Bioactive factors for tissue regeneration: state of the art

Shinsuke Ohba,¹ Hironori Hojo¹ Ung-il Chung^{1,2}

- ¹ Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, Japan
- ² Department of Bioengineering, The University of Tokyo Graduate School of Engineering, Tokyo, Japan

Corresponding author:

Shinsuke Ohba

Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine,

The University of Tokyo Graduate School of Medicine 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan e-mail: soba@bmw.t.u-tokyo.ac.jp

Summary

There are three components for the creation of new tissues: cell sources, scaffolds, and bioactive factors. Unlike conventional medical strategies, regenerative medicine requires not only analytical approaches but also integrative ones. Basic research has identified a number of bioactive factors that are necessary, but not sufficient, for organogenesis. In skeletal development, these factors include bone morphogenetic proteins (BMPs), transforming growth factor β TGF-β, Wnts, hedgehogs (Hh), fibroblast growth factors (FGFs), insulin-like growth factors (IGFs), SRY boxcontaining gene (Sox) 9, Sp7, and runt-related transcription factors (Runx). Clinical and preclinical studies have been extensively performed to apply the knowledge to bone and cartilage regeneration. Given the large number of findings obtained so far, it would be a good time for a multi-disciplinary, collaborative effort to optimize these known factors and develop appropriate drug delivery systems for delivering them.

Key words: bone regeneration, cartilage regeneration, chondrocyte, mesenchymal cell, osteoblast.

Introduction

Conventional medical strategies have focused on determining and removing the causes of diseases. In line with the treatment strategies, basic research has mostly been focused on clarifying causes. Recent progresses in biology contribute to uncovering pathophysiology of diseases at a gene level; identification of the genes responsible for disease pathogeneses through forward genetics and analyses of gene-manipulated mice through reverse genetics has enabled us to understand the molecular mechanisms of organogenesis as well as the pathophysiology of diseases. These analytical approaches will further help us to develop treatment strategies and drugs that are targeted to factors causing diseases.

When it comes to the repair of damaged tissues, the conventional strategies have relied mostly on the natural healing abilities of tissues-i.e., helping the tissues to exert their own healing abilities more efficiently. But this approach has been much less effective at curing irreversible tissue defects. Such defects are mainly treated by two strategies: tissue grafts and prosthetic implants. Autografts are superior to the other techniques in terms of function and engraftment, because the tissue is derived from the same individual and contains live cells and growth factors. Autografts are thought to have the ability both to facilitate tissue regeneration and to actively induce tissue regeneration, which enables them to be speedily fused and integrated to the implantation site. However, donor site morbidity often occurs¹. Although allografts are not invasive and are less restricted in quantity, they run a biological risk of contamination by pathogens as well as ethical challenges². In addition, we need to reduce immunological reactions between host and donor tissues when using allografts. Thus, grafts have shortcomings both with respect to quantity (availability of suitable graft material) and quality (donor site troubles, graft rejection, and disease transmission). Prosthetic implants overcome some problems associated with grafts, but have shortcomings concerning biocompatibility, function, and lonaevity.

Regenerative medicine utilizing tissue engineering techniques has drawn attention as a possible solution to these problems. In 1993, Langer and Vacanti proposed three components for the creation of new tissues: cell sources, scaffolds, and tissue-inducing factors (signaling factors), which we call bioactive factors hereafter³. It is crucial to justify and optimize the use of each component as well as to sufficiently advance and combine the three components⁴. The justification and optimization should be achieved by combining findings from biology, medicine, engineering, medical ethics, etc. Thus, unlike the conventional strategies, regenerative medicine would require not only analytical approaches but also integrative ones. Bioactive factors include a broad range of factors: growth factors, intracellular signaling molecules such as receptors, kinases and transcription factors, and signaling mimetics derived from synthetic or natural compounds.

However, in most cases, basic research has so far elucidated bioactive factors that are necessary, but not sufficient, for organogenesis. We will eventually have to identify the sufficient factors through both analytical and integrative approaches.

This work provides an overview of the progress on bioactive factors for tissue regeneration, with a particular focus on the regeneration of bone and cartilage, as a first step toward identifying bioactive factors sufficient for the regeneration. We initially discuss key factors for bone and cartilage development, then expand the discussion to the regeneration of these tissues. In addition, we mention our own approaches for optimizing bioactive factors.

Key factors for bone and cartilage development

Overview of bone and cartilage development

The mammalian skeleton is derived from three distinct origins, the paraxial mesoderm, the lateral plate mesoderm, and the ectoderm-derived neural crest; they give rise to the axial skeleton, the appendicular skeleton, and the facial skeleton, respectively. Another classification of the mammalian skeleton is based on two modes of ossification⁵, intramembranous ossification and endochondral ossification. In the former process, through which the facial skeleton is formed, mesenchymal cells condense and directly differentiate into osteoblasts to deposit bone matrix. Appendicular and axial skeletons develop through endochondral ossification, in which cartilage mold is initially formed and subsequently replaced by bone and bone marrow.

Most bones of mesodermal origin undergo endochondral ossification⁵. In the process, undifferentiated mesenchymal cells condense with the rough configuration of future skeletons. Cells in the core differentiate into chondrocytes; thin layers of cells at the periphery differentiate into fibroblast-like perichondrial cells. Chondrocytes proliferate rapidly and become post-mitotic, and start enlarging to differentiate into hypertrophic chondrocytes. Cells adjacent to hypertrophic chondrocytes are specified into the osteoblast lineage to form the bone collar and the primary spongiosa. Recent progress in understanding how the cascade of skeletal formation is regulated has revealed several growth factors and transcription factors essential for the process, including bone morphogenetic proteins (BMPs)⁶, transforming growth factor B(TGF-B)⁶, Wnts⁷, hedgehogs (Hhs)⁸, fibroblast growth factors (FGFs)⁹, insulin-like growth factors (IGFs)¹⁰, SRY box-containing gene (Sox) 911, Sp7, which is also known as osterix (Osx)¹², and runt-related transcription factors (Runx)¹².

Bone morphogenetic proteins (BMPs)

BMPs have multiple important roles during skeletal formation. *Bmp2*, *3*, *4* and *7* are expressed in the perichondrium¹³⁻¹⁶; *Bmp2* and *6* are expressed in hypertrophic chondrocytes¹⁷; and *Bmp7* is expressed in proliferating chondrocytes¹⁸. BMP receptors also exhibit characteristic expression patterns in the growth plate. BMP receptor type 1A (*Bmpr1a*), also known as activin receptor-like kinase (ALK) 3, is highly expressed in perichondrial cells, proliferating chondrocytes, and hypertrophic chondrocytes; BMP receptor type 1B (*Bmpr1b*, ALK6) is expressed throughout the growth plate and in the perichondrium; and activin A receptor type 1 (*Acvr1*, ALK2) is expressed in resting and proliferating chondrocytes^{14,19-21}. BMP receptor type II (*Bmpr2*) is expressed throughout the growth plate.

