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Chapter 1

Introduction

Recently iterated decreasing government transfers and an even more in-

creasing proportion of budget allotted based on competitive performances

took Italian Universities started struggling with competition for funds, in

particular for the University Ordinary Financing Fund (FFO).

Three years ago, the Ministry of University and of Scientific and Techno-

logical Research outfitted a set of indicators to assess the quality of the

educational offer and outcomes of formative processes and the quality of

scientific research (Article 2, Law 9, January 2009, No 1). Although this sys-

tem has been criticized by an authoritative and independent assessment

organization 1, about 50 universities participate to the annual allocation

funds under this scheme. Moreover, the share of FFO allocated in this way

is constantly increasing.

The University of Palermo has decided to initiate statistical studies to mon-

itor the FFO indicators in order to increase the budget. These statistical

models are aimed at informing several stakeholders on:

• which are the variables responsible for the indicators, what are their

present and past values and how they relate with national references.

1http://cronaca.anvur.it/
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This is the first step by which subjects having the institutional duty

to affect indicator values become aware of what is the state of the art;

• what could be the future values of these variables, look what are the

components of strength and weakness in order to looking at measures

for the correction of weaker performances;

• one or more strategies to be taken to increase the value of the indica-

tors, also comparing different time and realization costs.

All this aims can be achieved by both elementary statistical techniques

such as tables and graphics useful to show crude quantitative results and,

intuitive trends, and with more complex models able to dealing with time,

in particular with short term forecast, and to work with a small amount

of empirical evidence (because this is only the second year allocation so

there are few past observations available). Models should be theoretically

equipped with the distinction between predicting under observation and

predicting under intervention, in order to provide correct answers to the

distinct tasks of pure out of sample extrapolation and policy making, e.g

acting on the system of rules governing relationships among variables and

changing it. They should be also capable of encoding not only information

arising from empirical data, but also from extra knowledge, such as expert

opinions, in order to quickly adapt to new possible scenarios and keep a

genuine uncertainty about a priori information.

20



Chapter 2

The Italian University

Funding System

The University Ordinary Financing Fund (FFO) is the primary entry of the

universities budget. It is governed by several laws:

• Ministerial Decree No.655 December, 21 2010: Decree criteria for

allocation of Ordinary Financing Fund (FFO) to Universities for the

year 2010;

• Article 2, Law 9, January 2009, No 1: from 2009 onwards, in or-

der to promote and support quality improvement activities of the

public universities and improve the effectiveness and efficient use

of resources, a portion of at least 7% of FFO (...), with progressive

increases in following years, will be allocated by taking into account:

a Quality of the educational offer and educational process results;

b Quality of scientific research;

c Quality, effectiveness and efficiency of campuses.

21



• Article 2, Law of 24 December 2007, No 244: (...) the Ministry of

University and Research has established a fund with a budget of

Euro 550 million for the year 2008, Euro 550 million for the year

2009 and Euro 550 million for the year 2010 (...). The allocation of

resources is subject to the adoption of a program plan taking place

by January 2008. This will be approved by Decree of the Minister

of Universities and Research, in consultation with the Minister of

Economy and Finance, in consultation with the Conference of Italian

University Rectors (CRUI). This plan aims to:

a raise the overall quality of the university system and the efficiency

of the universities;

b strengthen the incentive mechanisms for efficient and appropriate

use of resources, with limitation of employer costs for the benefit

of research and teaching;

c accelerate the financial balance between the universities on the ba-

sis of binding parameters, uniform and realistic assessments of

future costs and, in order to make the parameters effective, the

ratio between staff costs and FFO should not exceed 90%;

d redefine the university debt;

e allow the rapid adoption of a system plan, with interventions in-

cluding: appropriate monitoring and verification tools which

are activated by the Ministry of University and Research, com-

biner with the Ministry of Economy and Finance, in consultation

with the CRUI. This is aimed to influence the actual payment of

resources to a more formal agreement with each university in

objective with the plan.

• Article 5, Law 24, December 1993, No 537: The fund for the financ-

ing of the universities includes a basic fee, to be divided between

the universities in proportion to the amount of state transfers and
22



costs incurred directly by the public universities 1993 budget, and

a additional fee, to be divided on the basis of criteria determined

by the Minister of University and Scientific and Technological Re-

search, in consultation with the National University Counsel and the

Conference of Rectors, relating to standard costs per student and the

objective of research, taking into consideration the size, structural

and environmental conditions. Since 1995, the basic fee for the fi-

nancing fund of the universities, will be progressively reduced. The

additional fee will be increased, by at least, an equal amount. The fee

helps to balance the system for funding the initiatives carried out in

accordance with development plans (...). The basic fee was calculated

taking into account the 2009 allocation. This fee is reduced by about

80% for each university, taking into account the total budget(...). The

criteria and indicators for the allocation of the quota referred to in Law

9, January 2009, No.1 are: The amount of 720 Mle, is allocated by 34%

(244.80 Mle) on the basis of indicators A1-A4 and the remaining 66%

(475.20 Mle) based on indicators of B1-B4.

For our purposes it is important to know that although the proportion

of FFO allocated according to a set of indicators changes year by year (7%

in 2010, 10% in 2011, 13% in 2012), throughout this thesis it will be fixed at

the 2010 level, 720Mle, because it permit direct economic comparisons, in

terms of gain or lost, of indicator values across years.

Funds are allocated according to the following table:
23



Quality of the educational offer and outcomes of formative processes

Dimention Name Description Weight Amount to be allocated

Demand A1 Students regularly anus. a. 2008/09 that
have achieved at least 5 credits in 2009,
broken down by group A, B, C, D and
weighted with a specific weight (4 for
group A, 3 for group B, group C for 2 and 1
for the Group D). For this indicator are ap-
plied three corrections: a) sustainability of
the training (KA); b) the local context (KT);
c) the strategic importance of the course of
study (KR) (application pending for 2010).

0.5 122,4Mle

Demand A2 CFU ratio for acquired in 2009 and cred-
its required for students enrolled in the
anus. A. 2008/09, broken down by groups
of course. For the calculation of the spe-
cific value is related with the median of the
reference group.

0.50 122,4Mle

Demand A3 percentage of graduates employed three
years after graduation. The indicator for
the application is suspended pending the
completion of the Registry 2010 National
Graduates

0 0

Demand A4 indicator of quality of teaching evaluated
by students. The indicator was suspended
in 2010 pending review of surveys cur-
rently in use.

0 0

Quality of the scientific research

Dimention Name Description Weight Amount to be allocated

Research B1 Percentage of positively evaluated re-
searchers in projects PRIN 2005-2008,
”weighted” for the success rate of the sci-
entific area

0.35 166.32Mle

Research B2 Weighted average rates of participation in
projects FIRB program ”Futuro e Ricerca”
weighted with their success rates, com-
puted separately for two lines funding and
normalized to national values.

0.15 71.28Mle

Research B3 Allocation coefficient of resources assigned
to VTR 2001-03 (CIVR) Areas

0.30 142.56Mle

Research B4 The average percentage of: funding and
successfully acquired by the universities
projects in the Seventh Framework Pro-
gramme - European Union - CORDIS; fi-
nancing by the European Union; funding
from other abroad public institutions.

0.20 95.04Mle

Table 2.1: Indicators definition, weights and amount to be allocated on 201024



In this thesis only indicators A1, A2 and B1 are going to be monitored.

Indicator B3 is a quantity computed years ago so it doesn’t need to be

forecast. Due to lack of local data, indicators B2 and B4 are not going to be

considered.

Notice that all indicators are expressed as a percentage, so their values are

directly comparable each other, e.g. A2 = 2.8 vs B1 = 1.4 means the quality

of the outcomes of formative processes is twice the quality of the scientific

research.
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2.1 Methodology

Since the aim of this Thesis is predicting future quantities, the most suit-

able statistical technique for this task is time series analysis. It has been

embedded into the Bayesian framework for two main reasons:

• for each quantity to be forecast, there are only a few observations

available, minimum one maximum five. This means that usual

asymptotic frequentist theorems cannot be applied, and information

from empirical data, the likelihood, have to be enforced with extra

knowledge, the prior distribution;

• time dependent observations call for flexible models able to adapt

rapidly to system shocks or to external interventions. This is usually

obtained through models with (time) varying parameters, a basic

feature included in the Bayesian modelling.

The next section will provide a brief introduction to Bayesian framework

and in particular, to its application to time series.

2.2 Introduction to Bayesian framework

2.2.1 Fundamentals

The well known Bayes theorem, (Bayes, 1763), (de Laplace, 1829), has been

interpreted in two distinct ways: as a crude computation technique (Con-

gdon, 2006), (Box and Tiao, 1992) and as a statistical philosophy (Roberts,

1994), (Raiffa and Schlaifer, 1968). Bernardo and Smith (2000) call this

distinction the ”Bayesian formalism” and ”Bayesian thinking” dichotomy.

