The role of microvesicles derived from mesenchymal stem cells in tissue regeneration; a dream for tendon repair?

Ciro Tetta¹,
Anna Lange Consiglio²,
Stefania Bruno³,
Emanuele Tetta⁴,
Emanuele Gatti¹,
Miryana Dobreva¹,
Fausto Cremonesi²,
Giovanni Camussi⁵

¹ Center of Translational Regenerative Medicine, Frese
nius Medical Care Deutschland GmbH, Torino, Italy
² Reproduction Section, “Polo Veterinario di Lodi”, Faculty
of Veterinary Medicine, University of Milan, Italy
³ Department of Molecular Biotechnology and Health Sci
ences, University of Turin, Italy
⁴ Faculty of Science of Animal Production, University of
Bologna, Italy
⁵ Department of Medical Sciences, University of Turin,
Italy

Corresponding author:
Giovanni Camussi
Department of Medical Sciences University of Turin
Corso Dogliotti 14, 10126 Turin, Italy
e-mail: giovanni.camussi@unito.it

Summary

Tendon injuries represent even today a challenge as repair may be exceedingly slow and incomplete. Regenerative medicine and stem cell technology have shown to be of great promise. Here, we will review the current knowledge on the mechanisms of the regenerative potential of mesenchymal stem cells (MSCs) obtained from different sources (bone marrow, fat, cord blood, placenta). More specifically, we will devote attention to the current use of MSCs that have been used experimentally and in limited numbers of clinical cases for the surgical treatment of subchondral-bone cysts, bone-fracture repair and cartilage repair. However, by far the most frequent clinically use has been the treatment of overstrain-induced injuries of tendons in horses. We will discuss the hypothesis that also soluble factors and extracellular vesicles, also called microvesicles (MVs), released by MSCs may have a relevant regenerative potential and may open new therapeutic perspectives.

Key words: horse tendinopathies, microvesicles, regenerative medicine, soluble factors, stem cells.

Introduction

Increasing experimental evidence indicate that the active factors exert effects on neighbouring cells. Indeed, MSCs express high levels of transcripts of hematopoietic stem cells maintenance factors, including CXCL12 chemokine, stem cell factor, angiopoietin-1 (Ang-1), interleukin-7, vascular cell adhesion molecule 1 and osteopontin. Support for the hypothesis of paracrine action of MSCs derives from in vivo studies indicating that, although MSCs exhibit multilineage differentiation potential and can migrate to injured sites after systemic administration, the differentiation of MSCs in cells of injured tissues contributed little to their therapeutic benefits. A growing number of evidence indicates that the in vivo effects of MSCs depend primarily on their capacity to secrete bioactive soluble factors. This bioactive molecules may inhibit fibrosis and apoptosis, enhance angiogenesis, stimulate mitosis and/or differentiation of tissue-intrinsic progenitor/stem cells and modulate the immune response. In different pre-clinical animal models, MSCs administration have been shown to improve perfusion and restore cardiac function after myocardial infarction; MSCs accelerates recovery in acute kidney injury (AKI) induced by toxic agents or ischemia reperfusion and induces functional improvement in chronic kidney disease. In addition, MSCs have been studied in several in vivo models...
of lung disease. For example, in the bleomycin induced lung injury and fibrosis, MSCs improve lung inflammation and survival when given intravenously. These effects are not accounted to lung engraftment rates (< 5%) but rather to a paracrine mechanism.