Tissue-specific ablation of the signaling offers consistent results which suggest that BMP signaling supports the proliferation of chondrocytes and induces early chondrocyte differentiation^{22,23}. However, the effects of BMP signaling on chondrocyte hypertrophy are still debated; both in vitro and in vivo evidence suggest that the signaling promotes or inhibits the hypertrophic differentiation²⁴⁻²⁷. As BMPs derive their name from their potent ability to induce ectopic bone formation when subcutaneously implanted in rodents²⁸, there are a number of studies reporting that BMPs stimulate osteoblast differentiation. In particular, phenotypes of mutant mice in which BMP-related genes are manipulated in a tissue-specific manner suggest that BMP signaling does not directly induce bone formation in the fetal stage, but rather regulates bone homeostasis after birth^{26,29-}

Transforming growth factor beta β TGF- β

Perichondrial cells and hypertrophic chondrocytes express Tafb1, 2, and 3. The expressions of Tafb1 and 2 are maintained in adult articular cartilage, suggesting a role for the TGF-B pathway in the maintenance of permanent cartilage^{33,34}. TGF-B receptor type 1 (Tgfbr1, ALK5) and TGF beta receptor II (Tgfbr2) are expressed in perichondrial cells as well as proliferating and hypertrophic chondrocytes within the growth plate. TGF-Bs have been shown to inhibit chondrocyte hypertrophy in vitro, and this effect was partially mediated by the induction of parathyroid hormone-related peptide (PTHrP) expression³⁵. This action was supported by phenotypes of mice overexpressing a dominant-negative form of Tgfbr236 and Smad3^{-/-} mice³⁷; these mutant mice showed severe progressive osteoarthritis, in which the hypertrophic zone was enlarged and the proliferating zone was reduced in postnatal articular and growth plate chondrocytes.

Wnts

The Wnt-signaling pathway is roughly divided into two by its modes of signal transduction, i.e., the B-catenin-dependent mode (canonical Wnt pathway) and the Bcatenin-independent mode (non-canonical Wnt pathway)³⁸. The former is primed by the binding of Wnts to Frizzled receptors and the low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6) in vertebrates. This interaction leads to inhibition of the activity of glycogen synthase kinase 3 beta (GSK-3B), a kinase which directs beta-catenin (B-catenin) to degradation. Accumulated B-catenin forms a complex with lymphoid enhancerbinding factor/T cell-specific transcription factor (Lef/Tcf) in the nucleus, contributing to the transcriptional activation of target genes³⁸. Non-canonical Wnt pathways include a planar cell polarity pathway, a Ca2+/ protein kinase A pathway, and a protein kinase C-dependent pathway³⁸. A number of Wnt ligands are expressed in growth cartilage and regulate endochondral ossification³⁹. Limb bud cell-specific⁴⁰, condensed mesenchyme-specific⁴¹, or chondrocyte-specific⁴² ablation of *B-catenin* leads to the impairment of chondrocyte maturation in mice. In addition, chondrocyte hypertrophy has been shown to be significantly delayed in *Wnt5a^{+/-}* mice⁴³. On the other hand, transgenic mice expressing *Wnt14* in chondrocytes showed an accelerated hypertrophy of chondrocytes⁴⁴; however, constitutive stabilization of *B*-catenin in immature chondrocytes suppressed hypertrophy^{42,45}. Thus, mutants of Wnt signaling molecules show contradictory phenotypes depending on the stage of chondrogenesis, which suggests that the signaling needs to be kept within a certain range in order to positively promote chondrogenesis.

Canonical Wnt signaling is necessary for proper osteoblastogenesis. The results of studies on *in vivo* lossof-function of *B-catenin* suggest that canonical Wnt signaling is required for the transition of *Runx2*-positive osteoblast precursors into *Osx*-positive ones and the maturation of osteoblasts^{40,41,46}. In addition, canonical Wnt signaling has been shown to suppress osteoclastogenesis by activating the expression of osteoprotegerin, an inhibitor of osteoclast differentiation, in mature osteoblasts⁴⁷. It is notable that loss- or gain-of-function mutations in *LRP5* are linked with the osteoporosispseudoglioma syndrome⁴⁸ and a familial high bone mass phenotype⁴⁹, respectively, which were recapitulated in mice carrying similar mutations^{50,51}.

Hedgehogs (Hhs)

Mammals have three homologues of drosophila hedgehog: sonic hedgehog (Shh), indian hedgehog (Ihh), and desert hedgehog (Dhh)52. Among them, Ihh has been shown to be essential for endochondral ossification. Mouse genetic studies have revealed that lhh forms a negative feedback loop with PTHrP to maintain proper differentiation of growth plate cartilage^{53,54}. In the model, PTHrP, which is expressed in periarticular chondrocytes, acts on columnar proliferating chondrocytes to inhibit their hypertrophy via PTH/PTHrP receptors (PPRs). Prehypertrophic chondrocytes highly express not only PPRs but also Ihh. Ihh may act on periarticular chondrocytes to induce PTHrP expression in an Ihh gradient-dependent manner. Thus, the length of proliferating columns, and hence the growth potential of cartilage, is critically determined by the Ihh-PTHrP negative feedback loop. In addition, Ihh itself has positive effects on chondrocyte proliferation 55-57

In osteoblast differentiation, direct input of Ihh to mesenchymal cells in the perichondrium or primary spongiosa is required for their specification into the osteoblast lineage^{56,58}. Perichondrial cells in *Ihh^{-/-}* mice have been shown to neither express *Runx2*, one of the earliest markers of the osteoblast lineage, nor form bone collars⁵⁶. The requirement of Hh is restricted to endochondral bones; inactivation of Hh signaling affects endochondral ossification, but not intramembranous ossification^{56,58}. We recently reported that Gli1, a transcriptional activator acting downstream of Hh signaling, worked for the initial requirement of Hh signaling in the specification of progenitors into osteoblast lineages by cooperating with two other Gli members, Gli2 and Gli3⁵⁹. Hh signaling is also involved in the maintenance of bone mass in adults^{60,61}.

Fibroblast growth factors (FGFs)

FGF ligands and FGF receptors (FGFRs) are expressed at every stage of endochondral ossification⁶². In particular, Fgfr3 is expressed in proliferating chondrocytes and *Fqfr1* is expressed in prehypertrophic and hypertrophic chondrocytes⁵. Transgenic mice carrying activating point mutations in Fafr3 showed a decreased rate of chondrocyte proliferation and impaired chondrocyte hypertrophy⁶³. Conversely, *Fafr3^{-/-}* mice exhibited an increased rate of proliferation of chondrocytes and an expansion of hypertrophic chondrocytes⁶⁴. In humans, activating mutations in the FGFR3 gene cause several types of chondrodysplasia including achondroplasia (ACH, OMIM 100800), hypochondroplasia (HCH, OMIM 146000), and thanatophoric dysplasia type I and II (OMIM 187600 and 187601). As for FGF ligands, the strong resemblance between cartilage phenotypes in Faf18^{-/-65} and Fafr3^{-/-65} mice suggests that FGF18 is a relevant ligand with FGF signaling in chondrocytes, although such ligands are not fully defined vet⁵.

