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Summary

While structural changes have been observed in
asthmatic airways for more than a century, the im-
portance of airway remodeling did not come into
view as a key player in asthma until recently. Its
significance can be derived from the fact that
supramaximal doses of histamine are not capable
of causing full airway constriction in healthy sub-
jects, indicating that more structural changes must
be at play. Initially it was believed that airway re-
modelling was caused by chronic inflammation
and repeated allergen exposure resulting in a con-
tinuous process of damage and repair. Evidence is
now pointing to inflammation and airway remodel-
ling acting in parallel, perhaps mutually reinforcing
each other.

The primary focus in airway remodelling research
has been on airway smooth muscle changes. It is
well established that airway smooth muscle mass
is increased in asthma, primarily through hyperpla-
sia, although some studies also show evidence of
hypertrophy. Recent results show that airway
smooths muscle proliferation in asthma, particu-
larly severe asthma, presumably in balance with
cell apoptosis, which may indicate that airway re-
modelling is in fact potentially reversible. It is not
yet known whether airway smooth muscle force or
velocity of shortening is altered in asthma, either
intrinsically or modulated by the inflammatory en-
vironment of the asthmatic airway. Some in vitro
and animal studies do suggest that inflammatory
mediators can result in increased force generation
and proliferation of airway smooth muscle.

Airway remodelling could influence airway respon-
siveness in a number of other ways too. An in-
creased airway wall thickness provides a greater
load for the airway smooth muscle to contract
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against, but also requires less airway smooth mus-
cle shortening to achieve the same reduction in
airway diameter. Recent studies have shown the
bronchodilating and bronchoprotective effects of
airway diameter oscillations that occur in healthy
subjects during breathing. These airway diameter
oscillations that are likely reduced because of air-
way remodelling, may abrogate the beneficial ef-
fects of breathing in asthma.

There are no known drugs that have been proven to
reverse airway remodelling, although this may be
partly due to the lack of accurate non-invasive tools
available to measure the degree of airway remodel-
ling. Bronchial thermoplasty, which relies on ra-
diofrequency ablation of airway smooth muscle, has
been shown to result in some improvement in qual-
ity of life in severe asthmatic patients, but minimal
improvement in lung function. Identification of the
dominant site of airway hyperresponsiveness may
increase the effectiveness of such techniques.

KEY WORDS: bronchial asthma; airway remodelling;
airway hyperresponsiveness; bronchothermoplasty.

Introduction

The link between exaggerated airway narrowing and
the symptoms of asthma has been made for several
centuries. The mechanistic basis for the marked bron-
chospasm of an acute attack of asthma has remained
obscure but is generally attributed to the presence of
an underlying hyperresponsiveness of the airways that
can be detected by challenges with a variety of bron-
choconstrictive agonists. An excessive responsiveness
of the airways to stimulation with histamine was recog-
nized in 1946 (1). However, it was not addressed as a
potential consequence of altered airway smooth mus-
cle function for several decades. Indeed there was a
great deal of research that examined the possibility
that control of the bronchial smooth muscle by the au-
tonomic nervous system lay at the root of the problem.
However research on the regulation of bronchomotor
tone gave way to a focus on inflammatory mediators by
the 1980s. From the 1990s there was renewed interest
in the structural changes in the airways with the devel-
opment of animal models demonstrating the plausibili-
ty of proliferation of airway smooth muscle in response
to allergen challenges. Indeed the changes in muscle
mass and other forms of remodeling have dominated
the discourse about asthma pathogenesis. In addition
the function of airway smooth muscle and its regulation
have received intensive scrutiny. However if remains a
great deal of uncertainty about the causes of the acute
and often relatively refractory asthma attack, airway
hyperresponsiveness and persistent loss of lung func-
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tion associated with severe forms of asthma. In this re-
view we will examine some of the pathophysiological
processes that may help us understand these features
of disease.