The former being, the way probabilities are transformed, predictions are

made and parameters are estimated. The latter being the ways people in-

formally revisit, change and doubt opinions, on the basis of new evidence

(Lindley, 2010). Theorem states that a probability of an event E to take a
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generic value e, given that another event H takes a generic value h, depends

on the probability of E = e before any knowledge about H = h is acquired,

and on the probability of H = h given by the evidence that E = e:

P(E = e|H = h) =
P(E = e)P(H = h|E = e)

P(H = h)
∀h ∈ H, e ∈ E

The probability on the left side of the equal sign is called posterior proba-

bility. The two probabilities in the numerator are called, respectively, the

prior and the likelihood probabilities. P(H = h) is a normalization constant

(it does not depend on E = e) computable from the numerator. It is useful

to notice that neither E = e or H = h have actually happened. If E = e had

happened, then P(E = e|H = h) would be 1. If H = h had happened, then it

would be part of the sample space Ω1.

Usually, the prior probability represents the available information about

E = e before H = h happens and is sometimes called base knowledge.

The likelihood represents empirical information arising from observational

and/or experimental data2. The posterior probability contains up to date

knowledge.

The philosophical aspect of the Bayesian paradigm involves prior proba-

bility interpretation: P(E = e) is the probability before H = h occurs, in

empirical sciences, this means prior to conducting the experiment. As a

consequence P(E = e) is not estimable from data3. The two main sources of

1A probability space consists of three parts: A sample space, Ω, which is a non-empty set,

sometimes called the sample space, whose members can be thought as a potential result of

a random experiment. F is a sigma-algebra containing zero or more outcomes of Ω whose

elements are called events. P is a measure of the probability in F, that is an assignment of a

probability to events,(Kolmogorov, 1992).
2 In some sense H restricts the set of possible values for E between the two boundaries,

P(E = e|H = h) = P(E = e), that is in the case of independence, and P(E = e|H = h) = 1 (or 0)

whenever E = e is a logical consequence of H = h (or its negation h̄). For all other intermediate

cases, H = h makes some e values of E inconsistent and it assigns the residual probability mass

to the remaining values proportional to their prior probability.
3We are dealing with something different from the law of total probability P(E = e) =∑

h P(E = e|H = h)P(H = h), which is simply a constraint among probabilities. If we take into
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this knowledge are expert judgements or previous similar analysis results.

The first source embraces a probability calculus as a branch of philosoph-

ical thinking, known as subjectivism (de Finetti, 1989), (de Finetti, 1990),

but it leaves the unsolved problem of transforming opinions into numbers,

namely the elicitation task (O’Hagan, 2006). The second source is more

pragmatic, for example an extensive bibliographical search could help in

locating previous results as a good starting point for the prior probability.

But, from a theoretical point of view, it poses again the same problem in that

those results need their own prior probability: it is a sequence ad infinitum.

Influence of the prior on the posterior is called informativeness. What prior

to choose? There are two distinct families:

• non informative priors codify the notion of ”no prior information

available”, e.g. uniform distribution means every hypothesis has

equal probability. Sometimes, non informative priors are used as a

reference level in a sensitivity analysis;

• informative priors codify some kind of knowledge, or assumption,

about the quantity of interest. The degree of uncertainty on a parame-

ter is formalized by a prior probability distribution on that parameter.

sometimes for mathematical convenience (Good, 1965), it is useful to

adopt a particular prior distribution on the basis of the likelihood in

a way that prior and posterior have the same distribution, and the

updating applies only to its parameters with considerable computa-

tional efficiency. This is called conjugacy analysis.

Moreover, applying bayes algorithm backwards, the prior can be inferred

by the posterior and likelihood, e.g P(E) =
P(E|H)P(H)

P(H|E) .

The prior distribution has no meaning in the frequentist approach and it is

not used.

The likelihood P(H|E) gives diagnostic information about how likely H = h,

is in the light of E = e. The two approaches adopt it differently: Frequentists

account time P(E = e) has to be evaluated before H = h happens.
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maximize it, whereas, Bayesians average it out using the prior values as

weights.

For those who link probability and causation,(Suppes, 1970),(Galavotti,

2005),(Pearl, 1996), (Salmon and Wesley, 1998), H stands for the event cause,

and E stands for the event effect.

Before closing I would like to digress briefly. I am sure, at least once

in our lifetime, we were all Bayesians. I am referring to the case of the

octopus Paul, who during the 2010 world champion soccer race, correctly

guessed all seven of the Germany scores. Applying frequentist approach to

interpret this phenomenon, gives two kinds of problems: for interpreting

”Germany wins” as an event, Paul is supposed to continue guessing results

until the success rate converge to a constant. Frequestists, I guess, would

sustain non-scientific nature of the phenomenon, and consequently, it does

not make sense to compute the probability. But, this argument does not

concern frequencies, as it does Paul. Frequencies do not have anything in

common with the nature of events generated them. The second problem

regards the application of the binomial distribution within the frequentist

framework, which leads to an estimation of the probability of success equal

to one. Consequently, given that evidence and assuming temporal persis-

tence, one will have sacred faith on Paul’s art of divination in guessing

further world champion races. By the way, Paul is now dead.

Obviously, none of us will have such faith in a fish. In fact Bayesian think-

ing, accounts for this common sense through the prior distribution on the

octopus guessing capacity. If one thinks, whatever prevision Paul would

ever make, and whatever the score will actually be, his opinion will remain

the same, evidence (likelihood) won’t have an impact on the posterior. But

even though, for some reason, one agrees on a minimal divination capac-

ity, the posterior will never have a value of one. That means, contrary

to frequentist, bayesian approach starts from uncertainty and rests into

uncertainty, also in the extreme case of full favourable certainty evidence.
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2.2.2 Setting up the analysis: inference and prediction

Usually in statistics phenomena are represented by random variables, that

is functions directly interpretable as probability of events. Parametric infer-

ence is a branch of statistics that assumes the functional form to be known

up to some constants called parameters. The inductive task substantiates in

inferring parameters values from (a sample of) observations of the random

variables. In the Bayesian framework parameters are treated as random

variables with their own distributions. In the most simple technique, called

conjugate analysis, parameter posterior distributions take the same form of

the prior although with updated parameters. It follows a brief description

of the distributions used in the next models.

2.2.3 The normal distribution

One of the most exploited distribution for its good statistical properties is

the normal distribution (Johnson et al., 1994). It takes the form:

X ∼ N(µ, τ) , P(X = x;µ, τ) =
1

√

2πτ−1
exp[−

τ(x − µ)2

2
]

The teoric moments are: E[X]=µ ,V[X]=σ2. Sometimes the variance is

substituted with the precision τ = 1
σ2 .
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Figure 2.1: Normal probability mass function

Conjugate analysis prescribes the following parameter distributions:

µ|τ ∼ N(µmu, τmu)

τ ∼ Γ(α, β)

{µmu, τmu, α, β} are assumed to be known. Γ is the Gamma function (Johnson

et al., 1994)(α = k is called shape parameter and β is called rate parameter):

Γ(x;α, β) =
1

Γ(α)
βαxα−1e−βx

x ≥ 0, {α, β} > 0, Γ(α) = (α − 1)!

The teoric moments are: E[τ] = α
β , V[τ] = α

β2 .
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Figure 2.2: Gamma probability mass function

The status of “no prior information“is formalized with N(0,0.001) and

Γ(0.001, 0.001).

Posterior parameters take the form (x̄ is the empirical mean, n the sample

size):

µpost|τ, {x1, ...xn} ∼ N(
τ−1µmun−1 + τmux̄
τ−1n−1 + τmu

, (τn + τmu)−1)

τpost|{x1, ...xn} ∼ Γ(α +
n
2
, β +

∑
i(xi − µ)2

2
)

2.2.4 The binomial distribution

A Bernoulli experiment is a statistical experiment that has the following

properties:

• The experiment consists of n repeated trials;
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• Each trial can result in just two possible outcomes, one is called suc-

cess and the other failure. Often events are replaced with indicator

variables which take the value 1 whenever the outcome is success,

and take the value 0 whenever failure happens;

• The probability of success, θ, is the same in every trial;

• The trials are independent; that is, the outcome on one trial does not

affect the outcome on other trials.

The binomial distribution (Johnson et al., 2005) formalizes the answer

to the question: what is the probability to have x successes in n Bernoulli

trials. The formula is:

P(X = x; n, θ) =

(
n
x

)
θx(1 − θ)n−x x = 0, ...,n, θ ∈ [0, 1], n > 0

The teoric moments are: E[X] = nθ, V[X] = nθ(1 − θ).

Figure 2.3: Binomial probability mass function
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When θ is unknown the conjugate analysis establishes it to take the

form of a Beta distribution:

P(θ = t) =
tα−1(1 − t)β−1∫ 1

0 uα−1(1 − u)β−1du

The teoric moments are: E[θ] = α
α+β , V[θ] =

αβ
(α+β)2(α+β+1) .

Figure 2.4: Beta probability mass function

The updated parameters are α′ = α + x and β′ = n + x + β. The notion

of “no prior information“(on β) is formalized with parameters α = β = 1

which lead the Beta distribution to be equal to a uniform.

The model can be generalized to include a logistic regression, which lin-

earises and normalises the relationship. The new model is:

X ∼ Bin(θ,n), logit(θ) = log(
θ

1 − θ
) ∼ N(µ, τ)

In this way all the arguments already mentioned about the normal model

apply to the binomial.
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2.2.5 Time series

One of the principal aims of this analysis, is to choose an appropriate model

for predicting target quantities on the basis of their past observations. Such

models are called autoregressive (Box and Jenkins, 1976), (Shumway and

Stoffer, 2006),(Brockwell and richard A. Davis, 2002).