Osteoblast-specific inactivation of Fgfr1 was shown to result in accelerated differentiation of osteoblasts, whereas the differentiation was delayed by knockout of Fgfr1in osteo-chondroprogenitors⁶⁶. These data suggest that FGFR1 promotes early osteoblast differentiation, but inhibits osteoblast maturation. Skeletal dwarfism with decreased bone mass has been observed in mesenchymespecific Fgfr2¹⁻ mice, in which the proliferation of osteoprogenitors and anabolic function of mature osteoblasts were disturbed⁶⁷. Fgfr3^{-/-} mice had defects in bone as well as those in cartilage mentioned earlier; the mutants showed osteopenia, suggesting roles of FGFR3 in postnatal homeostasis of bone⁶⁸. In addition, deletion of Faf2 caused osteopenia in adult mice⁶⁹, and Faf2 transgenic mice had defects in bone mineralization⁷⁰. Based on these data, one can infer that in osteoblast differentiation, FGF signaling positively acts on the proliferation of immature cells to form a progenitor pool, which is why both activation and inactivation of the signaling affect bone formation.

Insulin-like growth factors (IGFs)

Insulin and IGFs bind to receptor tyrosine kinases (RTKs) to initiate cellular responses. RTKs are known to regulate a variety of signaling pathways controlling metabolism, growth, and survival. Insulin receptor substrates (IRSs) are substrates of RTKs, integrating pleiotropic effects of insulin and IGFs. There are two IGFs, IGF-1 and IGF-2; IGF1 is thought to control body size throughout development^{71,72}, whereas IGF-2 is indispensable for normal embryonic growth^{73,74}.

Type I IGF receptor (*Igf1r*), a receptor for both IGF-1 and IGF-2, is expressed in both chondrocytes and osteoblasts. *Igf1^{-/-}* mouse embryos exhibited a smaller skeleton with significant delays in ossification, suggesting an important role of IGF-1 signaling in skeletal growth⁷². In addition, the size of hypertrophic chondrocytes was reduced in postnatal *Igf1^{-/-}* mice⁷⁵.

Patients with type 1 diabetes caused by insulin deficiency are associated with osteoporosis⁷⁶; those with Laron syndrome caused by IGF-I deficiency also exhibit this condition⁷⁷. A reduction in IGF-I is also an important factor in the

etiology of involutional osteoporosis, and especially of age-related bone loss⁷⁸. Based on our results of analyses on *Irs1^{-/-}* or *Irs2^{-/-}* mice, it is proposed that IRS-2 was necessary for maintaining the predominance of bone formation over bone resorption⁷⁹, whereas IRS-1 maintained bone turnover⁸⁰.

SRY box-containing gene 9 (Sox9)

Sox9 has been shown to be essential for mesenchymal condensations and subsequent formation and maintenance of chondrocytes^{81,82}. Two members of the Sox family, Sox5 and Sox6, are known to function as coactivators of Sox9 in the chondrocyte differentiation⁸³. Sox9, Sox5 and Sox6 (the Sox trio) are expressed at a high level in proliferative and prehypertrophic chondrocytes, and at a moderate level in hypertrophic chondrocytes⁸⁴. The function of Sox9 in chondrocyte hypertrophy is controversial; hypertrophic chondrocyte-specific overexpression of Sox9 led to delayed hypertrophy, while chondrocyte hypertrophy was accelerated in the $Sox9^{+/-}$ cartilage^{42,85}. On the other hand, Sox9 was recently shown to be required to delay prehypertrophy and to allow chondrocyte hypertrophy⁸⁴. Collectively, these results suggest that Sox9 likely exerts its different effects in different stages of chondrocyte differentiation, possibly by interacting with different partners in addition to Sox5 and 6. Haploinsufficiency of SOX9 in humans causes campomelic dysplasia (CD; OMIM 114290), and skeletal defects in CD patients are recapitulated in Sox9^{+/-} mice⁸⁶.

Sp7

Osterix (Osx), a zinc finger - containing transcription factor encoded by *Sp7*, is highly expressed in osteoblastic cells of all skeletal elements⁸⁷. Osx has been thought to be one of the master regulators of osteoblastogenesis, since disruption of *Sp7* resulted in perinatal lethality with a complete lack of bone formation in both intramembranous and endochondral bones⁸⁷. Unlike in *Runx2*-deficient mice (as discussed below), chondrocyte differentiation and mineralization were normal in *Sp7*^{-/-} mice⁸⁷. Furthermore, *Sp7*^{-/-} perichondrial cells ectopically differentiated into chondrocytes expressing *Sox9*⁸⁷. *Sp7* was not expressed in *Runx2*^{-/-} embryos, and *Runx2* was expressed normally in *Sp7*^{-/-} embryos⁸⁷, suggesting that Osx genetically acted downstream of Runx2 in the transcriptional cascade of osteoblast differentiation.

Runt-related transcription factors (Runx) and core binding factor beta (Cbfb)

In mammals, there are three *Runx* genes: *Runx1*, *Runx2*, and *Runx3*⁸⁸. Developing cartilage expresses *Runx1*; *Runx2* is expressed in proliferating, prehypertrophic, and hypertrophic chondrocytes as well as perichondrium including osteoblast precursors; *Runx3* is mainly expressed in hypertrophic chondrocytes. In 1997, three different groups reported that $Runx2^{-h}$ mice lacked osteoblasts in both intramembranous and endochondral bones, which indicated that Runx2 was indispensable for osteoblastogenesis⁸⁹⁻⁹¹. The importance of *Runx2* in bone formation is underscored by the existence of cleidocranial dysplasia, a hereditary skeletal disorder caused by inactivating mutations of one of the *RUNX2* alleles⁹¹.

Chondrocyte hypertrophy was also affected in the $Runx2^{h}$ mice⁸⁹, although proliferating chondrocytes were present. Chondrocyte-specific *Runx2* transgenic mice exhibited acceleration of hypertrophy with ectopic expression of prehypertrophic and hypertrophic markers including *Col10a1* and *Ihh*⁹². Yoshida et al. further reported that chondrocyte hypertrophy was absent in $Runx2^{h}$; $Runx3^{h}$ compound mutants, suggesting that those two genes had an overlapping and necessary function in the process⁹³. *Runx1* was shown to regulate the commitment of mesenchymal cells to the chondrocyte lineage by cooperating with Runx2 to induce the expression of *Sox5* and 6^{94} .

Core binding factor beta (Cbfb) is known to be a cofactor of Runx proteins. *Cbfb* is highly expressed in prehypertrophic and hypertrophic chondrocytes, perichondrial cells and osteoblasts. *Cbfb*^{-/-} mice display a lack of osteogenesis and a disruption of chondrocyte hypertrophy like that seen in *Runx2*^{-/-}mice^{93,95}.