The beneficial effects of MSCs infusion in different animal models are interpreted as not dependent on a direct substitution of injured cells, but rather on paracrine effectors that facilitate endogenous repair processes. In this way, a paracrine role of MSCs in renal tissue repair has been supported by experiments showing that conditioned medium (CM) from MSCs mimics the beneficial effects of the cells of origin, when intra-peritoneal injected in mice with cisplatin induced AKI. Moreover, intravenous administration of CM from MSCs induces significant survival improvement in fulminant hepatic failure. MSCs have been also investigated as a new therapeutic strategy for graft-versus-host disease, Chron’s disease and for the prevention of organ transplantation rejection. The mechanism by which MSCs modulate the immune response is still under investigation, but it is evident that it involves also the release of soluble factors and not only the cell-to-cell contact. MSCs may suppress several T-lymphocyte activities both in vitro and in vivo and may alter the cytokine expression profile of dendritic cells (DCs), naïve and effector T cells and natural killer cells (NK) to induce a more anti-inflammatory or tolerant phenotype and to increase the proportion of regulatory T (Treg) cells. Prostaglandin E2 (PGE2) is implicated in the immunomodulatory effects of MSCs. Indeed, PGE2 production is up-regulated after co-culture of human MSCs with peripheral blood mononuclear cells and the inhibitors of PGE2 production diminish MSC-mediated immunomodulation in vitro. Indoleamine 2, 3 deoxygenase (IDO), PGE2 and TGF-β1 can represent relevant mediators of MSC inhibition of NK functions. MSCs also secrete IL-6, that is involved in the reversion of maturation of DCs to a less mature phenotype. Blockade of PGE2 synthesis in MSCs reverts the inhibitory effects on DC differentiation and function. PGE2 and IL-6 can mediate the effects of MSCs on DCs, thus leading to T-cell suppression.

Regenerative medicine and tendinopathies

Tendon repairs are often weak and susceptible to re-injury. Given the frequency and increasing cost of these injuries, mainly in sport horse, as well as the relatively poor result of surgical intervention, it is not surprising that new and innovative strategies like tissue engineering have become more appealing. Several lines of evidence suggest that multipotent stem cells are present also in tendons and ligaments. First, both human and mouse tendons develop fibrocartilage and ossification in response to injury. Second, tendon-derived immortalized cell lines or human tendon derived fibroblasts express genes of adipogenic, osteogenic and chondrogenic differentiation pathways, suggesting that they possess multiple differentiation capacities in vitro. Finally, postnatal stem cells capable of differentiating into adipocytes and osteoblastic cells have been identified in human periodontal ligaments while human and mouse tendons harbor a unique cell population, termed tendon stem/progenitor cells (TSPCs), that has universal stem cell characteristics such as clonogenicity, multipotency and self-renewal capacity. Recently, Lovati et al. identified TSPCs specifically in the horse SDFT with the ability to be highly clonogenic, to grow fast and to differentiate in different induced cell lineages as well as bone marrow derived progenitor cells (BM-MSCs). The hypothesis that TSPCs possess a mesenchymal stem cell behavior opens a new prospective for tendon regenerative medicine approaches because TSPCs could represent an important tool to study basic tendon biology. The exact site for TSPCs cells within tendon is not known, but they are most likely to reside in the endotenon tissue between the collagen fascicles and adjacent to the vasculature. Although this might be true in young growing tendon, mature equine tendon, however, does not appear to possess a substantial subpopulation of these cells capable of differentiating into multiple cell lines, as reported for adult tissue, and this may explain why this component of the repair process is limited and hence natural repair is inferior to normal tendon.

During the repair process, there is a large influx of cells into the lesion. Kajikawa et al. showed that at 24 h after the injury, the wound contained circulation-derived cells but not tendon-derived cells. Tendon-derived cells appeared in the injured area at 3 days after the wound, and significantly increased in number with time and maintained a high level of proliferative activity until 7 days after the injury, whereas the circulation-derived cells decreased in number and are replaced by the tendon-derived cells. These findings suggest that circulation-derived and tendon-derived cells contribute to the healing of tendons in different periods as part of a biphasic process but that the cells mainly involved in the synthesis of new tissue are believed to be tendon derived cells. For this reason some authors hypothesized that the implantation of far greater numbers of progenitor stem cells, than are present normally within tendon tissue, would have the potential of regenerating or improving the repair of the tendon. Fibroblasts derived from tendon or other sources could be used, but the removal of sections of tendon to recover cells leads to the formation of a secondary lesion in the horse that is unacceptably. Alternative cell sources under investigation (Tab. 1) include dermal fibroblasts, which were shown to be capable of functionally bridging a tendon defect and to have similar histological and tensile properties to the tenocyte-seeded scaffold although in vitro these cells behave differently from tenocytes. By contrast, an optimal in vivo regenerative response could be accomplished by MSCs of different sources (Tab. 1).