In the simplest autoregressive model, the value of the outcome variable

depends linearly upon its immediate predecessor and upon a stochastic

error term. The model, called AR(1), typically takes the form:

Yt = α + βYt−1 + εt ; t = 1, 2, ...,T

where α represents the mean level of the outcome, and β stands for the

autocorrelation between two successive observations. The error term ε is

usually assumed to be a white noise, εt ∼ N(0, τ), with τ = 1
σ2 constant

across all time points t, and Cov(εs, εt) = 0 ∀s , t. These assumptions lead

to a normal distribution for Yt ∼ N(α + βYt−1, τ), independent from past

observations given the immediate predecessor, Yt y Yt−k(>1)|Yt−1.

Usually, this model relays on the assumption of first and second order sta-

tionarity, namely E(Yt) = µ and V(Yt) = σ2
∀t, and if data shows temporal

trend, it has to be removed before the analysis starts, by detrending tech-

niques or successive differences. Stationarity entails the threshold |β| < 1.

In the Bayesian context, parameters are treated as random variables.

Commonly β ∼ N(µβ, τβ) and precision τ ∼ Γ(a, b), where {µβ, τβ, a, b} are

known parameters. Moreover, in the Bayesian context there is no need im-

posing any constraints, the proportion of coefficients exceeding the thresh-

old can be verified a posteriori (Congdon (2006), pag. 282).

Finally, the Y series needs to be initialized before data are collected. Usu-

ally, this is treated as an extra parameter with fixed effect Y0 ∼ N(µ0, τ), the
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effect of that choice decrease with series size. In short, the model is:

MAR1 =



Yt|µt, τ ∼ N(µt, τ), t = 1, 2, ..,T

µt|τ = βYt−1

β ∼ N(µβ, τβ)

τ = 1
σ2 ∼ Γ(a, b)

Y0 ∼ N(µ0, τ)

Autoregressive models with fixed parameters are often effective in the

sample period, but time-varying parameters models (West and Harrison,

1997) have perhaps a greater fit in modelling short term forecasts when

parameters evolve through time. Both of them will be used, the first be-

cause of its parsimony in estimating few parameters, and thus, more easily

communicable to non expert auditorium. The second, because of its high

flexibility and closeness to reality. Previous time series above assumes fixed

β coefficient. Actually, relationships between variables are likely to vary

over time.

One class of models dealing with that variation and with good statis-

tical properties is Dynamic Linear Models (DLM) (West and Harrison,

1997),(Harrison and West, 1991),(Campagnoli et al., 2009). The most simple

case of DLM is a time-varying first order autoregressive model, TVAR(1),

in which βt follows a random walk:

MTVAR1 =



Yt ∼ N(µYt , τYt ),

µYt = βtYt−1

βt ∼ N(βt−1, τβt )

NIP : (β0,Y0) ∼ N(0, .001), (τYt , τβt ) ∼ Γ(0.001, 0.001)

IP : β0 ∼ N(µβ0 , τβ0 ), Y0 ∼ N(µY0 , τY0 )

τYt ∼ Γ(rateτYt
, shapeτYt

), τβt ∼ Γ(rateτβt
, shapeτβt

)

In this model β depends on t through a Gaussian random walk. Priors

regard both the initialization and the precision of observations (Y0, , τYt )

and parameter (β0 , τβt ).
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2.3 Introduction to causal modelling

Sometimes knowing that two events are associated each other is not suffi-

cient to ask questions we are interested in. This is especially the case when

one event is interpreted as a cause and the other as the effect. This is be-

cause association is a symmetric relationship while causation is asymmetric,

therefore a single association relationship gives rise to two distinct causal

interpretations: a casual relationship from the cause to the effect and a diag-

nostic relationship from the effect to the cause. Here a brief example: to be

pregnant (BP) and pregnancy test result (PT) are two associated events, it is

very easy to build a contingency table and compute the conditional prob-

ability P(TP=yes|BP=yes) or the opposite P(BP=yes|PT=yes), both of them

different from the marginal probability. But thinking causally, only the for-

mer probability makes sense because being pregnant is a cause the test to be

positive, but not the other way round, that mean making the test positive

doesn’t cause any pregnancy. Formally P(BP=yes|PT=yes)=P(BP=yes). So,

what is the interpretation of the P(BP=yes|PT=yes)? the interpretation re-

lies on the diagnostic thinking: observing PT=yes gives information not

about its acting as a cause, but about the truth of the cause BP=yes.

Pearl’s methodology (Pearl, 2009) formalizes such difference using the

(standard) notation of conditional probability for describing observational

relationships (”given that you see”), while using a (new) notation of do()

operator at the right side of the conditional bar (|) for describing causal

effects (”given that you do”). Causal analysis requires more knowledge of

the data generation process than observational analysis, see the Simpson’s

paradox (Pearl (2009), Chp 6), or the problem of the thousands of prisoners

(Pearl (1988), p. 60).

Such methodology combines features of structural equation models with

the explicit use of latent variables Bollen (1989), Lee (2007) with potential-

outcome Rubin (2005) and graphical models (Pearl (1995), Pearl (2009),

Spirtes et al. (2001)). It gives an operational definition of intervention,
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with use of a new notation, (do(X = x)), and criteria for their identification

(do-calculus, Pearl (1995)). Establishment of criteria for identifying inde-

pendence implicit in the model, d-separation Pearl (1988), back-door (Pearl,

2000) and front-door (Pearl, 1995) criteria.

In Section 2.3.1, we introduce the structural equation model and their

use in the pioneering work of geneticist Wright (1921). In Section 2.3.2,

we introduce the terminology of the language of graphs. Paragraph 2.3.3

develops the concept of intervention, two operational criteria for its iden-

tification and a set of inference rules for its calculation. Finally, paragraphs

?? introduces the counterfactual analysis.

2.3.1 Structural equation models

The usual statistical modelling provides a formalization of the relationship

between response variable and regressor set through a single function:

Y = f (X1, ...,Xk, ε)

where Y is the variable of interest, ε represents the random component

(under the usual conditions ε ∼ N(0, σ2), (X1, ...,Xk) is the vector of re-

gressors and the function f represents the deterministic component. If

regressors can be considered as random variables, the model predicts the

conditional expected value for each (fixed) realization of the vector of re-

gressors E[Y|X1 = x1, ...,Xk = xk]. The systematic and random components

are uncorrelated by assumption. When f is linear it assumes the well-

known form:

Y|(X1 = x1, ..., xkXk =) ∼ N(β0 + β1x1 + ... + βkxk, σ
2)

The structural equation model (SEM) differs from this paradigm as it is

endemically multi-relational: there is no single a priori response variable,

but each variable is defined by the direct relationship with a subset of the
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other variables in the model:

Xi = fxi (X1, ...,Xi−1,Xi+1, ..,X j, εi) j = 0, ..., k ∀i = 1, ..., k

This modelling paradigm is much more flexible than the previous one. The

status of a variable (dependent / independent) is not a property of the vari-

able itself, but it depends on the relationship with the others: each variable

may have both the meaning of the cause (independent variable) in one

equation and effect (dependent variable) in another equation. It explicitly

models relationships between regressors (if none, it is the ordinary case). It

also distinguishes several types of effects, such as the direct effect between

variables, (X1 = fX1 (X2, εX1 )), or mediated effects (if X2 = fX2 (X3, εX2 ) then

X1 depends on X3 through X2).

These models answer the question: how can you express mathemati-

cally the common claim that the symptoms do not cause disease? The first

attempt to answer this question comes from the geneticist Wright (1921),

who used a combination of equations and graphs to communicate causal

relations. For example:

y = βx + εy

where x is the level of disease, y the level of symptoms and εy represents

all other factors that could affect symptoms (for fixed levels of the disease).

This equation does not express the causal relationship contained in the

statement above because the algebraic equations are symmetric relations in

the sense that you could write:

x =
1
β

y −
1
β
εy

and this equation could be misinterpreted as ”symptoms cause disease”.

To express the directionality of the process, Wright coupled the equation

with a figure, later called ”path diagram”, where arrows start from (pre-

sumed) causes and end into (presumed) effects, and moreover, absence of
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an arc indicates no direct relationship between variables, and therefore the

absence of an arc from Y to X is interpreted as the absence of Y among the

causal factors that influence X.

Figure 2.5 can be thought as a visual aids to inspect the ”causal direction”:

Figure 2.5: graph of a simple regression equation

Basically, the diagram encodes the assumptions of causal effects of X on

Y, and the lack of causal influence of Y on X, whereas the equation above

encodes quantitatively the strength of that relationship, e.g. β, called path

coefficient, measures the causal effect of X on Y.

2.3.2 The language of graphs

Since they appeared in the early twentieth century, structural equation

models were accompanied by graphical representations (path-diagrams)

that provide a concise representation of the assumptions involved in the

qualitative model.

In the eighties, these diagrams have been interpreted as probabilistic mod-

els (Bayesian networks) and then in the nineties, as a tool for a formal causal

inference (causal networks), that is as predictive tools for effects of external

intervention.

In this section, it is introduced the terminology used in the language of

graphs.