Application of bioactive factors to bone and cartilage regeneration

Bone regeneration

The efficacy of recombinant human BMP-2 (rhBMP-2) and rhBMP-7 in the fracture repair of tibia and spine fusion has been shown by several clinical trials⁹⁶. Friedlaender et al. found in a randomized, prospective, and multiinstitution study that the clinical outcomes of rhBMP-7 treatment were comparable to those of autologous bone grafts, with no adverse events in the treatment of tibial non-unions, which led them to conclude that rhBMP-7 was a safe and effective alternative to bone grafts⁹⁷ Govender et al. reported the safety and efficacy of rhBMP-2 for the treatment of open tibial fractures by a prospective, randomized, controlled, and single-blind study⁹⁸. Burkus et al.⁹⁹ and Johnsson et al.¹⁰⁰ described successful outcomes of the use of rhBMP-2 in posterolateral lumbar spine fusion and the use of rhBMP-7 in noninstrumented posterolateral spinal fusions, respectively. There are other promising results on the efficacy of BMPs in clinical settings, which Lee et al. recently reviewed⁹⁶. However, a large amount of BMP is required for the treatments, and BMP-containing devices often fail. which raises concerns over costs and safety¹⁰¹⁻¹⁰³. The reasons may be related to a lack of delivery systems which enable the release of BMPs in a controlled and sustained manner, the short biological half-life of BMPs, and the difficulties in mimicking the biological condition¹⁰⁴. Takaoka et al. studied PLA derivatives and their composites with other materials as a carrier of rhBMP-2¹⁰⁵⁻¹⁰⁸. They combined a block co-polymer of PLA-p-dioxanone-poly(ethylenglycol) (PEG) and beta-TCP (PLA/PEG/beta-TCP)¹⁰⁹. The efficacy of the rhBMP-2-loaded PLA/PEG/beta-TCP in bone repair has been shown by various animal models relevant to clinical situations¹¹⁰⁻¹¹³. Similarly, Nie et al. reported the delivery of plasmids expressing BMP-2 using PLGA/hydroxyapatite composite scaffolds¹¹⁴. Finally, some studies have suggested that the use of BMP enables us to utilize abundant autologous adult cells for bone regeneration; Krebsbach et al. and Hirata et al. described *in vivo* bone regeneration using dermal fibroblasts that were infected with adenoviruses expressing BMP-7 and BMP-2, respectively^{115,116}.

Among Wnt ligands, Wnt3a has been applied to the enhancement of bone regeneration or osseointegration of implants. Using a 1.0 mm hole drilled in mouse tibia, Minear et al. showed that Wnt3a, purified and packaged in liposomal vesicles, increased the rate of bone regeneration¹¹⁷. In terms of the mechanisms underlying the effect of Wnt3a, they found that Wnt3a treatment stimulated the proliferation of cells around injury sites and their differentiation into osteoblasts. The group also reported that the liposomal Wnt3a enhanced osseointegration of implants in mouse tibia¹¹⁸.

The in vivo bone regeneration effect of Hh proteins was initially examined by the transplantation of SHH-transduced cells into rat calvarial bone defects. Gingival fibroblasts, periosteal-derived cells, or fat-derived stem cells were retrovirally transduced with human SHH and encapsulated into the alginate/type I collagen-mixed matrix; these cell-matrix composites were found to induce substantial bone regeneration in a rat model¹¹⁹. In line with these results, Wang et al. showed impaired bone healing in mice defective in Hh signaling as well as in vivo bone regeneration by periosteal cells adenovirally transduced with Shh¹²⁰. What are the mechanisms underlying the osteogenic effect of Hh? Recently, Hh was shown to induce the development of the vasculature in terms of vascular lumen formation, size, and distribution. Lumen formation in a cellular aggregate consisting of human mesenchymal stem cells (MSCs) and endothelial cells depended on the activity of Hh signaling; the formation was enhanced when Hh signaling was exogenously stimulated by an Hh agonist or Shh protein. Furthermore, an Shh-treated cellular aggregate induced more bone formation than untreated aggregates when they were subcutaneously implanted. This result suggested that the enhancement of vasculature formation, as well as the osteogenic induction, contributed to Hh-mediated in vivo bone regeneration¹²¹. In addition, Song et al. described that bone marrow-derived MSCs transduced with both Fgf2 and Shh showed more potent effects on bone regeneration in rat 8-mm-diameter calvarial defects than those transduced with Fqf2 or Shh alone¹²².

The efficacy of FGF-2 alone on bone repair was examined in clinical settings as well as in preclinical studies. In a randomized and placebo-controlled trial, Kawaguchi et al. revealed that a local application of gelatin hydrogel containing recombinant human (rh) FGF-2 accelerated the healing of tibial shaft fractures without any significant difference in the profiles of adverse events between treatment and control groups^{123,124}.

With regard to transcription factors, *in vitro* and preclinical studies point to Runx2 as a useful factor for bone regeneration using stem cells and/or osteoblast lineage cells¹²⁵⁻¹²⁸. Ye et al. recently achieved *in vivo* bone regeneration in a mouse calvarial bone defect model by transplanting induced pluripotent stem cells (iPSCs) overexpressing *SATB2* into the defects. SATB2 is a nuclear matrix protein promoting osteogenesis by interacting with Runx2 and activating transcription factor 4 (ATF 4)¹²⁹. They reported that no tumor development was observed in any of the mice that had undergone the transplantation of *SATB2*-overexpressing iPSCs. However, to apply this method in a clinical setting, it is necessary to examine how many cells still exist in an undifferentiated state and, if any, to completely sort them out after the osteogenic induction by *SATB2*.

Another strategy for bone regeneration is to activate osteogenic signaling pathways by small chemical compounds. Statins¹³⁰, isoflavone derivatives^{131,132}, and TAK-778¹³³ have been reported to stimulate osteogenic differentiation, but their osteogenic activity was shown only in specific cell types, including osteoblastic cells and stem cells. We have identified several osteogenic small compounds: 4-(4 methoxyphenyl)pyrido [4',3':4,5]thieno[2,3b]pyridine-2-carboxamide (TH)¹³⁴, icariin isolated from the herb *Epimedium pubescens*¹³⁵, and an isoflavone derivative, glabrisoflavone¹³⁶. These compounds may be candidates for small compound-mediated bone regeneration in the future.

Cartilage regeneration

Indrawattana et al. reported the use of three factors, TGF-B3, BMP-6, and IGF-1, in pellet cultures of human bone marrow cells for chondrogenic induction¹³⁷. IGF-1loaded fibrin clots induced cartilage repair in critical-sized, full thickness defects in adult horses138 and partial thickness ones in mini pigs¹³⁹. Implantation of chondrocytes loaded with IGF-1-containing fibrin clots improved the overall continuity and consistency of the cartilage repair, as compared with that of chondrocytes alone, in a horse model¹⁴⁰. Nawata et al. generated cartilage discs by implanting, into subcutaneous tissues, muscle-derived cells that had been seeded on diffusion chambers with BMP-2; transplantation of the disc into osteochondral defects induced the repair of articular cartilages¹⁴¹. They also reported therapeutic effects of autologous MSCs transfected with cartilage-derived matrix protein (CDMP)-1 on cartilage defects created in rabbits¹⁴². TGF-B1 was shown to repair full-thickness cartilage defects by improving chondrocyte integration into endogenous tissues and to induce the differentiation of MSCs to form ectopic cartilage in vivo143. Regarding FGFs, Ishii et al. reported that the fibrin sealant-incorporating FGF-2 successfully induced the healing of surfaces of hyaline cartilages and concomitant repair of the subchondral bones in cartilage defects in rabbits' knees¹⁴⁴. FGF18 also stimulated the repair of damaged cartilage¹⁴⁵.