Stem cell therapies in tendons

MSCs have been implanted into surgical defects in tendons in multiple in vivo experiments in laboratory animals with mostly positive outcomes. Most of these models have used surgically created defects in rabbit or rat tendons and have variously shown some improvement in
Table 1 - Sources for cell therapy of tendinopathies.

<table>
<thead>
<tr>
<th>Cell source</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMBRYO</td>
<td>Embryonic stem cells (ESC)</td>
<td>- pluripotent</td>
<td>[88]</td>
</tr>
<tr>
<td>EXTRA-FETAL TISSUED</td>
<td>Amnion-derived cells</td>
<td>no invasive collection high plasticity and proliferative capacity high number of immediately available cells for therapy well-tolerated by horses</td>
<td>[72]</td>
</tr>
<tr>
<td>MSCs from umbilical cord tissue</td>
<td>- no invasive collection - greater multipotent than BM-MSCs - possibility to obtain more rapidly proliferating cells by cell sorting - no immune response</td>
<td>- strict surveillance of parturition</td>
<td>[89-90]</td>
</tr>
<tr>
<td>ADULT TISSUES</td>
<td>Concentrated bone marrow aspirate (BMC)</td>
<td>- minimal manipulation - no cell expansion</td>
<td>[91]</td>
</tr>
<tr>
<td>Stromal vascular fraction from adipose tissue</td>
<td>- minimal manipulation - no cell expansion - well-tolerated by horse</td>
<td>- invasive collection</td>
<td>[92]</td>
</tr>
<tr>
<td>ADULT STEM/PROGENITOR CELLS</td>
<td>MSCs from bone marrow (BM-MSCs)</td>
<td>- multipotent - no immune response</td>
<td>[93-95]</td>
</tr>
<tr>
<td>MSCs from adipose tissue</td>
<td>- higher proliferative potential and less senescence of BM-MSCs - multipotent</td>
<td>- invasive collection</td>
<td>[94-97]</td>
</tr>
<tr>
<td>Tendon stem/progenitor cells</td>
<td>- possible activation of this endogenous population - multipotent</td>
<td>- invasive collection (removal of sections of tendons leads to the formation of secondary lesion) - mature equine tendon do not posses a substantial population of these cells</td>
<td>[31]</td>
</tr>
<tr>
<td>ADULT DIFFERENTIATED CELLS</td>
<td>Tenocytes</td>
<td>- appropriate tendon matrix synthesis</td>
<td>[38]</td>
</tr>
<tr>
<td>Fibroblasts derived from tendon</td>
<td>- appropriate tendon matrix synthesis</td>
<td>- invasive collection</td>
<td>[37]</td>
</tr>
<tr>
<td>Dermal fibroblasts</td>
<td>- easy to recover, with acceptable donor site lesion - similar histological and tensile properties than tenocyte</td>
<td>- different protein-matrix synthesis than tenocytes</td>
<td>[39]</td>
</tr>
</tbody>
</table>
structure and strength of defects implanted with MSCs in a biodegradable scaffold (collagen gel, Vicryl knitted mesh or fibrin glue) compared to controls implanted with just the scaffold, as assessed by histology or simple biochemical assays. In other studies using a rat patellar defect model, MSCs implantation has been associated with both greater ultimate tensile stress and improved quality of reparative tissue determined by an increased collagen I/III ratio. Thus, MSCs-seeded constructs implanted in vivo have shown the ability to integrate into the tissue and induce the synthesis of tissue-specific extracellular matrix. In the horse, tendon injuries are mostly located in the superficial digital flexor tendon (SDFT), which represents the strongest tendon in the equine body. The SDFT displays similar similarities to the human Achilles tendon concerning anatomy, biomechanics and pathogenesis of tendinopathy. In different species, pathomorphology of tendinopathy differs in lesion size. In the horse, one typical so-called “core lesion” is usually