mean values (±SD) of sEMG recorded in micro-
volts (μV). Vastus lateralis and vastus medialis before (Basic) 
and during vibration treatment and during leg extension perfor-
mances together with the mechanical power (Watts) are pre-
sented for the operated and non-operated legs of all subjects 
studied (N=38). The asterisks indicate statistical significance 
*P<0.05; **P<0.001. The statistical significance between basic 
and vibration treatment and basic and leg extension perfor-
mance is also indicated § P<0.001.

Table 4. Test-retest for healthy subjects (N=14), in basic condi-
tions and during whole body vibration (WBV) treatments. The 
sEMG was collected for 10s in both conditions, from vastus 
lateralis and vastus medialis muscles of both legs. Values are 
mean ±SD.

Figure 1. Electromyographic recordings (sEMG) from vastus 
lateralis muscles in operated and non-operated legs. The arrow 
indicates the beginning of the vibration stimuli.
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Figure 2. The mechanical power ratio (operated/non-operated x 
100) developed during leg extension performance is presented 
as a function of time after surgery. Y = 71.0 + 0.337 x –0.0008 x 
2 r= 0.62; P < 0.01; (N = 38).

Figure 3. The sEMG detected in the leg extensor muscles 
during WBV treatment is presented as a percent of baseline 
(100%). Statistically significant differences between mean ra-
tios of non-operated (n) and operated (o) is shown (***p<0.001).

Figure 4. The individual values of the sEMG recorded in the leg 
extensor muscles of the patients and expressed as percent of 
the baseline (100%), during WBV for non-operated (filled bars) 
and operated (empty bars) legs. Patients 6, 7, 9, 13, and 19 
displayed almost the same sEMG activity (within 5-7 %) in both 
legs in response to WBV.

(within 5 -7%). These patients were tested between 70 to 
135 weeks after surgery.

Discussion

The results of our investigation suggest that during recovery 
from a knee joint surgery, a decreased muscular power dur-
ing voluntary effort, in the operated leg was associated with 
an increase in sEMG response to total body vibration.  
Before discussing this finding, it is important to address a 
few methodological issues.  Our patients were familiar and 
accustomed with the leg extensor apparatus before the start 
of testing sessions. Moreover, in each patient the test re-
test reliability showed an acceptable consistency in their 
performance with no signs of fatigue. Although, closed ki-
netic chain evaluation test have been promoted as more 
functionally appropriate and safer than open kinetic chain 
tests3- 5. With iso-inertial dynamometer used in the present 
study, it was possible to safely measure in the postoperative 
conditions the functions of muscular behavior during open 
chain performance. The leg extensor method allowed the 
use a very low external resistance, avoiding the develop-
ment of high muscle tension, which for a post surgery pa-
tient represent a limitation of the neuromuscular behavior, 
since pain threshold sensibility may interfere with the vol-
untary effort. The leg extensor test was performed before 
the WBV and it has been reported that 10 min WBV was 
able to increase muscle force, power and movement ve-
locity12, while repeated trials of WBV for 60 seconds were 
able to increase plasma concentrations of both testosterone 
and growth hormone13. To prevent possible effects in the 
sEMG response in the second WBV trial, vibratory stimuli 
were conducted for only 10s, and separated by two minutes 
inter-trial interval. 
The sEMG activation by WBV was similar to that obtained 
by the tonic vibration reflex, a response elicited by mechani-
cal vibration (10-200Hz) applied to a single muscle belly or 
to a tendon14. In the tonic vibration reflex the motor neu-
ron excitation has been mainly attributed to activation of 
primary endings of muscle spindle receptors, although the 
amplitude and the frequency used are able to excite also 
other muscles, joints, tendons and ligament receptors15-17. 
Receptor activation may be related not only to direct effects 
of the mechanical stimuli but also, indirectly, to the muscle 
contraction that follows the motor neuron reflex excitation18. 
There is no doubt that both, the lesion that has preceded the 
operation, and the operation itself with the accompanying 
inflammatory reactions might have transiently affected the 
function of joint and ligament receptors.
During WBV the mechanical stimuli most likely elicit simul-
taneous and diffuse activation of spindle receptors inner-
vating both agonistic and antagonist muscles acting on the 
same joint as well as vestibular receptors. The present ex-
periments are not adequate to provide the mechanisms of 
the reduced mechanical power and of the increased sEMG 
response to WBV in the operated leg but they clearly indi-
cate that there are sharp changes in both tests mainly in the 
early weeks after knee surgery. Besides muscle spindles, 
the role and the function of joint and ligament receptors on 
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sponding muscle. In a motor neuron that is poorly involved 
in motor commands and therefore producing a reduced 
number of muscle contractions and stretches, the devel-
opment of an increased responsiveness to muscle stretch 
in afferents represents a plastic mechanism that is able to 
improve the efficacy of the gamma loop during movement. 
Any peripheral or central stimulus, which excites fusi-motor 
neurons becomes particularly effective to increase the fir-
ing of the skeleto-motor neurons and therefore increases 
muscle strength. It is interesting to underline that this adap-
tive mechanism is reversible since it may subside when the 
muscle recovers the original strength. 

Conclusion

The aim of the present study was to propose and assess 
new procedure to detect the impairment and the progress 
of a rehabilitation program. The leg extensor test displays 
a high reproducibility, uses very low external resistance and 
therefore may provide quantitative evaluation of muscle 
capacities a few weeks after surgery. A substantial limita-
tion could be related to the subject motivation to perform a 
maximal contraction of an injured leg. The sEMG response 
to WBV has the advantage to record diffused muscle activa-
tion in which it is possible to compare contemporaneously 
the injured and the healthy leg reflex response to the same 
stimulus. The coupling of the two tests, we believe, offers 
the opportunity to assess the degree of recovery during a 
rehabilitation program and/or of a persistent deficit. 
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