As described below, we previously induced chondrocyte markers in human skin fibroblasts *in vitro* by overexpressing the *SOX trio*¹⁴⁶. Because the fibroblast-derived chondrocytes appeared to form fibrocartilage rather than hyaline cartilage, Hiramatsu et al. hypothesized that type I collagen expression still persisted in the cells and reprogramming factors might eliminate fibroblastic properties during chondrogenic differentiation of fibroblasts. Indeed, they achieved the generation of hyaline cartilage with fibroblasts retrovirally infected with two reprogramming factors, *c-Myc* and *KIf4*, and *Sox9*¹⁴⁷.

With the ultimate goal of clinically applying autologous chondrocytes to cartilage regeneration, the combination of growth factors was optimized to expand human chondrocytes and to re-differentiate de-differentiated chondrocytes in culture^{148,149}. The combination of FGF-2 with insulin or IGF-I was suggested to be useful for the promotion of chondrocyte proliferation¹⁴⁸. Also, the combination of BMP-2, insulin, and triiodothyronine (T3) was found to be the most effective for the re-differentiation of the de-differentiated cells after repeated passages¹⁴⁹.

As for small compounds effective for cartilage regeneration, TAK-778¹⁵⁰ and AG-041R^{151,152} were reported to have *in vivo* chondrogenic effects. There are several other compounds showing positive effects on *in vitro* chondrocyte differentiation¹⁵³⁻¹⁵⁶. Recently, Johnson et al. found that kartogenin (KGN) promoted chondrocyte differentiation in human MSCs and achieved cartilage repair in both cytokine-induced and surgically-induced osteoarthritis in mice¹⁵⁷. They identified an actin-binding protein, filamin A (FLNA), as a target molecule of KGN, and KGN blocked an association of FLNA with Cbfb, a cofactor of Runx family proteins. Based on these data, they concluded that KGN exerted chondrogenic effects by binding to FLNA and disrupting its interaction with Cbfb, which modulated the Runx proteins that were closely involved in proper chondrogenesis.

Screening of bioactive factors for potent combinations for tissue regeneration

Because most of the studies described so far focused on a single factor, the possibility remained that some combination of these and/or other signaling molecules might induce bone and cartilage regeneration more potently than a single factor. The optimization of bioactive factors through comprehensive screening would address this concern. For comprehensive screening, we developed cell-based censors to detect osteoblast or chondrocyte differentiation by utilizing transgenes in which an osteoblast-specific promoter fragment (2.3 kb Col1al promoter) or chondrocyte-specific promoter (Col2a1 promoter) was linked to a green fluorescent protein (GFP) gene. Using embryonic stem cells (ESCs) carrying the 2.3 kb Col1al promoter-GFP transgene, we screened cDNA libraries and the combination of activators or inhibitors of osteogenesis-related pathways (BMP, Hh, Runx2, Wnt, and IGF-1) for combinations that induced GFP fluorescence. The screening revealed that the combination of BMP signaling and Runx2 was the most potent for the induction of GFP, i.e., osteogenic differentiation. The combination induced the differentiation in mouse ESCs, human dermal fibroblasts, and non-osteogenic cell lines. We succeeded in inducing rapid bone regeneration by transplantation of a monolayer sheet of fibroblasts transduced with this combination¹⁶

We also used ESCs carrying the Col2a1 promoter-GFP transgene to screen factors that were known to be important for chondrogenesis, SOX5, SOX6, SOX9, IGF-1, FGF-2, Ihh, BMP-2, TGF-8, and Wnts, for potent chondrogenic combinations. GFP expression was observed only upon the treatment with the *SOX trio*. The *SOX trio* successfully induced chondrocyte differentiation in all cell types tested, including ES cells, MSCs, and human skin fibroblasts. In contrast to the conventional chondrogenic techniques, the *SOX trio* suppressed hypertrophic and osteogenic differentiation at the same time¹⁴⁶. In addition to genes, we have been successfully identifying both osteogenic and chondrogenic small compounds by the screening of compound libraries using cell-based censors^{136,156}.

Future perspectives

A large number of bioactive factors have been identified as crucial regulators of skeletal formation, and researchers in this field have explored suitable ways to apply them to bone and cartilage regeneration. How will we effectively modulate specific signaling pathways for tissue regeneration? Most viral vectors are unlikely to be available for use in clinical settings due to safety concerns. In the case of recombinant proteins, there are problems in terms of protein degradation and the high cost of protein synthesis. The use of small compounds is likely to overcome these problems, at least to some degree, since they are more stable than proteins and can often be industrially produced. In any case, a sophisticated drug delivery system (DDS) would be required for directing proteins or compounds to target tissues in a temporally and spatially controlled manner.

As described in this review, many bioactive factors have already been identified. We think that the highest priority should now be placed on an integrative approach to optimize these known factors and to develop an appropriate DDS for their delivery, not on the identification of novel and ever more potent factors. To build an efficient integrative approach, we need to keep our eyes on new developments in every field related to tissue engineering—including medicine, biology, engineering, pharmaceutical science, medical economics, and medical ethics—and to build a multi-disciplinary collaboration.

References

- Tessier P, Kawamoto H, Matthews D et al. Autogenous bone grafts and bone substitutes—tools and techniques: I. A 20,000-case experience in maxillofacial and craniofacial surgery. Plast Reconstr Surg 2005;116:6S-24S; discussion 92S-94S.
- Eppley BL, Pietrzak WS, Blanton MW. Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J Craniofac Surg 2005;16:981-989.
- 3. Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920-926.
- Lanza RP, Langer R, Vacanti J. Principles of Tissue Engineering. second ed. San Diego: Academic Press; 2000.
- 5. Kronenberg HM. Developmental regulation of the growth plate. Nature 2003;423:332-336.
- Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 2012;8:272-288.
- 7. Yang Y. Wnt signaling in development and disease. Cell Biosci 2012;2:14.
- Day TF, Yang Y. Wnt and hedgehog signaling pathways in bone development. J Bone Joint Surg Am 2008;90 Suppl 1:19-24.