The term ”dependency” in a graph, usually represented by a link or con-

nection between variables, can refer to a mathematical, causal or statistical

dependence. In a graph, a connection is represented by arcs, or links, and
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variables are represented by node or vertices. Two variables connected by

an arc are adjacent , as well as two arcs that meet at a node. If the arc is an

arrow, the nodes from which it comes are the parents (Pa), and the one in

which it ends is the child, (Ch).

In causal diagrams, an arrow represents a ”direct effect” of the parent on

the child, although this effect is direct only in relation to a certain level

of abstraction since variables lying on that link could be missing from the

graph.

A variable with no parents is called exogenous or root and is determined only

by variables outside the graph (and therefore not under study), otherwise

it is called endogenous. A variable with no children is called leaf.

A path or chain is a sequence of adjacent arcs. A path is a directed path of

arrows drawn entirely from the same direction (A → B → C). If there is a

direct path from X to Y, then X is an ancestor (An) of Y and Y is a descendant

(De) of X. In the diagrams, direct paths represent causal pathways from

the starting variable, called cause, to the variable of arrival, called effect.

A graph is called direct if all arcs are arrows, acyclic if there are no cycles,

namely direct routes that depart from a variable and end in itself. If both

features hold it is called DAG (Direct Acyclic Graph) and represents a com-

plete causal structure as all sources of dependence are expressed through

causal connections.

A variable intercepts or mediates a path if it lays on the path (but not at

the end). Variables that intercept direct routes are called intermediate. In

this case, it can be two types of paths, serial (A → B → C) or divergent

(A ← B → C). A variable is called collider and the path convergent if the

path enters and exits through the tip of the arrow variable (e.g. A→ B← C).

A path is open or unblocked if it is formed by serial or divergent paths and

is closed or blocked if it contains at least one collider node. So a path not

containing colliders is open or active (e.g. A ← B ← C → D) while a path

with collider is closed or inactive (e.g. A← B→ C← Q→ E).

Two variables (or set of variables) are d-separated (Pearl, 1988) if there is no
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open path between them (or each of them). Formally, a path p in a graph G

is called d-separated by a set Z if and only if either:

1. p contains one of the following patterns: I → M → J, I ← M ←

J, I←M→ J such that M ∈ Z or;

2. p contains the following pattern: I→M← J, such that neither M ∈ Z

nor De(M)G ∈ Z.

The constraints imposed by a graphical model correspond to indepen-

dence arising from d-separation, for example, the absence of an open path

between A and E in A ← B → C ← A → E constrains the two variables

to be marginally independent. However, the reverse is not true, that the

presence of an open path dependence does not imply independence, in fact,

it could arise from the so-called violation of faithfulness (Spirtes et al., 2001):

E ← A → F, E and F may be marginally independent if the dependencies

E ← A and A → F cancel each other (equal intensity and opposite direc-

tion, e.g. E = βA + εE, F = −βA + εF). However, for first approximation

faithfulness is normally assumed.

A bidirected arc↔ represents two variables sharing the same hidden an-

cestors, e.g. A↔ B means that there is a third unobserved variable U with

directed paths to A and B (A← U→ B). Every set of equations induces a

DAG, is by associating a node to a variable, and a set of link starting from

the independent variables, either endogenous or exogenous, and ending

into the dependent. Figures 2.6 and 2.7 show the induced DAG of an AR(1)

and TVAR(1) models:

42



Γshape Γrate

τ

Y0 · · · Yt−1 Yt Yt+1 · · ·

µ0 µt−1 µt µt+1

β

µβ τβ

Figure 2.6: AR(1) inducing DAG
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τY

Y0 · · · Yt−1 Yt Yt+1 · · ·

µ0 µt−1 µt µt+1

β0 · · · βt−1 βt βt+1 · · ·

τβ

Figure 2.7: TVAR(1) inducing DAG
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Finally, a personal comment: it has to definitely distinguish between

genuine graphical analysis and instrumental graphical analysis. Usually

in statistics, graphical analysis is associated either with a first exploratory

stage (e.g. histograms, plots), or as merely representation of algebraical

manipulation (e.g. a zero values in the normal covariance matrix out of

principal diagonal, entails a missing link in a DAG), or later in order to

verify some assumptions, such as the shape of the distributions of residu-

als. The methodology of Pearl, in contrast, uses the graphical language as

primary and predominant: the model, although defined in terms of (struc-

tural) equations, is always put together with its graph. The d-separation

criterion is a tool that helps in identifying, by simple inspection, the inde-

pendences implied by the model, the concepts of causal and counterfactual

effect are related to the graph in terms of eliminating some of its arcs. Iden-

tification of effects (both, total, direct and indirect (Pearl, 2001)), mediation

(Pearl, 2012), transportability (Pearl and Bareinboim, 2011) are all defined in

terms of graphical criteria. Computation, namely solving equations, comes

afterwards.

2.3.3 Nonparametric models: operator do(x) as mathemati-
cal tool for interventions and counterfactuals

If the function fxi in fxi (X1, ...,Xi−1,Xi+1, ..,X j,Ui)4 is not specified, the struc-

tural model is called nonparametric5. Unlike the parametric linear model

in which causal effects are defined algebraically by the regression coeffi-

cients, in nonparametric models, the effect is interpreted as the ability to

change the function structure using the invariance properties of the struc-

tural equations.

4εi is substituted with Ui according with the original notation
5Here nonparametric does not refer to the nonparametric statistical estimation of the func-

tion fxi , but to what matters for drawing causal conclusions, that is the independences entailed

in the graph G identified through the d-separation criterion, beyond any functional form.
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A probabilistic causal model (PCM) (Pearl, 2009) is defined as a tuple M =

〈U,V,F,P(u)〉, where:

• U = (U1, ...,Um) is a set of exogenous variables;

• V = (V1, ...,Vn) is a set of endogenous variables. These variables are

functionally dependent on a subset of U ∪ V;

• F is a set of functions such that each fi maps a subset of U ∪ V \ {Vi}

in Vi, and such that V is a function of U through F;

• P(u) is a joint probability distribution of U.

For example:

z = fZ(uZ)

x = fX(z,uX)

y = fY(x,uY)

It follows the induced DAG:

Figure 2.8: The induced DAG

Each of these equations represents a causal mechanism that determines

the value of the variable on the left of the equal sign through those on
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the right of the same. The absence of a variable on the right side of the

equation encodes the assumption that the Nature/Mechanism/Agent ignores

that variable in the process of determining the output variable.

This set of equations is called structural, if it is assumed that they are

autonomous, that is, invariant to possible changes in the shape of the other

functions. When P(U) factorizes in jointly independent components the

model is called Markovian. In this case, the following theorem holds:

any joint distribution generated by a Markov model M can be factorized

as:

P(X1, ...,Xk) =
∏

i

P(Xi|PA[Xi])

where X1, ...,Xk are endogenous variables in M and PA[Xi] are the parents

of Xi in the causal diagram associated to M. For the example above it

follows:

P(X,Y,Z) = P(Z|UZ)P(X|,UX)P(Y|,UY)

where UX,UY,UZ are jointly independent but otherwise arbitrarily dis-

tributed. This factorization introduces more than one relationship between

a graph G and a joint probability distribution P(X1, ...,Xk), e.g. the same

joint probability distribution may arise from different graphs (X→ Y→ Z

and X ← Y ← Z induce by the same joint probability because they entail

the same set of independences).

The invariance feature allows for using structural equation for modelling

causal effects (and counterfactuals). This is done using a new mathematical

operator called do(X = x) (or simply do(x)), that simulates the consequences

of a physical intervention (action) on the variable X by removing its defining

functions from the model and replacing X as argument of other equations

with a constant X = x0, regardless of its natural value f (Pa[X]), and leaving

everything else unchanged. Graphically, this resolves in removing the arcs

ending in X and replacing X with the node x0.

For example, to simulate an operation on the variable X, the new system of
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equations is:

z = fZ(UZ)

x = x0

y = fY(x0,UY)

This operation, called wiping out equation in Strotz and Wold (1960), leads

to the following corollary: a Markov model generated by a do(X j = x j)

is given by the truncated factorization P(X1, ...,X j−1, ...,X j+1, ...,Xk|do(x j)) =∏
i|Xi,x j

P(Xi|pa[Xi])x j where P(X j|PA[X j]) are conditional distributions pre-

intervention. If M is the original Markov model, after the factorization

associated with the truncated model it will be called submodel and denoted

by Mx j .

Figure 2.9: The induced DAG by the submodel Mx j after an intervention

do(X j = x j)

When the goal is to compute the effect of an intervention on a particular

variable Y, the distribution P(Y = y|do(x)) is called post-intervention.

In general, a post-intervention distribution can be defined as:

PM(y|do(x)) , PMx (y)

In other words, the post-intervention distribution of the response variable

Y is defined as the probability that the submodel Mx assigns to Y. A key

aspect on causal analysis is the identifiability of causal effects: if, and how,
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it is possible to calculate the post-intervention distribution P(y|do(x0)) from

observations governed only by the pre-intervention distribution P(y, x, z).

For example, in the previous graph, the value of E(Y|do(x0)) is identifiable

and is given by the conditional expectation E(Y|X = x0), regardless of the

functional forms fY,FX,FZ and distribution P(u):

E(Y|do(x0)) = E( fY(x0,UY))

the expected value of pre-entry is:

E(Y|X = x0) = E( fY(X,UY)|X = x0)

= E( fY(x0,UY)|X = x0)

= E( fY(x0,UY))

= E(Y|do(x0))

The identification problem is solved in Shpitser and Pearl (2008).