centrally located within the tendon, extended in length and still surrounded by intact tendon tissue. The equine SDFT injury lends itself to cell therapy because provide many of the additional elements required for tendon tissue engineering. The lesion manifests within the central core of the tissue provides a natural enclosure for implantation that, at the time of stem cell implantation is filled of granulation tissue, which acts as a scaffold. This enables the application of MSCs without any artificial scaffold material, merely by injecting a cell suspension directly into the lesion; thereby, MSCs are exposed to a natural environment providing collagen fibers and growth factors. In addition, during rehabilitation with controlled exercise, there is an ideal mechanical stimulation allowing the newly created tissue to organize itself in the direction of the force application, hence this approach can be referred to as “in vivo tissue engineering." Unfortunately, in the horse, the efficacy of these treatments is difficult to determine, since the use of control animals is rarely reported and often the stem cell treatment is combined with other biological factors, such as bone marrow supernatant, autologous serum, or platelet-rich plasma. In any case, since this treatment regime was first published in 2003, there have been several experimental and clinical studies with encouraging results, giving evidence of the benefit and safety of MSCs application for tendon regeneration. Furthermore, unfortunately, it is still unclear whether the major contribution of the MSCs to the healing process is to differentiate into tenocytes and thus produce extracellular matrix molecules, whether it is rather to supply growth factors and thus stimulate the residing cells within the tendon or whether a combination of the two mechanisms occurs. Mononuclear cells could represent an exogenous stimulus for induction of pro-inflammatory mediators in tendon. In addition, recent studies have suggested an anti-inflammatory role of implanted stem cells. In this context animal model studies have demonstrated that MSCs are hypo-immunogenic and inhibit the activation of T and B lymphocytes and NK cells. The precise mechanism of the anti-inflammatory effect of these cells is largely unknown. The role of soluble factors and extracellular vesicles as effectors in paracrine effect is described below. In essence, the paracrine effect results in the combination of different, biological activities: anti-apoptosis, additional recruitment of resident multipotent stem cells, stimulation of angiogenesis, and the release of growth factors. The clinical and not experimental nature of the use of MSCs for horse tendinopathies preclude the routine post mortem analyses but some experimental works has been carried out to monitor the fate of injected MSCs in horses and the structural aspect of the healing. Guest et al. studied the fate of autologous and allogeneic MSCs transfected with green fluorescent protein (GFP) following injection into the SDFT and revealed that GFP labeled cells located mainly within injected lesions, but with a small proportion integrated into healthy tendon. Furthermore, the authors showed that both autologous and allogeneic MSCs may be used without stimulating an undesirable cell mediated immune response from the host. Other postmortem examinations have shown that MSCs application improved the extracellular matrix structure of damaged tendons. In histological sections of MSC-treated tendon lesions, compared to non-treated tendon lesions, increased tendon fiber densities, increased organization.