The neural regulation of bronchomotor tone

The airways are supplied by autonomic fibers, predom-
inantly via the vagus. The postganglionic nerves re-
lease acetylcholine that may activate bronchial smooth
muscle, and also may affect mucus gland secretion
and airway blood flow (2). Studies of isolated airways
demonstrate a non-cholinergic non-adrenergic nega-

tive regulatory nervous system

/ Although airway hy- \

perresponsiveness
may not be caused
by excessive choli-
nergic stimulation or
defective NANC re-
laxation, links bet-
ween innervations
and inflammation
may have pertinen-
ce for some forms
of hyperalgesia that
leads to cough and
sputum production
or indeed nerves
may promote inflam-
mation through con-
comitant release of

\ heuropeptides. /

that may cause bronchodila-
tion when airway smooth
muscle is contracted (3). A
small number of studies
have provided evidence of a
similar system in vivo (4, 5).
Nitric oxide seems to be one
of the mediators of this re-
laxant system (6). There ap-
pears to be no significant di-
rect sympathetic supply of
nerves to the airway smooth
muscle despite the abun-
dance of adrenergic recep-
tors that may mediate either
contraction or relaxation. In-
hibition of beta adrenergic
receptors or ganglionic neu-
rotransmission does not af-
fect airway responsiveness
to methacholine (7), indicat-

ing that the principal pathways
for neural regulation are not responsible for the en-
hanced airway responsiveness that is a defining fea-
ture of asthma. However, recently it has been shown
that the late asthmatic response, a secondary bron-
choconstrictive event which occurs 2-24 hours after
the acute response, can be inhibited by anesthesia
and anticholinergic drugs (8). Certain inflammatory
mediators may accelerate the release of acetylcholine
from post-synaptic nerve endings (9, 10). The lack of
major efficacy of anti-cholinergic drugs in asthma ar-
gues against the generalized importance of such
mechanisms. Although airway hyperresponsiveness
may not be caused by excessive cholinergic stimula-
tion or defective NANC relaxation, links between inner-
vation and inflammation may have pertinence for some
form of hyperalgesia that leads to cough and sputum
production or indeed nerves may promote inflamma-
tion through concomitant release of neuropeptides
(11). The lack of effective antagonists of neurokinins
has retarded our understanding of their roles in airway
disease.

Inflammatory mediators and airway hyperrespon-
siveness

It seemed a plausible hypothesis that an excess of in-
flammatory mediators could account for airway hyper-
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responsiveness in asthma
by providing a strong stimu-
lus to airway smooth mus-
cle to contract. Although
there is abundant evidence
that inflammatory mediators
trigger airway narrowing in
asthma, the exaggerated
narrowing seen is unlikely to
be explained solely by this mechanism. The evidence
for this statement comes from a consideration of
bronchial provocation tests. Since one cannot evoke
substantial falls in the forced expiratory volume in one
second (FEV+4) in the majority of healthy human sub-
jects using high concentrations of histamine (12) then
an excess of other contractile agonists in the airways,
such as the cysteinyl leukotrienes, should not enhance
the methacholine response to the point of revealing the
degree of responsiveness associated with asthma. An
enhancement of the organ responsiveness is still re-
quired for excessive airway narrowing to occur. The
search for inflammatory mediators that could alter air-
way smooth muscle properties has revealed some
possible clues. Cytokines associated with asthma such
as interleukin-13 and tumor necrosis factor-o. enhance
the contractility of airway smooth muscle (13-15) so
that they may hypothetically contribute to AHR. It
should be stressed that the evidence for this phenome-
non has been generated in murine models and in cell
culture systems. There is little or no direct evidence for
this at present in human subjects. Targeting TNF-o has
demonstrated little evidence for its involvement as a
driver of disease and neutralization of IL-13 showed on-
ly a modest effect on lung function in asthmatics (16).

The search for in-
flammatory media-
tors that could alter
airway smooth mu-

scle properties has
revealed some pos-
sible clues.

Airway remodeling and airway hyperresponsive-
ness

Airway remodeling or the structural changes in the air-
ways were described by many investigators spanning
over a century (17). The application of the tools of
quantitative histology clearly demonstrated the in-
crease in airway smooth muscle mass (18), subepithe-
lial thickening (19) and a range of non-structural

changes compared to healthy

control subjects. Repeated
/ Increased airway \ cycles of tissue injury and

wall thickness in re-
modeled airways
may provide a grea-
ter load for the
smooth muscle to
overcome, but with
the thicker airway
wall the muscle
needs to shorten
less to achieve the
same level of airway

repair from chronic inflam-
mation are believed to be
responsible for these struc-
tural changes, although the
presence of some of the
changes in childhood asth-
ma may suggest that in-
flammation and remodeling
occur in parallel (20, 21). In-
crease in airway smooth
muscle mass has now been

constriction. repeatedly reported (Figure
AN 1), in particular as a function

of asthma severity (22-25). It

is also associated with fixed airflow limitation in both
children and adults (26, 27).
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Control

Asthmatic

Figure 1 - Airway smooth muscle in (severe) asthma and a non-asthmatic control. Airway smooth muscle fluorescently la-
belled with TRITC-phalloidin in airways dissected from human lungs procured through the International Institute for Advance-
ment of Medicine. The spiral arrangement of the airway smooth muscle is evident in both, although it appears somewhat less

ordered in the severe asthma specimen.