The do(X=X) operator, also called atomic intervention, is defined as the

simplest type of external intervention (Pearl (2009), pag. 70). Some other

type could be: to change the functional form, to delete a parent relation-

ship, to add a parent relationship, to change the relationship (e.g. form

child to parent or from parent to child), to add variable to the system, to

delete a variable from the system. Notice that the do(X=x) intervention

corresponds to performing a ”delete a parent from the relationship” on all

parents of X before setting X=x.

In this section, a distinction was made between identifying an effect and

estimating it. This is because the two operations are distinct: to identify

a causal effect means being able to derive from a quantity P(Y|do(x)) a

quantity ”do-free”. Instead, to estimate means calculating the effect of its

distribution on its average value or other characteristics, using any criteria,

subjective, classical, frequentist or Bayesian. None implies the other. It is

possible to identify an effect without being able to estimate it. For example,

because the sample size is too small or because the goodness of fit is too low.
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The do(X=x) operator can be thought as the simplest counterfactual

sentence. Let us introduce counterfactuals first: I had an headache, I took

the aspirin, headache is gone. Had I not taken the aspirin, would I be

equally good?

I took the aspirin is the observed event, while had I not taken the aspirin is

an hypothetical (not observed) event called counterfactual (Lewis, 1973).

The formal definition is:

Y(x,u) , YMx (u)

which reads, the sentence ”the value that Y would assume in unit u, had

X been x”, is the solution for Y in the submodel Mx where the function

for X is replaced by the constant x, being u the status of the exogenous

variables (Balke and Pearl, 1994), or a specific unit in the potential outcome

framework (Rubin, 1974).

Moreover, this hypotetical event is connected to the observed one through

the consistency axiom (Robins, 1987), (Pearl (2009), pag 229):

X(u) = x⇒ Y(u) = Yx(u)

which reads, when the observed value of X(u) is x, the counterfactual value

of Yx(u) is equal to the observed value Y(u).

Given a simple structural system:
y = bx + e1

z = cy + e2

corr(e2, x) = 0

The empirical claim of the structural equation associated to this counter-

factual is :

Y(x, z,u) = f (x, e(u))

for any set Z not intersecting X or Y. This reads as: had X and Z been

x and z, respectively, Y would be f (x, e(u)) independently of z and of the

other equation(Pearl (2009), pag 380). For more information about testable
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counterfactuals refer to (Shpitser and Pearl, 2007).

In decision making situation, probability like P(future|do(action), see(context))6

(Pearl (2009), pag 392) can be formulated in counterfactual form (see 3.6.1

for an example).

2.3.4 Observation vs manipulation vs counterfactual in a
nutshell

This brief section aims to explain the difference between observation, ma-

nipulation and counterfactual with a trivial deterministic example.

In the beginning was the data generating model:

DGM


y := 3x

x := 2z

z := 4t

The system read as: y is generated according to x values, x is generated

according to z values, z is generated according to t values. {x,y,z} are

observed. {t} in not. {x,y} are endogenous, {z} is exogenous. X generates

Y means, paraphrasing Hume (1976), ”if the first object had not been, the

second never would have existed”.

Now let us assume to observe x=2. The new set of equations is:

OBS


y := 3 ∗ 2

2 = 2z

z := 4t

Observing x=2 gives causal information about y, which is generated accord-

ing to x, but gives also diagnostic information about z: the only z-generating

value compatible with the generated value x=2 is 1. For the same reason it

turns out t=1/4. The set of solutions is {y=6,x=2,z=1,t=1/4}.

6under the convention that the context is observed before the action is made.
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Now let us assume to manipulate do(x=2). The new set of equations is:

INT


y := 3 ∗ 2

x := 2

z := 4t

Literature says manipulating x:=2 is interpreted as wiping out the gener-

ating equation x:=2z and substitute it with the the equation x:=2. Such

substitution gives only causal information about y, but no diagnostic in-

formation about z (the effect does not affect the cause). The set solution is

indeterminate: {y=6,x=2,z=4t,t}.

Now let us assume the counterfactual {x=2,do(x=3)}, namely observing x=2

and after manipulating do(x=3). The new set of equations is:

COU


y := 3 ∗ 3

x := 3

1 = 4t

In the first equation y receives causal information from the manipulation

(which overrides the former causal information from the observation x=2).

In the second equation x is manipulated (as in the INT system). In the third

equation z receives diagnostic information from the observation x=2 (as in

the OBS system) while no information is received from the manipulation.

The set solution is: {y=9,x=3,z=1,t=1/4}.

2.4 The skeleton

In unix-like systems it exists a directory named /etc/skel. It contains directo-

ries and files that will be copied into the personal user directory whenever

a new user will be added to the system.

Following the same logic this section contains statistic prototypes will be
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performed whenever a new indicator will be added to the set.

The goal of this thesis is monitoring variables responsible for FFO indica-

tors. Monitoring has been interpreted as a fourfold concept translating in

describing, analysing retrospectively, predicting and intervening on indi-

cators. A detailed description follows.

To describe an indicator means to provide:

1. the description of the indicator, both in prose and in formal terms,

through the system of structural equations it describes and the relative

induced DAG;

Here an example from A2 indicator:

Indicator A2 aims to measure student abilities to earn the credits

required each year by the curriculum. This capacity is measured by

the ratio (R) between the actual CFU earned (EFF) and the teoric of

CFU to be earned (TEO) in one academic year. The latter is typically

60 per year, the former a part of it. Similar to A1, the ratio is computed

separately for the 4 degree courses groups. The different capabilities

of credit acquisition between groups is taken into account by dividing

such ratio by the national median value of each group (Median(R) or

MR). This results in a coefficient ranging around 1. Finally, this

coefficient multiplies the number of actual credits. TEO and EFF are

both function of the number of students (STD), EFF ∼ Bin(θ,TEO),

local and national variables, {S∗, I} and {R∗, R}, could be correlated

due to common national factors.
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The structural equation system is:

A2



TEOX = 60STD

EFFX ∼ Bin(θX,TEOX)

RX = 100 EFFX
TEOX

, X = {A,B,C,D}

R∗X = {R1,X, ...,R53,X}

MRX = Median({RX,R∗X})

WCFUX = RX
MRX

EFFX

I = WCFUA + WCFUB + WCFUC + WCFUD

Corr(S∗, I) , 0

Corr(R∗X,RX) , 0

S =
∑54

i=1 Ii = I +
∑53

i=1 I = I + S∗

A2 = 100 I
S

As already mentioned in the section dedicated to the graph theory

(section 2.3.2), every set of structural equations induces a graph in

which every variable is represented by a node, and every equation is

represented by a parent/child connection, from every node represent-

ing an independent variable starts an arrow ending at the dependent

variable. Exogenous variables are shown in red, endogenous vari-

ables are in blue.

The induced DAG is represented in the next figure:
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S∗ S A2

I

WCFUX

R∗X MRX RX

TEOX EFFX

STDX θX

60

Figure 2.10: A2 induced DAG
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2. to define the timetable of every variable involved in the indicator

construction, that is for three consecutive years what time variable

values will be available or need to be estimated. Next table continues

with A2 example:

Year T T+1 T+2

Quantity RT AT RT AT RT AT

EFF 2009 01/01/10 2010 01/01/11 2011 01/01/12

TEO 2008/09 01/01/09 2009/10 01/01/10 2010/11 01/01/11

MR 2010 12/10 2011 12/11 2012 12/12

S 2010 12/10 2011 12/11 2012 12/12

A2 2010 12/10 2011 12/11 2012 12/12

Table 2.2: A2 Reference Time and Available Time

3. to assign to every variable its observed value in order to obtain the

2010 indicator:

A22010



EFF={63767,450706,428157,269522}

TEO={105300,1110160,1231877,776298}

R={60.56, 40.60, 34.76, 34.72}

MR={59.7, 43.5,38.6,37.1}

I=1122225.29

S=40656680.44

A2=2.76

To perform a retrospective analysis means:

1. using the friendly what/if language, to implement counterfactuals

aiming to discover past errors or delay in data entry, or to build

hypothetical scenarios useful to discover what variables are more

beneficial to intervene on;
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Next example comes from A1 (see section 3.3 for A1 definition):

Query: In 2010 we observed A1 = 3.66, what value A1 could attain, were

all regular students active (given that actually not all regular students were

active)?

The question is answered in two steps: in the first, all variables are fixed to

their observed values, obtaining (again) A1 = 3.66.

MKA09/10 = 17.37 TEA09/10 = 1858

S2010 = 3920434 A1 = 3.66 TDC09/10=86.41

ARSA, 08/09 = 1494 ARSB, 08/09 = 9844 ARSD, 08/09 = 9960 ARSD, 08/09 = 6223

Figure 2.11: A1 marginalized DAG: observed values

In the second step, applying the wiping out equation operation Strotz

and Wold (1960) Pearl (2000), variables are set according to the counterfac-

tual antecedent, namely ARSA := RSA and so on, then we compute again

the A1 value getting the following answer: A1 would be 4.49.