Figure 1. Severe SDFT core lesion in a forelimb SDFT. Arrows show anechoic area in transverse (A) ultrasound scans, and slightly hyperechoic area in transverse (B) ultrasound sections, respectively, in the same lesion 50 days after amniotic derived cells implant.
of the collagen fibers and a reduced vascularity have been found58-60. The beneficial effect of MSCs seems to be due to the improvement of structural organization rather than of matrix composition. However, it has been shown that MSCs treatment can enhance expression levels of cartilage oligomeric matrix protein (COMP)58,59, a glycoprotein that is known to be important for tendon elasticity and stiffness62. Ultrasonographic follow-up examinations showed significant improvements in fiber alignment and echogenicity scores at 1, 3 and 6 months after MSCs treatment63, supporting the histological findings in the above-mentioned studies. In these studies, autologous adult progenitor cells have been used, either expanded bone marrow-derived MSCs60,64-66, or adipose derived MSCs58,67 or adipose-derived mononuclear cells (ADNCs)58,68. Furthermore, the effects of autologous bone marrow derived expanded MSCs and bone marrow-derived mononuclear cells on tendon healing have been compared revealing a similar improvement, in both treatment groups compared to the control group, which was demonstrated by significantly improved ultrasonography and histology scores, higher COMP expressions and relatively lower type III collagen contents61,70.

If stem cells are truly immunomodulatory, allogeneic transplantations should be possible. Safe and efficacious applications of allogeneic stem cells would imply that off-the-shelf stem cell products could be developed for increased availability and rapid implementation of stem cell therapies early in a disease course54. Indeed, not only autologous progenitor cells but also allogeneic bone marrow-derived MSCs57, allogeneic adipose-derived MSCs67 and allogeneic amniotic derived MSCs72 have been applied for treatment of equine tendon injuries and no evidence of immune rejection were detected.

Extracellular vesicles released from MSCs as an emerging paracrine mechanism

Recent studies have shown that beside soluble factors, small vesicles released from cells, named extracellular vesicles or MVs, are instrumental in cell-to-cell communication73,74 (Fig. 2). MVs are an heterogeneous population of small vesicles constituted by a circular fragment of membrane containing cytoplasm components which are released by different cell types. The two major classes of MVs released in the extracellular environment are the exosomes and shedding vesicles75. Exosomes originate from inward of endosomal membrane, accumulate within multivesicular bodies, are secreted by a process of exocytosis and exhibit a 30-120 nm size. At variance, shedding vesicles take place from direct budding of plasma membrane surface and are more heterogeneous in size ranging from 80nm to <1mm depending from the cell of origin and on stimuli75. The released MVs can be up-taken by neighbouring cells either as result of surface receptor mediated interaction or by a process of membrane fusion. After interaction MVs can be internalized by the recipient cells and deliver their content73,74. Therefore, MVs have been uncovered as a new mechanism of inter-cellular communication that involves direct receptor mediated stimulation of the target cells and delivery of bio-active lipids, proteins and nucleic acids. The content of MVs and their biological action not only depends on the cell of ori-

![Figure 2. Schematic representation of the potential anti-inflammatory action of microvesicles (MVs) released by mesenchymal stem cells (MSC) on horse tendon.](image-url)
The role of microvesicles derived from mesenchymal stem cells in tissue regeneration; a dream for tendon repair?

Muscules, Ligaments and Tendons Journal 2012; 2 (3): 212-221

The role of microvesicles derived from mesenchymal stem cells in tissue regeneration; a dream for tendon repair?

Conclusions

Use of the cells and technologies presented here in the horse are likely to continue and expand in the near future. The horse has been advocated as an animal model of...
tendon and ligament injuries, since many of the spontane-
ous injuries seen in horses are similar to those seen in
human athletes but other equine tissues and diseases,
such as recurrent airway obstruction (asthma) and vari-
dous hypoxic ischemic injuries, seem like straightforward
candidates for equine stem cell research.
It is hoped that experience gained from treating naturally-
occurring tendon injury in horses will provide sufficient
supportive data to encourage the translation of this tech-
ology into the human field where large randomized con-
trolled trials will lead to a higher level of clinical evi-
dence.