Isolated airway smooth muscle, similar to other forms
of smooth muscle, has the capacity to shorten to very
short lengths. Such degrees of shortening would lead
to complete closure of the airways (28). How is it then
that healthy subjects do not experience marked airway
closure even when challenged with high concentra-
tions of methacholine? The answer proposed is that
the force of contraction of airway smooth muscle is not
sufficient to overcome the elastic resistance to defor-
mation of the parenchyma to which the outer aspect of
the airway wall is attached via alveolar attachments, as
well as the intrinsic stiffness of the airway wall as it un-
dergoes constriction (29). The effect of airway remod-
eling on this force balance is not fully understood. In-
creased airway wall thickness in remodeled airways
may provide a greater load for the smooth muscle to
overcome, but with the thicker airway wall the muscle
needs to shorten less to achieve the same level of air-
way constriction (30). While the airway smooth muscle
mass is increased, it is unclear whether this is associ-
ated with increases in the contractile force generated
by the muscle (31-35).

Recent research has indicated that the airway diame-
ter is not determined by a static force balance but
rather a dynamic one, influenced by the constant lung
volume changes that occur during normal breathing
(36, 37). In fact, under static lung inflation airways do
constrict to the point of airway closure (38, 39). For
over half a century it has been known that deep inspi-
rations in particular are a potent bronchodilator in
healthy subjects, but not in most asthmatics (40, 41).
A single deep inspiration is capable of reversing bron-

Shortness of Breath 2013; 2 (3): 111-118

choconstriction (40), while inhibition of deep inspira-
tions results in hyperresponsiveness (42). In asthmat-
ics deep inspiration does not lead to bronchodilation,
and may even cause increased bronchoconstriction,
particularly in severe asthmatics (43, 44). Tidal breath-
ing and increased lung volume also seem to reduce
bronchoconstriction from metacholine challenge in
healthy subjects (45-47). In vitro studies have shown
that airway smooth muscle contraction is partially in-
hibited when subjected to oscillatory stretches equiva-
lent to those occurring in vivo during breathing (48).
The mechanism of the “softening” of airway smooth
muscle in response to stretching is still a matter of ac-
tive investigation. The degree of stretch that results
from a pressure applied by the expanding lung
parenchyma on the airway will depend upon the stiff-
ness of the airway wall. Fibrosis of the airway such as
is described in asthma may diminish the effectiveness
of breathing by reducing the length changes of the
muscle caused by any given transmural pressure de-
veloped across the bronchial wall. This can be further
compounded by a change in the elasticity of the
parenchyma, which is characteristic of COPD, but may
also occur in (severe) asthma (49).

Airway smooth muscle remodeling may not be limited
to an increase in its mass. Molecular remodeling may
also potentially occur, affecting the velocity of airway
smooth muscle contraction. Mathematical modeling
has shown that an increase in velocity of shortening of
the airway smooth muscle could explain the difference
in response to deep inspirations between asthmatics
and controls (50). The airway smooth muscle contrac-
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tile apparatus, like skeletal muscle, consists of myosin
and actin filaments, with protruding myosin heads re-
sponsible for the movement of these filaments relative
to each other. The 2 dominant isoforms of myosin, SM-
A and SM-B, have been shown to have distinctive ve-
locities, in motility studies, with SM-B being twice as
fast as SM-A. In asthmatics the ratio of SM-B/SM-A
mRNA is increased (51), but this has yet to be followed
by measurements at the protein level. Alternatively a
change in the ratio of myosin light chain kinase and
myosin light chain phosphatase, which regulate
myosin activity through phosphorylation of the myosin
light chain, could result in increased shortening veloci-
ty (52).