MKA09/10 = 17.37 TEA09/10 = 1858

S2010 = 3920434 A1 = 4.49 TDC09/10 = 86.41

ARSA, 08/09 :=1743 ARSB, 08/09 :=11112 ARSC, 08/09 :=12130 RSD, 08/09 :=7932
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This toy example leads to the economic shocking conclusion that in 2010

inactive students cost 1Me, showing the essential need to reduce the great

mass of students passing no exams in a years.

Nevertheless, counterfactuals are not observable, it is impossible to go

backwards in time and make students active, and, moreover the computa-

tion above does not indicate a good interpretation for the future: it would

be interpreted as the 2011 A1 value under the hypothesis of all variables

remaining fixed at the 2010 value, except the active regular students. This

is not feasible because all quantities are supposed to change between the

years.

To perform a previsional analysis means:

1. to perfom a short term prevision, that is forecasting national variables

(usually S the sum for all 54 local indicator values, and a median value

MR of some local data, e.g. a ratio R) in order to make a prevision on

one year ahead. The prevision policy is: whenever there is only one

year observation available, the normal distribution is used because of

its excellent mathematical properties, such as symmetry. When more

than one year observation is available, time series analysis is used, in

the context of Bayesian estimation, in particular AR(1)/TVAR(1). One

goal is to test whether informative prior is needed in order to obtain

a precise estimation.

An example coming from A1: even though a causal diagram is de-

picted, being only one observation available on national data, it will

used a normal approximation model.

The causal diagram:
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St St+1

Īt MKAt MKAt+1 Īt+1

K̄At K̄At+1

¯TARSt ¯TEAt ¯TEAt+1 ¯TARSt+1

N̄Et N̄Et+1

¯STDt ¯STDt+1

β

Figure 2.12: The spurious association between St and St+1
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An example of the normal approximation model is:

S


S2011 ∼ N(µ̂, σ̂)

µ̂ = k1Sobs
2010

σ̂ = k2σ(Iobs
2010)

{k1, k2} ∈ {0.95, 1, 1.05}

where Sobs
2010 is the S observed value in 2010, and σ(Iobs

2010) is the em-

pirical standard deviation among all 54 I values in 2010. k1 = k2 =

{0.95, 1, 1.05} are two coefficients useful for sensitivity analysis.

Without any empirical evidence, 5% is supposed to be rounded up

because S as a sum of variables tends to balance increments and decre-

ments of its own components.

An example of the output simulation table is:

Simulation table

n.iter=10000 S 2011

Node Mean Sd 5% 50% 95%

0.95µ, 0.95sd 3588116 58391 3492952 3588202 3682550

0.95µ, sd 3587629 60623 3488732 3587611 3686982

µ, 0.95sd 3777204 57566 3682013 3777545 3872508

µ, sd 3776857 61075 3677620 3776782 3876240

1.05µ, sd 3965067 61221 3865571 3964356 4066440

µ, 1.05sd 3776653 63709 3671871 3777186 3880745

1.05µ, 1.05sd 3965929 64663 3860224 3966735 4071281

Table 2.3: S2011 ∼ N(k1Ŝ2010, k2σ̂ = σ(I2010)), {k1, k2} ∈ {0.95, 1, 1.05}

This simulation offers a grid of values inside which S should hopefully

be. Summaries helps on deciding whether a value, e.g. 40000000,

belongs to (1.05µ , σ̂) but not to (0.95µ , σ̂).
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2. to perform a long term prevision, that is forecasting both national and

local variables in order to make a two year ahead prevision on the

indicator. Usually there are past observation so time series analysis

are performed, usually AR(1) models. When data show trend on

the parameters, time-varying AR(1) are used instead. Depending on

the nature of the variable to be forecast, either binomial (also in the

logit scale) or normal model are used. Every model is equipped with

both non informative and informative prior distributions, in order to

verify whether uninformative priors lead to the same forecasts of the

informative ones, meanings data alone carry a sufficient amount of

information to justify the weaker assumption.

Simulations are performed using jags software (Plummer, 2003) and

rjags package (Plummer, 2011) of the R suite (R Development Core

Team, 2011), in a winbugs style format. Tables of deviance come from

(Plummer, 2008).

Structural equations, causal diagrams, table of deviance and table of

estimates are provided. Here an example from A2 indicator.

The model is:

MBin
EFF =


EFFi,t ∼ Bin(θi,TEOi,t), t = 1, 2, 3, 4 i = {A,B,C,D}

NIP : θi ∼ Beta(1, 1) ∀i

IP : θA ∼ Beta(58.67, 44.34) θB ∼ Beta(1650, 2536)

θC ∼ Beta(242.8, 440.2) θD ∼ Beta(9023, 16805)

The induced DAG is:
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Figure 2.13: The spurious association between EFFt and EFFt+1
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AR(1) NIP/IP

Mean Deviance MD 18569

Penalty term P 4

Penalized deviance PD 18573

Table 2.4: EFF: fixed effects binomial model. NIP/IP deviance

The tale of estimates is:

n.iter EFF - NIP/IP

Node Mean Sd 5% 50% 95%

A ˆ̂EFF2011 88428.8 220.6 88066.0 88429.0 88792.0

B ˆ̂EFF2011 432306.5 568.3 431372.0 432307.0 433241.0

C ˆ̂EFF2011 378222.6 543.7 377328.0 378223.0 379116.0

D ˆ̂EFF2011 254550.4 450.4 253809.0 254550.0 255292.0

A : θ̂ 0.569 0.001 0.567 0.569 0.570

B : θ̂ 0.394 0.000 0.394 0.394 0.395

C : θ̂ 0.355 0.000 0.354 0.355 0.355

D : θ̂ 0.349 0.000 0.349 0.349 0.350

Table 2.5: EFF: fixed effects binomial model. NIP/IP estimation

Causal analysis deals with prediction under intervention upon variables on

the system7. The best way to make this prediction is performing an actual

intervention, predicting what the effect is going to be and, when it will

be realized, evaluating the difference between prevision and observation.

Here, a different task is performed: predicting the effect of an intervention

without performing it. How is this possible? Two conditions are required:

whether resting on some assumptions, called causal assumptions, are suf-

ficient to narrow down to a model able to identify causal effect (Tian and
7”what happens when you chick something”, in the Dawid informal definition

http://videolectures.net/mlss09uk dawid caus/
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Pearl, 2002) and whether a sufficent8 amount of data is gathered. If these

two conditions are satisfied, the interventional questions can be asked with

pure observational data in which no intervention is taken.

To perform a causal analysis means:

1. policy evaluation. Using counterfactual to evaluate decisions like “is

it useful increasing new enrolments“? (indicator A1, see section 3.6.1

for the whole story); Counterfactual diagram and computations are

provided:

U2010 A1.2010

Do(NE09/10 + 10%) TARS08/09

ANE08/09 := ANE09/10 OARS08/09

-

+ +

+

Figure 2.14: Counterfactual effect of NE09/10 on A12010

In the light of these arguments, let us perform the computation:

• Observed A1 2010=3.66;

• Direct effect (Pearl, 2001) A1 2010[NE09/10 := +10%] = 3.54;

• Counterfactual effect A1 2010[NE09/10 := +10%,ANE08/09 := ANE09/10] =

3.69.

2. intervention policy. Building a strategy in order to get better results

as “to equate, in an limited number of years, the local ratio R to the
8in the statistical sense, sufficient to make a precise estimation.
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median value MR for every area.“(it holds indicators A2/B1); Strategy

rules and advancements are provided: Each year, every degree course

compares R and MR and according to the difference defines its new

target T, namely the new value it must reach:

C1) if R ≥MR then T ≥ R;

C2) if 0.95MR ≤ R < MR then T ≥MR;

C3) if 0.90MR ≤ R < 0.95MR then T ≥ 1.05R;

C4) if R < 0.90MR then T ≥ 1.1R;

Next table shows for the next three years the percentage of degree

courses in each class and the value of A2

Year C1 C2 C3 C4 A2

2010 38.6 12.0 14.6 34.8 2.76

2011 40.3 11.4 8.9 39.4 2.81

2012 53.1 2.9 12.3 31.7 2.90

2013 56.0 3.1 13.7 27.1 2.97

Table 2.6: Percentage of target classes degree courses by area and year

The induced DAG is:
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Figure 2.15: Act on EFF policy DAG
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Chapter 3

Analysis

3.1 Analysis features

Before starting let me explain some of the features of this thesis. Since the

principal scope is prediction, the most suitable statistical method is time

series analysis. Nevertheless as far as it is possible the simplest statistical

models (e.g. AR(1)) are used, moving all the complexity into the structure,

meaning the set of relations among variables and the possible causal inter-

pretation of that structure, namely the structure.

A warning to mention: due to a chronic lack of observations, massive use

of a priori assumptions and ad-hoc imputations permitted by the Bayesian

framework are used.

Much attention is paied to the substantive significance of involved quanti-

ties, working always with parameters having a well defined interpretation

(even though not always in the real world as counterfactuals), and easily

communicability to a non-technical audience.

At least I would like to mention a personal experience had when for the

first time I made an estimation of A1 indicator, which I called ”the thrill

of the applied researcher”: it is that feeling you get when a prediction is
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subject to verifiability in the short: have I done something wrong? reality

is out there, cold as a number, challenging you and your hard work, all

your intuition, intelligence, assumptions, computations, experiences and

pride. However I know that there is no way of learning unless doing, and

sometimes lerning more by making mistakes then by going straight to the

correct solution.