References

1. Kraus KH, Kirker-Head C. Mesenchymal stem cells
2. Brehm W, Akin B, Yamashita T et al. Repair of super-
ficial osteochondral defects with an autologous scaf-
fold-free cartilage construct in a caprine model: im-
3. Wilke MM, Nydam DV, Nixon AJ. Enhanced early chondrogenesis in articular defects following arthro-
4. Méndez-Ferrer S, Michurina TV, Ferraro F et al. Mesenchymal and haematopoietic stem cells form a
5. Caplan AI, Dennis JE. Mesenchymal stem cells as
enchymal stem cells: Mechanisms of immunomodula-
7. Amado LC, Saliaris AP, Schuleri KH et al. Cardiac re-
pair with intramyocardial injection of allogeneic mes-
enchymal stem cells after myocardial infarction. Int J
8. Morigi M, Intronì M, Imberti B et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve
marrow mesenchymal stem cells accelerate recovery
10. Herrera MB, Bussolati B, Bruno S, Fonsato V, Ro-
manazzi GM, Camussi G. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial
12. Duffield JS, Park KM, Hsiao LL et al. Restoration of
tubular epithelial cells during repair of the postis-
chemic kidney occurs independently of bone marrow-
13. Choi S, Park M, Kim J, Hwang S, Park S, Lee Y. The
role of mesenchymal stem cells in the functional im-
provement of chronic renal failure. Stem Cells Dev
14. Yamada M, Kubo H, Kobayashi S et al. Bone mar-
row-derived progenitor cells are important for lung re-
pair after lipopolysaccharide-induced lung injury. J
mesenchymal stem cells in repair of the injured lung.
16. Ortiz LA, Dutreil M, Fattman C et al. Interleukin 1 re-
ceptor antagonist mediates the antiinflammatory and
antifibrotic effect of mesenchymal stem cells during
17. Bi B, Ehirchiou D, Kilts TM et al. Stromal cells protect
against acute tubular injury via an endocrine effect.
18. Parekkadan B, van Poll D, Suganuma K et al. Mes-
enchymal stem cell-derived molecules reverse fulmi-
19. van Poll D, Parekkadan B, Cho CH et al. Mesenchy-
mal stem cell-derived molecules directly modulate
hepatocellular death and regeneration in vitro and in
20. Tse WT, Pendleton JD, Beyer WM, Egalka MC,
Guinan EC. Suppression of allogeneic T-cell prolifer-
ation by human marrow stromal cells: implications in
21. Aggarwal S, Pittenger MF. Human mesenchymal
stem cells modulate allogeneic immune cell re-
bone marrow stromal cells suppress T-lymphocyte
proliferation induced by cellular or nonspecific mito-
23. Meisel R, Zibert A, Laryea M, Göbel U, Däubener W,
Dilloo D. Human bone marrow stromal cells inhibit al-
logeneic T-cell responses by indoleamine 2,3-dioxy-
genase-mediated tryptophan degradation. Blood
2004;103:4619-4621.
24. Djouad F, Charbonnier LM, Bouffi C et al. Mesenchy-
mal stem cells inhibit the differentiation of dendritic
cells through an interleukin-6-dependent mecha-
25. Chen L, Zhang W, Yue H et al. Effects of human mes-
enchymal stem cells on the differentiation of dendritic
cells from CD34+ cells. Stem Cells Dev 2007;16:719-
731.
26. Oliva F, Giai Via A, Maffulli N. Physiopathology of in-
tratendinous calcific deposition. BMC Med 2012;
23:10.95.
27. Fenwick Sea. Endochondral ossification in Achilles
and patella tendinopathy. Rheumatology 2002;41:474-
476.
28. Salingcarbonboon R, Yoshitake H, Tsuji K et al. Estab-
29. de Mos M, Koevoet WJ, Jhr H et al. Intrinsic differ-
entiation potential of adolescent human tendon tis-
The role of microvesicles derived from mesenchymal stem cells in tissue regeneration: a dream for tendon repair?

The role of microvesicles derived from mesenchymal stem cells in tissue regeneration; a dream for tendon repair