In addition to molecular remodeling that may result in
enhanced contractile properties there may be an alter-
ation in the phenotype of the muscle. Airway smooth
muscle may adopt a secretory phenotype resulting in
the secretion of a variety of chemoattractants for in-
flammatory cells such as interleukin-8 (CXCLS8; a neu-
trophil chemoattractant), RANTES (CCL5; a lympho-
cyte chemoattractant) and eotaxin (CCL11; an eosino-
phil chemoattractant) (53). These cells may therefore
attract immune effector cells into the airways and more
specifically into the muscle bundles that may then alter
their properties or trigger proliferation. Proliferation of
smooth muscle may be caused by contact with activat-
ed T lymphocytes (54). T cells are present in significant
numbers within airway smooth muscle bundles and in-
crease in numbers correlate with increase in severity of
disease (55). There is also an increase in mast cells
within the airway smooth muscle cells (56), postulated
to be caused by the CXCR3/CXCL10 chemoattractant
pathway (57).

Proliferation of airway smooth muscle

Morphometric measurements of airway smooth muscle
mass have demonstrated a consistent increase in
muscle mass in asthmatic subjects (18, 22-25). The in-
crease in mass is linked to disease severity and not to
the duration of disease (58). This suggests that host
susceptibility to airway remodeling may determine the
outcome of environmental
factors that induce asthma,
such as repeated exposure
to sensitizing substances.
To date no studies have
identified muscle-specific
genes associated with asth-
ma but it would not be sur-
prising to discover that such

associations were present.
Attempts at determining the mechanisms of the in-
crease in muscle mass have been made by quantifying
the number of nuclei per unit area of the muscle. Most
studies have found a proportionate increase in nuclei
to area, leading to the conclusion that proliferation of
muscle or hyperplasia has occurred (59, 60). Only one
study of a small number of subjects with severe asth-
ma using a marker of cellular proliferation, proliferating
cell nuclear antigen, has identified an excess rate of
proliferation of muscle (61). The authors have conclud-
ed that muscle remodeling is not only through prolifer-

An important issue
in remodeling is
whether it is fixed or

a new dynamic
equilibrium based
on cell proliferation
and cell death.
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ation of muscle cells but is a dynamic phenomenon. If
confirmed, and this study requires confirmation, then it
would imply that there is a balance between cellular
apoptosis and proliferation that sets a new balance of
increased muscle mass in these subjects. It also im-
plies that muscle remodeling is not necessarily an irre-
versible phenomenon.

Some studies have also found evidence of increased
mass that is attributable to hypertrophy (24, 62). The
pattern of hypertrophy, whether associated with small
or large airways also seems to vary. Some subjects
demonstrate hypertrophy in large airways but not in
small, whereas others have no evidence for hypertro-
phy. The significance of these changes (Figure 2) for
airway function is unknown, although the contractility
of hypertrophic muscle is likely to be impaired com-
pared to normal muscle or muscle that has undergone
an increase through hyperplasia. Understanding the
implications of these different patterns of growth of
muscle will require appropriate measurements of the
mechanical properties of these muscles and perhaps
also the elucidation of the mechanisms of the changes.
Many studies have shown the plausibility of smooth
muscle growth through the actions of various media-
tors present in the inflamed airways (63). An array of
substances from histamine to chemokines such as IL-
8 and classical growth factor receptors such as the epi-
dermal growth factor receptor (EGFR) has been impli-
cated in the growth of smooth muscle. Exploration of
airway smooth muscle growth has been largely de-
pendent on models of asthma. Both rat and mouse
models have been developed based on allergic sensi-
tization and subsequent repeated exposures to the al-
lergen. Anti-leukotrienes and inhibitors of the epider-
mal growth factor receptor have been demonstrated to
inhibit smooth muscle growth (64, 65). Not surprising-
ly compounds that are effective in inhibiting some com-
ponent of the allergic response also inhibit smooth
muscle growth. Thus it has not been clearly estab-
lished to what extent the inflammatory process is nec-
essary for smooth muscle growth. Mechanical stress
may release EGFR ligands (66) and lead to remodel-
ing without inflammation, raising the possibility that the
very process of bronchoconstriction could lead to re-
modeling. Anti-cholinergic drugs also inhibit remodel-
ing but the mechanism may go beyond inhibition of air-
way narrowing (67, 68). Less is known about the
process of hypertrophy. In vitro studies suggest that
transforming growth factor-B may cause upregulation
of smooth muscle contractile proteins (69). This medi-
ator has many actions and is likely present in asthma.
The consequences of hypertrophy of airway smooth
muscle require further exploration.