3.2 Data description

In order to make analysis both nationa and local students, degree courses

and researchers dataset are enquired. It follows a detailed description.

3.2.1 Student dataset

Statistics about students are computed according to the Students National

Registry1 and the University of Palermo Student Registry. Available data

cover academic years from 2006/2007 to 2010/2011 and contain:

• ID: Student Identifier, a unique number identifying students;

• GE: Gender of the student, male or female.

• DCD: Name of the Degree Course the student is enrolled on;

• DCT: Type of Degree Course: BA as Bachelor, MA as Master, MA-old

as Master old classification, MALT as Long Term (4/5/6 years) Master;

• FAC: Faculty of the Degree Course the student is enrolled on;

• G: the group degree course belong to. All national Degree Courses

are divided into 4 sets depending on the ”standard cost per student”.

Every student is differently weighted according to the Degree Course

group he is enrolled on: A = 4, B = 3, C = 2, D = 1;
1http://anagrafe.miur.it/index.php, The registry does not include students enrolled before

1999, so it quite underestimates actual student population.
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• NE: New Enrolment, whether the student is enrolled for the first time

on an Italian University;

• YOE: Year of Enrolment, first, second and so on up to 3rd out of

course, other years are aggregated;

• RS: Regular Student, whether the student has been enrolled by a

number of years less or equal to the legal Course duration;

• AS: Active Student, whether the student has earned at least 5 CFU2

in the current C.Y.;

• TY: Type of the Student: active regular student (RA), inactive regular

student (RI), out of course (FC). This variable, joint event of RS and

AS, is explicitly required by one ministerial indicator;

• C.Y.: Calendar Year, from 2006 to 2010;

• A.Y.: Academic Year, from 2006/2007 to 2009/2010.

• EFF: numbers of CFU actually earned by the student in one C.Y.;

• TEO: max number of CFU to be earned by the student in one A.Y.;

3.2.2 Bachelor and Master Course dataset

Statistics on Bachelor and Master Courses have been computed according

to National Regitry 3 and University of Palermo registry4 containing:

• DCD: name of the Degree Course;

• DCT: type of Degree Course: BA as Bachelor, Master, Master old

classification, Long Lerm Master;

2A university course credit, CFU; is a unit that gives weighting to the value, level or time

requirements of an academic course
3 http://offf.cineca.it/pubblico.php/ricerca/show form/p/cercauniv
4http://offweb.unipa.it/
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• FAC: the faculty Degree Courses belong to;

• G: the group degree courses belong to;

• TEA: number of teachers, teaching “base“and “characteristic“courses;

• NE: number of new enrolments in one A.Y.;

• T: a Threshold, namely a teoric number of new enrolments n one

A.Y., fixed by the Ministry;

• A.Y.: Academic Year, from 2006/2007 to 2009/2010.

3.2.3 Researcher dataset

Statistics about researchers have been computed according to National

Interest Research Project (PRIN)5 and the University of Palermo researcher

Registry 6 containing:

• ID: teacher identifier, a unique number identifying teachers;

• GE: Gender of the teacher, male or female.

• AR: one of the 14 areas the researcher belongs to;

• FAC: the Faculty the teacher belongs to;

• DEP: the Department the teacher belongs to;

• PA: whether the teacher participated to a project PRIN;

• PE: whether the teacher was positively evaluated in the project PRIN;

• GR: whether the teacher was granted in the project PRIN;

• C.Y.: Calendar Year, from 2006 to 2010. For PA/PE/GR from 2006 to

2009;

5http://prin.miur.it/
6http://surplus.unipa.it/
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3.3 Indicator A1

Indicator A1 is concerned with educational offer and encompasses three

different aspects:

1. regularity of studies (TARSx): regularity of studies is measured by the

number of active (AS) and regular (AR) students enrolled on Degree

Courses belongings to group x ∈ G;

2. educational offer sustainability (KA): educational offer sustainability

is measured by the ratio between the number of regular teachers who

cover “base “and “characteristic“courses (TEA) and the total teoric

number of Degree Courses (TDC). The latter is the sum, for all bach-

elors and master courses, of the ratio between new enrolments (NEi)

and a predetermined threshold depending on the Degree Course (Ti).

When the ratio is less than 1, it is forced to 1. The former ratio is

then divided by the national median value (MKA). KA reflects the

paradigm: the more crucial courses are covered by internal rather

than adjunct teachers, the more reputable the Degree Course. KA

ranges around 1;

3. local context (KT): local context is measured by a variable which is

in inverse proportion of the regional family income. Such variable is

a priori bounded on ± 10% the national average, that is even though

the lowest regional family income is 50% less the mean, its KT can’t

be more then 10% higher. KT ranges around 1.

The formula is the following:

A1 = 100 ∗
(KA + KT)TARS

S
(3.1)

Where S is a (normalizing) constant, namely the sum for all 54 participant

Universities of the product I = (KA + KT)TARS.

The indicator main contributor is TARS, a dimension-dependent quantity,
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reflecting university size. KA mirrors the law on ”minimum requirements

of teachers” (art. 9, comma 2, D.M. 22 oct 2004, n. 270) optimizing the

number of internal teachers and number of students. KT is not a quality

parameter at all. The national university evaluation agency blog considers

such indicator as outlandish and incomprehensible 7.

3.3.1 A1 Structural equations and induced DAG

The above formula comes at the end of a set of structural equations as

defined by the national model:

A1



TARS = 4ARSA + 3ARSB + 2ARSC + ARSD

KT = f (regional family income)

TDC =
∑

i max{NEi
Ti
, 1} i = 1, 2, ..., #(DC)

IKA = TEA
TDC

I∗KA = {I(1,KA), ..., I(53,KA)}

MRX = Median({IKA, I∗KA})

KA = IKA
MRX

I = (KA + KT)TARS

S =
∑54

i=1 Ii = I +
∑53

i=1 Ii = I + S∗

A1 = 100 I
S

A1 can be easily verified as a deterministic function of a bunch of observed

variables (ARSX, NEi, TEA, regional family income) and, to show the rela-

tionship,it is linear on ARSX, KT or TEA.

There are some other relationships not explicitly mentioned in the defi-

nition system that may help to show how the indicator works. For example,

ARSA and ARSB are essentially the same variable measured in different de-

gree courses, therefore, it appears quite probable to assume they could have

a common (hidden) cause UARS (the same with ARSC and ARSD).

7http://cronaca.anvur.it/2011/10/ordinare-il-fondo-per-il-finanziamento.html
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There must be a probabilistic effect of NE on ARS because new enrolments

are the base of active new enrolments which in turn are a part of ARS.

Finally, there could be a correlation between S∗ and I or between IKA and

I∗KA due to national policies common effect.

Due to these considerations, other equations have to be added to the above

system: 

ARSX = f (NEX, ε)

Corr(ARSX,ARSY) , 0 ∀X , Y

Corr(S∗, I) , 0

Corr(I∗KA, IKA) , 0

Next Figure shows induced DAG (nodes labelled starting with U rep-

resent unobserved variables, since our interest is focused on the University

of Palermo, KT is treated as a constant and depicted as a square.). The

d-separation rule guides in the recognition of the independences embod-

ied in the DAG, e.g. IKA 6⊥⊥ NE, IKA ⊥⊥ NE|TDC or NE ⊥⊥ A1, NE 6⊥⊥

A1|TARS,TDC.
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S∗ S A1

I KT

I∗KA

IKA MKA KA TARS

TEA TDC ARSA ARSB ARSC ARSD

NE URA

Figure 3.1: A1 induced DAG
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In making analysis, it needs to know at any given time, which variable

values are available, and which need to be estimated. For each variable

involved in the indicator computation, Table 3.1 shows the reference time,

namely the A.Y. or the C.Y. which quantities are referred to, and the avail-

able time, namely the date starting from, data are either public or accessible

for computation. National quantities are labeled with the same year as A1.

Year T T+1 T+2

Quantity RT AT RT AT RT AT

NE 2009/10 01/01/10 2010/11 01/01/11 2011/12 01/01/12

TEA 2009/10 01/01/10 2010/11 01/01/11 2011/12 01/01/12

ARS (RS) 2008/09 01/01/09 2009/10 01/01/10 2010/11 01/01/11

ARS (AS) 2009 01/01/10 2010 01/01/11 2011 01/01/12

MKA 2010 12/10 2011 12/11 2012 12/12

S 2010 12/10 2011 12/11 2012 12/12

A1 2010 12/10 2011 12/11 2012 12/12

Table 3.1: A1 Reference Time & Available Time

At present8, all quantities, A1 included, are available for 2010. To make

a prediction on A1 2011, only national quantities, MKA and S, need to be

predicted because all local quantities, {NE,TEA,ARS} are readily accessible,

whereas to make a prediction on A1 2012 all variable values need to be

forecast, one year ahead for local data and two years ahead for national

data.

8draft copy of this thesis was submitted on 3/12/2011
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3.3.2 A1 2010 results

In 2010, the University of Palermo achieved the following results:

A1 2010



TARS = 4 ∗ 1494 + 3 ∗ 9844 + 2 ∗ 9960 + 6223 = 61651

KT = 1.09

TDC = 86.406

KA =
1858

86.406
17.37 = 1.24

I = (1.24 + 1.09)61651 = 143.64

S = 3920434

A1 = 100 ∗ 143.64/3920434 = 3.66

A1=3.66 is the eighth among Italian universities9. It is equivalent to

4479,84Me. The A1 main factor TARS is equal to 61,651, the eighth.