- Marie PJ, Miraoui H, Severe N. FGF/FGFR signaling in bone formation: progress and perspectives. Growth Factors 2012;30:117-123.
- 10. Fulzele K, Clemens TL. Novel functions for insulin in bone. Bone 2012;50:452-456.
- Akiyama H, Lefebvre V. Unraveling the transcriptional regulatory machinery in chondrogenesis. J Bone Miner Metab 2011;29:390-395.
- Komori T. Signaling networks in RUNX2-dependent bone development. J Cell Biochem 2011;112:750-755.
- Pathi S, Rutenberg JB, Johnson RL, Vortkamp A. Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev Biol 1999;209:239-253.
- Zou H, Wieser R, Massague J, Niswander L. Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev 1997;11:2191-2203.
- 15. Daluiski A, Engstrand T, Bahamonde ME et al. Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet 2001;27:84-88.
- Haaijman A, Burger EH, Goei SW et al. Correlation between ALK-6 (BMPR-IB) distribution and responsiveness to osteogenic protein-1 (BMP-7) in embryonic mouse bone rudiments. Growth Factors 2000;17:177-192.
- Lyons KM, Pelton RW, Hogan BL. Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A). Development 1990;109:833-844.
- Lyons KM, Hogan BL, Robertson EJ. Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech Dev 1995;50:71-83.
- Minina E, Wenzel HM, Kreschel C et al. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 2001;128:4523-4534.
- Sakou T, Onishi T, Yamamoto T, Nagamine T, Sampath T, Ten Dijke P. Localization of Smads, the TGFbeta family intracellular signaling components during endochondral ossification. J Bone Miner Res 1999;14:1145-1152.
- Yi SE, LaPolt PS, Yoon BS, Chen JY, Lu JK, Lyons KM. The type I BMP receptor BmprIB is essential for female reproductive function. Proc Natl Acad Sci U S A 2001;98:7994-7999.
- 22. Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A 2005;102:5062-5067.
- Retting KN, Song B, Yoon BS, Lyons KM. BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 2009;136:1093-1104.
- 24. Grimsrud CD, Romano PR, D'Souza M et al. BMP-6 is an autocrine stimulator of chondrocyte differentiation. J Bone Miner Res 1999;14:475-482.
- 25. Kobayashi T, Lyons KM, McMahon AP, Kronenberg HM. BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci U S A 2005;102:18023-18027.

- Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2006;2:e216.
- Yoon BS, Pogue R, Ovchinnikov DA et al. BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development 2006;133:4667-4678.
- Wozney JM, Rosen V, Celeste AJ et al. Novel regulators of bone formation: molecular clones and activities. Science 1988;242:1528-1534.
- 29. Kugimiya F, Kawaguchi H, Kamekura S et al. Involvement of endogenous bone morphogenetic protein (BMP) 2 and BMP6 in bone formation. J Biol Chem 2005;280:35704-35712.
- Okamoto M, Murai J, Yoshikawa H, Tsumaki N. Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development. J Bone Miner Res 2006;21:1022-1033.
- Mishina Y, Starbuck MW, Gentile MA et al. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. J Biol Chem 2004;279:27560-27566.
- Kamiya N, Ye L, Kobayashi T et al. Disruption of BMP signaling in osteoblasts through type IA receptor (BMPRIA) increases bone mass. J Bone Miner Res 2008;23:2007-2017.
- Ellingsworth LR, Brennan JE, Fok K et al. Antibodies to the N-terminal portion of cartilage-inducing factor A and transforming growth factor beta. Immunohistochemical localization and association with differentiating cells. J Biol Chem 1986;261:12362-12367.
- Morales TI, Joyce ME, Sobel ME, Danielpour D, Roberts AB. Transforming growth factor-beta in calf articular cartilage organ cultures: synthesis and distribution. Arch Biochem Biophys 1991;288:397-405.
- Serra R, Karaplis A, Sohn P. Parathyroid hormonerelated peptide (PTHrP)-dependent and -independent effects of transforming growth factor beta (TGFbeta) on endochondral bone formation. J Cell Biol 1999;145:783-794.
- Serra R, Johnson M, Filvaroff EH et al. Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol 1997;139:541-552.
- Yang X, Chen L, Xu X, Li C, Huang C, Deng CX. TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol 2001;153:35-46.
- Johnson ML, Rajamannan N. Diseases of Wnt signaling. Rev Endocr Metab Disord 2006;7:41-49.
- Andrade AC, Nilsson O, Barnes KM, Baron J. Wnt gene expression in the post-natal growth plate: regulation with chondrocyte differentiation. Bone 2007;40:1361-1369.
- Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C. Canonical Wht/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 2005;8:727-738.
- 41. Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F. Se-

quential roles of Hedgehog and Wnt signaling in osteoblast development. Development 2005;132:49-60.

- Akiyama H, Lyons JP, Mori-Akiyama Y et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev 2004;18:1072-1087.
- Yang Y, Topol L, Lee H, Wu J. Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 2003;130:1003-1015.
- Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/betacatenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005;8:739-750.
- 45. Tamamura Y, Otani T, Kanatani N et al. Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem 2005;280:19185-19195.
- Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006;133:3231-3244.
- Glass DA, 2nd, Bialek P, Ahn JD et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005;8:751-764.
- Gong Y, Slee RB, Fukai N et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001;107:513-523.
- 49. Boyden LM, Mao J, Belsky J et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002;346:1513-1521.
- Kato M, Patel MS, Levasseur R et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002;157:303-314.
- 51. Babij P, Zhao W, Small C et al. High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 2003;18:960-974.
- Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev 2001;15:3059-3087.
- 53. Chung UI, Lanske B, Lee K, Li E, Kronenberg H. The parathyroid hormone/parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. Proc Natl Acad Sci U S A 1998;95:13030-13035.
- Chung UI, Schipani E, McMahon AP, Kronenberg HM. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest 2001;107:295-304.
- 55. Long F, Zhang XM, Karp S, Yang Y, McMahon AP. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 2001;128:5099-5108.
- 56. St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and

differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999;13:2072-2086.

- Hilton MJ, Tu X, Cook J, Hu H, Long F. Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development. Development 2005;132:4339-4351.
- Long F, Chung UI, Ohba S, McMahon J, Kronenberg HM, McMahon AP. Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development 2004;131:1309-1318.
- Hojo H, Ohba S, Yano F et al. Gli1 Protein Participates in Hedgehog-mediated Specification of Osteoblast Lineage during Endochondral Ossification. J Biol Chem 2012;287:17860-17869.
- Ohba S, Kawaguchi H, Kugimiya F et al. Patched1 haploinsufficiency increases adult bone mass and modulates Gli3 repressor activity. Dev Cell 2008;14:689-699.
- Mak KK, Bi Y, Wan C et al. Hedgehog signaling in mature osteoblasts regulates bone formation and resorption by controlling PTHrP and RANKL expression. Dev Cell 2008;14:674-688.
- Ornitz DM. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 2005;16:205-213.
- 63. Naski MC, Colvin JS, Coffin JD, Ornitz DM. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 1998;125:4977-4988.
- 64. Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 1996;12:390-397.
- Liu Z, Lavine KJ, Hung IH, Ornitz DM. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev Biol 2007;302:80-91.
- Jacob AL, Smith C, Partanen J, Ornitz DM. Fibroblast growth factor receptor 1 signaling in the osteochondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol 2006;296:315-328.
- Yu K, Xu J, Liu Z et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development 2003;130:3063-3074.
- Valverde-Franco G, Liu H, Davidson D et al. Defective bone mineralization and osteopenia in young adult FGFR3-/- mice. Hum Mol Genet 2004;13:271-284.
- Montero A, Okada Y, Tomita M et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest 2000;105:1085-1093.
- Coffin JD, Florkiewicz RZ, Neumann J et al. Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol Biol Cell 1995;6:1861-1873.
- 71. Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993;75:73-82.