An important issue in remodeling is whether it is fixed
or a new dynamic equilibrium based on cell prolifera-
tion and cell death. Normal tissue remodeling is a func-
tion of cellular turnover and although smooth muscle is
more slowly proliferating than epithelium, for example
there is evidence of some proliferation of cells in nor-
mal animals, even large mammals such as the horse
(70). There is less information available for human
subjects but one study has suggested that at least in
severe asthma airway smooth muscle may be in a
state of dynamic remodeling (61) and therefore
amenable to therapy.
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Figure 2 - Schematic drawing of features of airway remodelling influencing AHR. Remodelled and control airway side-by-side
comparison. 1) Increased collagen content may lead to stiffening of the airway wall, providing a greater load against which
the airway smooth muscle must shorten. 2) Basement membrane folding, caused by the incompressibility of the airway wall,
results in a dramatic decrease of the open airway diameter, and trapping of mucous. However, basement membrane folding
may also provide an increased load against airway smooth muscle shortening. 3) Airway smooth muscle hyperplasia may in-
crease force generating potential of the airway smooth muscle, but not all cells may be in an optimal contractile state. 4)
Parenchymal tethering may be reduced in asthma, but little evidence of this has been found. 5) Airway wall thickening in-
wards from the airway smooth muscle layer enhances airway constriction, while outwards thickening increases the resistive
load to airway constriction.

Therapeutic approaches Bronchothermoplasty is the only current treatment that
specifically targets airway smooth muscle with a view
To date there are no known drugs proven to reverse to its destruction (72). Radiofrequency ablation is at-
airway smooth muscle remodeling, which may in part tempted at three bronchoscopic sessions. The effec-
be due to the lack of methods to non-invasively assess tiveness of the intervention is limited to improvements
the degree of remodeling. It may be possible that inhi- in symptoms and in rates of exacerbation (73). Sub-
bition of airway inflammation has a beneficial effect on stantial change in lung function is not reported. Con-
remodeling, but it will be necessary to assess muscle firmation of the removal of smooth muscle is support-
remodeling more directly in order to draw conclusions ed by human and animal studies (74, 75). It seems
about this. Newer imaging techniques such as optical reasonable that this postulated mechanism of action
coherence tomography may does indeed account for clinical outcomes. One could
/It may be possible \ provide information of this imagine that incomplete ablation could limit improve-
that inhibition of air- nature but thus far its use- ment since airway narrowing could still occur in inade-
way inflammation fulness has not been estab- quately treated areas. Further refinements in this direc-
has a beneficial ef- lished. CT imaging has pro- tion seem a promising approach to curing asthma.
fect on remodeling, ven to be unhelpful in as- Many subjects will likely not benefit from thermoplasty
but it will be neces- | Sessing the degree of re- if the site of their airway remodeling is distal to the gen-
sary to assess mu- modeling in some studies of erations of airways targeted by treatment. Identifica-
scle remodeling severe asthma and is a tion of the dominant site of airway smooth muscle re-
more directly in or- technique that may provide modeling would permit appropriate selection of sub-
der to draw conclu- information about airway jects and appropriate targeting of airways.
sions about this. wall thickness (71). Resolv-
AN " ing remodeling from bron-
choconstriction may be more Conclusion

difficult to achieve. In severe asthma with fixed airflow
limitation and biopsy-proven airway smooth muscle
thickening, CT scans did not detect the abnormality The search for the culprit in airway hyperresponsive-
(27). ness has changed focus several times over the years.
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While the research to date
has given us some indica-
tion on what is not causing
airway hyperresponsive-
ness, the explanation for
the observed difference be-
tween the apparent behav-
iour of airway smooth mus-
cle in vivo in asthmatic and
healthy subjects remains
elusive. Airway remodeling certainly plays an impor-
tant role in AHR, but the jury is still out on its causes
and effects. Are injury and repair responsible or are
there innate differences in at least some asthmatics, as
suggested by findings in childhood asthma? Does air-
way remodeling provide an element of bronchoprotec-
tion through increased airway wall stiffness, or is in-
creasing AHR through increased muscle mass and
subepithelial thickness?

Because of our limited knowledge of the precise signif-
icance of airway remodeling the therapeutic approach-
es to limit or reverse it are uncertain. Novel approach-
es to the ablation of airway smooth muscle through
bronchial thermoplasty await more extensive critical
studies of efficacy and the optimal choice of subject.
Will those with excess smooth muscle prove to be the
most benefitted? Perhaps better localization of the pre-
cise site of AHR will assist in determining the best ap-
proaches to therapy.

Because of our limi-
ted knowledge of
the precise signifi-
cance of airway re-

modeling the thera-
peutic approaches
to limit or reverse it
are uncertain.
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