- 72. Liu JP. Baker J. Perkins AS. Robertson EJ. Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (lgf1r). Cell 1993;75:59-72.
- 73. DeChiara TM, Efstratiadis A, Robertson EJ. A growthdeficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 1990;345:78-80.
- 74. DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 1991;64:849-859.
- 75. Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A. Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol 2001;229:141-162.
- 76. Krakauer JC, McKenna MJ, Rao DS, Whitehouse FW. Bone mineral density in diabetes. Diabetes Care 1997;20:1339-1340.
- 77. Laron Z, Klinger B, Silbergeld A. Patients with Laron syndrome have Osteopenia/Osteoporosis. J Bone Miner Res 1999;14:156-157.
- 78. Canalis E. Insulin-like growth factors and osteoporosis. Bone 1997;21:215-216.
- 79. Akune T, Ogata N, Hoshi K et al. Insulin receptor substrate-2 maintains predominance of anabolic function over catabolic function of osteoblasts. J Cell Biol 2002;159:147-156.
- 80. Ogata N, Chikazu D, Kubota N et al. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest 2000;105:935-943.
- 81. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet 1999;22:85-89.
- 82. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 2002;16:2813-2828.
- 83. Smits P, Li P, Mandel J et al. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell 2001;1:277-290.
- 84. Dy P, Wang W, Bhattaram P et al. Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell 2012;22:597-609.
- 85. Hattori T, Muller C, Gebhard S et al. SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development 2010;137:901-911.
- 86. Bi W, Huang W, Whitworth DJ et al. Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc Natl Acad Sci U S A 2001;98:6698-6703.
- 87. Nakashima K, Zhou X, Kunkel G et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002;108:17-29.
- 88. Ito Y. Oncogenic potential of the RUNX gene family: 'overview'. Oncogene 2004;23:4198-4208.
- 89. Komori T, Yagi H, Nomura S et al. Targeted disrup-

tion of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997;89:755-764.

- 90. Otto F, Thornell AP, Crompton T et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997;89:765-771.
- 91. Mundlos S, Otto F, Mundlos C et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 1997;89:773-779.
- 92. Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev 2001;15:467-481.
- 93. Yoshida CA, Yamamoto H, Fujita T et al. Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev 2004;18:952-963.
- 94. Kimura A, Inose H, Yano F et al. Runx1 and Runx2 cooperate during sternal morphogenesis. Development 2010;137:1159-1167.
- 95. Kundu M, Javed A, Jeon JP et al. Cbfbeta interacts with Runx2 and has a critical role in bone development. Nat Genet 2002;32:639-644.
- 96. Lee K, Chan CK, Patil N, Goodman SB. Cell therapy for bone regeneration-bench to bedside. J Biomed Mater Res B Appl Biomater 2009;89:252-263.
- 97. Friedlaender GE. Osteogenic protein-1 in treatment of tibial nonunions: current status. Surg Technol Int 2004;13:249-252.
- 98. Govender S, Csimma C, Genant HK et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 2002;84-A:2123-2134.
- 99. Burkus JK, Dorchak JD, Sanders DL. Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. Spine (Phila Pa 1976) 2003;28:372-377.
- 100. Johnsson R, Stromgvist B, Aspenberg P. Randomized radiostereometric study comparing osteogenic protein-1 (BMP-7) and autograft bone in human noninstrumented posterolateral lumbar fusion: 2002 Volvo Award in clinical studies. Spine (Phila Pa 1976) 2002;27:2654-2661.
- 101.Bridwell KH, Anderson PA, Boden SD, Vaccaro AR, Zigler JE. What's new in spine surgery. J Bone Joint Surg Am 2004;86-A:1587-1596.
- 102. Geesink RG, Hoefnagels NH, Bulstra SK. Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J Bone Joint Surg Br 1999;81:710-718.
- 103. Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am 2002;84-A:1032-1044.
- 104. Franceschi RT, Wang D, Krebsbach PH, Rutherford RB. Gene therapy for bone formation: in vitro and in vivo osteogenic activity of an adenovirus expressing BMP7. J Cell Biochem 2000;78:476-486.

- 105. Miyamoto S, Takaoka K, Okada T et al. Evaluation of polylactic acid homopolymers as carriers for bone morphogenetic protein. Clin Orthop Relat Res 1992;274-285.
- 106. Miyamoto S, Takaoka K, Okada T et al. Polylactic acid-polyethylene glycol block copolymer. A new biodegradable synthetic carrier for bone morphogenetic protein. Clin Orthop Relat Res 1993;333-343.
- 107.Saito N, Okada T, Toba S, Miyamoto S, Takaoka K. New synthetic absorbable polymers as BMP carriers: plastic properties of poly-D,L-lactic acid-polyethylene glycol block copolymers. J Biomed Mater Res 1999;47:104-110.
- 108.Saito N, Okada T, Horiuchi H et al. A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nat Biotechnol 2001;19:332-335.
- 109. Kato M, Namikawa T, Terai H, Hoshino M, Miyamoto S, Takaoka K. Ectopic bone formation in mice associated with a lactic acid/dioxanone/ethylene glycol copolymer-tricalcium phosphate composite with added recombinant human bone morphogenetic protein-2. Biomaterials 2006;27:3927-3933.
- 110. Yoneda M, Terai H, Imai Y et al. Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing implant. Biomaterials 2005;26:5145-5152.
- 111. Taguchi S, Namikawa T, leguchi M, Takaoka K. Reconstruction of bone defects using rhBMP-2-coated devitalized bone. Clin Orthop Relat Res 2007;461:162-169.
- 112. Hoshino M, Egi T, Terai H et al. Repair of long intercalated rib defects in dogs using recombinant human bone morphogenetic protein-2 delivered by a synthetic polymer and beta-tricalcium phosphate. J Biomed Mater Res A 2009;90:514-521.
- 113. Namikawa T, Terai H, Suzuki E et al. Experimental spinal fusion with recombinant human bone morphogenetic protein-2 delivered by a synthetic polymer and beta-tricalcium phosphate in a rabbit model. Spine (Phila Pa 1976) 2005;30:1717-1722.
- 114. Nie H, Wang CH. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J Control Release 2007;120:111-121.
- 115. Hirata K, Tsukazaki T, Kadowaki A et al. Transplantation of skin fibroblasts expressing BMP-2 promotes bone repair more effectively than those expressing Runx2. Bone 2003;32:502-512.
- 116. Krebsbach PH, Gu K, Franceschi RT, Rutherford RB. Gene therapy-directed osteogenesis: BMP-7transduced human fibroblasts form bone in vivo. Hum Gene Ther 2000;11:1201-1210.
- 117. Minear S, Leucht P, Jiang J et al. Wnt proteins promote bone regeneration. Sci Transl Med 2010;2:29ra30.
- 118. Popelut A, Rooker SM, Leucht P, Medio M, Brunski JB, Helms JA. The acceleration of implant osseointegration by liposomal Wnt3a. Biomaterials 2010;31:9173-9181.
- 119. Edwards PC, Ruggiero S, Fantasia J et al. Sonic hedgehog gene-enhanced tissue engineering for bone regeneration. Gene Ther 2005;12:75-86.

- 120. Wang Q, Huang C, Zeng F, Xue M, Zhang X. Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair. Am J Pathol 2010;177:3100-3111.
- 121. Rivron NC, Raiss CC, Liu J et al. Sonic Hedgehogactivated engineered blood vessels enhance bone tissue formation. Proc Natl Acad Sci U S A 2012;109:4413-4418.
- 122. Song K, Rao NJ, Chen ML, Huang ZJ, Cao YG. Enhanced bone regeneration with sequential delivery of basic fibroblast growth factor and sonic hedgehog. Injury 2011;42:796-802.
- 123.Kawaguchi H, Jingushi S, Izumi T et al. Local application of recombinant human fibroblast growth factor-2 on bone repair: a dose-escalation prospective trial on patients with osteotomy. J Orthop Res 2007;25:480-487.
- 124. Kawaguchi H, Oka H, Jingushi S et al. A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: A randomized, placebocontrolled trial. J Bone Miner Res 2010;25:2735-2743.
- 125.Byers BA, Guldberg RE, Garcia AJ. Synergy between genetic and tissue engineering: Runx2 overexpression and in vitro construct development enhance in vivo mineralization. Tissue Eng 2004;10:1757-1766.
- 126.Byers BA, Pavlath GK, Murphy TJ, Karsenty G, Garcia AJ. Cell-type-dependent up-regulation of in vitro mineralization after overexpression of the osteoblastspecific transcription factor Runx2/Cbfal. J Bone Miner Res 2002;17:1931-1944.
- 127.Kojima H, Uemura T. Strong and rapid induction of osteoblast differentiation by Cbfa1/Til-1 overexpression for bone regeneration. J Biol Chem 2005;280:2944-2953.
- 128. Yang S, Wei D, Wang D, Phimphilai M, Krebsbach PH, Franceschi RT. In vitro and in vivo synergistic interactions between the Runx2/Cbfa1 transcription factor and bone morphogenetic protein-2 in stimulating osteoblast differentiation. J Bone Miner Res 2003;18:705-715.
- 129. Ye JH, Xu YJ, Gao J et al. Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 2011;32:5065-5076.
- 130.Mundy G, Garrett R, Harris S et al. Stimulation of bone formation in vitro and in rodents by statins. Science 1999;286:1946-1949.
- 131. Civitelli R. In vitro and in vivo effects of ipriflavone on bone formation and bone biomechanics. Calcif Tissue Int 1997;61 Suppl 1:S12-14.
- 132. Notoya K, Yoshida K, Tsukuda R, Taketomi S. Effect of ipriflavone on expression of markers characteristic of the osteoblast phenotype in rat bone marrow stromal cell culture. J Bone Miner Res 1994;9:395-400.
- 133.Notoya K, Nagai H, Oda T et al. Enhancement of osteogenesis in vitro and in vivo by a novel osteoblast differentiation promoting compound, TAK-778. J Pharmacol Exp Ther 1999;290:1054-1064.

- 134. Ohba S, Nakajima K, Komiyama Y et al. A novel osteogenic helioxanthin-derivative acts in a BMP-dependent manner. Biochem Biophys Res Commun 2007;357:854-860.
- 135. Zhao J, Ohba S, Shinkai M, Chung UI, Nagamune T. Icariin induces osteogenic differentiation in vitro in a BMP- and Runx2-dependent manner. Biochem Biophys Res Commun 2008;369:444-448.
- 136.Hojo H, Igawa K, Ohba S et al. Development of highthroughput screening system for osteogenic drugs using a cell-based sensor. Biochem Biophys Res Commun 2008;376:375-379.
- 137. Indrawattana N, Chen G, Tadokoro M et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 2004;320:914-919.
- 138.Nixon AJ, Fortier LA, Williams J, Mohammed H. Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites. J Orthop Res 1999;17:475-487.
- 139. Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 1996;78:721-733.
- 140.Fortier LA, Mohammed HO, Lust G, Nixon AJ. Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br 2002;84:276-288.
- 141.Nawata M, Wakitani S, Nakaya H et al. Use of bone morphogenetic protein 2 and diffusion chambers to engineer cartilage tissue for the repair of defects in articular cartilage. Arthritis Rheum 2005;52:155-163.
- 142.Katayama R, Wakitani S, Tsumaki N et al. Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology (Oxford) 2004;43:980-985.
- 143.Fan H, Hu Y, Qin L, Li X, Wu H, Lv R. Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-beta1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair. J Biomed Mater Res A 2006;77:785-794.
- 144. Ishii I, Mizuta H, Sei A, Hirose J, Kudo S, Hiraki Y. Healing of full-thickness defects of the articular cartilage in rabbits using fibroblast growth factor-2 and a fibrin sealant. J Bone Joint Surg Br 2007;89:693-700.
- 145. Moore EE, Bendele AM, Thompson DL et al. Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartilage 2005;13:623-631.

- 146. Ikeda T, Kamekura S, Mabuchi A et al. The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum 2004;50:3561-3573.
- 147. Hiramatsu K, Sasagawa S, Outani H, Nakagawa K, Yoshikawa H, Tsumaki N. Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors. J Clin Invest 2011;121:640-657.
- 148.Liu G, Kawaguchi H, Ogasawara T et al. Optimal combination of soluble factors for tissue engineering of permanent cartilage from cultured human chondrocytes. J Biol Chem 2007;282:20407-20415.
- 149. Takahashi T, Ogasawara T, Kishimoto J et al. Synergistic effects of FGF-2 with insulin or IGF-I on the proliferation of human auricular chondrocytes. Cell Transplant 2005;14:683-693.
- 150. Akiyama H, Fukumoto A, Shigeno C et al. TAK-778, a novel synthetic 3-benzothiepin derivative, promotes chondrogenesis in vitro and in vivo. Biochem Biophys Res Commun 1999;261:131-138.
- 151.Kitamura H, Kato A, Esaki T. AG-041R, a novel indoline-2-one derivative, induces systemic cartilage hyperplasia in rats. Eur J Pharmacol 2001;418:225-230.
- 152.Nakanishi T, Kawasaki K, Uchio Y, Kataoka H, Terashima M, Ochi M. AG-041R, a cholecystokinin-B/gastrin receptor antagonist, stimulates the repair of osteochondral defect in rabbit model. Eur J Pharmacol 2002;439:135-140.
- 153.Okada A, Shiomi T, Aoki Y, Fujiwara M. Phenytoin stimulates chondrogenic differentiation in mouse clonal chondrogenic EC cells, ATDC5. J Toxicol Sci 2005;30:145-156.
- 154. Nakamura Y, Takarada T, Kodama A, Hinoi E, Yoneda Y. Predominant promotion by tacrolimus of chondrogenic differentiation to proliferating chondrocytes. J Pharmacol Sci 2009;109:413-423.
- 155. Noguchi K, Watanabe Y, Fuse T, Takizawa M. A new chondrogenic differentiation initiator with the ability to up-regulate SOX trio expression. J Pharmacol Sci 2010;112:89-97.
- 156. Hojo H, Yano F, Ohba S et al. Identification of oxytetracycline as a chondrogenic compound using a cellbased screening system. J Bone Miner Metab 2010;28:627-633.
- 157.Johnson K, Zhu S, Tremblay MS et al. A stem cellbased approach to cartilage repair. Science 2012;336:717-721.
- 158.Ohba S, Ikeda T, Kugimiya F et al. Identification of a potent combination of osteogenic genes for bone regeneration using embryonic stem (ES) cell-based sensor. FASEB J 2007;21:1777-1787.