Corrector KT is the highest and KA is the third, having the eighth high-

est numerator and the eleventh lowest denominator. 3.66 corresponds to

4.48Me. The correlation coefficient between A1 and the total number of

students for all Universities is equal to 0.975, showing the great dependence

of A1 from the size of the universities, as noticed by the National Agency

for Evaluation of Research and University System10.However individual

differences between amount of FFO shared according to A1 or according to

the number of students can be not negligible.

Although A1 fails its purpose, e.g. measuring efficiency, decreasing out-

of-course students is the most beneficial way for improving the indicator

value. Note that an increase of 0.1 is equivalent to an increase of 122.4Me.

9http://attiministeriali.miur.it/media/161927/i assegnazione.pdf
10 http://cronaca.anvur.it/2010/11/si-apprezza-una-buona-istruzione.html
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3.4 A1 Retrospective analysis

Counterfactuals describe hypothetical phenomena in which events happen

differently than in reality. With this in mind, counterfactuals are particularly

appropriate for describing how things could have happened, e.g. what

value A1 could attain, had TARS, taken a different value. Evaluating

differences between reality and hypothetical gives a hints on the action to

undertake for the future.

Following the method exposed in ??, the following retrospective question

sare asked:

Q1 what A1 would have been had A1 2010 computed today?

A1 A1 would be 3.65. This counterfactual (A1 2010 was actually computed

one year ago) means there wasn’t significant delay in data entry op-

eration11, 12,24Me. Otherwise changes in the databases would lead

to changes in the indicator value;

Q2 what A1 would be had KT been equal to 1?

A2 A1 would be 3.51. The difference, 0.15, between the observed value and

the counterfactual value is interpreted as the increment due to local

context, 183,6Me. In this case, the counterfactual nature of computa-

tion is evident: had Sicily the same regional income of ”Piemonte”;

Q3 what would be A1 had KA equal to the national median value, MKA?

A3 A1 would be 3.30 The difference, 0.36, is interpreted as the increment

due to the University of Palermo educational offer sustainability that

is 440.64Me;

Q4 What A1 would be had TARS increased by 1%?

A4 A1 would be 4.02, this means every increasing of 1% in TARS would

lead an increasing of 0.36 in A1, that is a gain of 440.64Me.
11assuming no delay in other Universities too
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3.5 A1 Previsional analysis

Next task is to make a prediction on A1, both for one and two years ahead.

3.5.1 Short term prevision

For A1 2011 prevision, the only quantities need to be forecast are MKA and

S. This operation is called Short Term Prevision.

Currently, there are 3 MKA observations, from A.Y. 2007/2008 to 2009/2010

and only one S observation, from FFO 2010 allocation.

Since local quantities are already known, it is possible to estimate A1 under

the hypothesis that S and MKA attain the same value as the previous year.

Table 3.2 shows one year back differences:

A1 ARSA ARSB ARSC ARSD TEA TDC

2010 1494 9844 9960 6223 1858 86.41

2011 1448 8721 9322 6097 1667 80.96

∆% -3.08 -11.41 -6.41 -10.28 -11.46 -6.73

Table 3.2: A1 Local quantities variation

TARS decreased by 8.20%, and IKA by 4.23%. With these values A1 2011

would be equal to 3.31, with a lost of 428,4Me.

One year forecasting: the S case

S is the sum of the local indicator I for all 54 Italian Universities taking

section in the funding. 2011 being the second year application, only one

observation is available, S2010 = 3920434. A simple model is built, assum-

ing the normal approximation: St is treated as a function of t12, centered

12MKA is fixed at his A.Y. 2009/2010 value, 17.37
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on the last observation and with an ad-hoc standard deviation, namely the

empirical standard deviation of I.In order to achieve a minimal sensitiv-

ity analysis, mean and standard deviation are multiplied by coefficients,

k1=k2={0.95,1, 1.05}.

Figure 3.13 shows graphically how a simple AR(1) model on St is able to

hide complex relation between its factors.

St St+1

Īt MKAt MKAt+1 Īt+1

K̄At K̄At+1

¯TARSt ¯TEAt ¯TEAt+1 ¯TARSt+1

N̄Et N̄Et+1

¯STDt ¯STDt+1

β

Figure 3.2: The spurious association between St and St+1
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The model is:

S


S2011 ∼ N(µ̂, σ̂)

µ̂ = k1Sobs
2010

σ̂ = k2σ(Iobs
2010)

{k1, k2} ∈ {0.95, 1, 1.05}

Where Sobs
2010 is the S observed value in 2010, and σ(Iobs

2010) is the empirical

standard deviation among all 54 I values in 2010. k1, and k2 are two coef-

ficients useful for sensitivity analysis. Next table shows simulation values

from the model above.

Simulation table

n.iter=1Ml S 2011

Node Mean Sd 5% 50% 95%

0.95µ, 0.95sd 3731763 58391 3636599 3731849 3826197

0.95µ, sd 3731276 60623 3632379 37312582 3830629

µ, 0.95sd 3920851 57566 3725660 3921192 4016155

µ, sd 3920434 61075 3724412 3920429 4116456

1.05µ, sd 4108714 61221 4009218 4108003 4210087

µ, 1.05sd 3920300 63709 3815518 3920833 4124392

1.05µ, 1.05sd 4109576 64663 4003871 4110382 4214928

Table 3.3: Simulation table for SA1 2011

This simulation offers a grid of values inside which S should hopefully

be. Summaries helps on deciding whether a value, e.g. 40000000, belongs

to N(1.05µ , σ̂) but not to N(0.95µ , σ̂).

One year forecasting: the MKA case

The second quantity to estimate in order to predict A1 for 2011 is MKA,

namely the national median of all KA correctors. Figure 3.3 shows the
80



causal diagram between two consecutive observations:

MKAt MKAt+1

ĪKA,t ĪKA,t+1

¯TEAt N̄Et ¯TEAt+1 N̄Et+1

¯TTEAt ¯STDt ¯TTEAt+1 ¯STDt+1

β

Figure 3.3: Spurious association between MKAt and MKAt+1

Table 3.4 shows three year time series on MKA, a linear positive trend

is evident.

A.Y. MKA

2007/08 13.55

2008/09 15.08

2009/10 17.37

Table 3.4: MKA 3 years time series

In order to make a prediction on MKA both AR(1) and TVAR(1) with

non informative prior (NIP) and informative prior (IP) are used.

The model is:
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MAR1 =



MKAt ∼ N(µt, τ), t = 1, 2, 3

µt = βMKAt−1

NIP : β ∼ N(0, .001), τ ∼ Γ(0.001, 0.001),

MKA0 ∼ N(0, 0.001)

IP : β ∼ N(6.84, 1/1.432) τ ∼ Γ(21.91, 22.03),

MKA0 ∼ N(15.33, 0.4057)

E[βIP] and τ[βIP] come from a linear regression (without intercept) coeffi-

cient and standard error of MKAt on t = (1, 2, 3), E[MKA0] and τ[MKA0] are

respectively empirical mean and precision. Rate and shape of the Gamma

distribution are computed making use of the method of moments which al-

lows for equating parameters as a function of empirical mean and variance.

E[Γ] is estimated taking the mean over three years of the mean of the 54 KA

values, V[Γ] is estimated taking the mean over three years of the variance

of the 54 KA values. The followings are tables for the model deviance and,

in a typical winbugs style, summaries from the posterior distribution of

quantities of interest. One million samples were drawn.

AR(1) NIP IP

MD 7.53 7.73

P 122 0.98

PD 129.53 8.71

As expected, non informative model deviance is much higher, mainly

for the penalty factor.
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n.iter 1M MKA - NIP

Node Mean Sd 5% 50% 95%

µ̂2011 19.20 34.76 17.70 19.70 21.66

ŝ 3.223 56.145 0.200 0.568 5.481

β̂ 1.106 2.587 1.019 1.134 1.247

MKA - IP

Node Mean Sd 5% 50% 95%

µ̂2011 19.831 0.874 18.401 19.826 21.277

ŝ 1.010 0.110 0.850 1.000 1.207

β̂ 1.142 0.050 1.059 1.141 1.225

Table 3.5: MKA2010/11 AR(1) NIP/IP model

It is important to notice the µ̂2011 mean is approximately the same with

both priors (3.3 absolute percentage difference) after only three year obser-

vations, meaning such short observation time is sufficient to agree upon the

MKA estimation point (usually the mean) starting from complete divergent

prior states of knowledge. Therefore vague prior can be legitimate used.

It stands out to the reader the huge difference around estimators standard

deviation and asymmetry in the distribution of ŝ in the non informative

case.

The second fitted model is TVAR(1) with a random walk on βt. Again,

both non informative and informative priors are used. Formally:

MTVAR1 =



MKAt ∼ N(µMKAt , τMKAt ), t = 1, 2, 3

µMKAt = βtMKAt−1

βt ∼ N(βt−1, τβt )

NIP : (β0,MKA0) ∼ N(0, .001), (τMKAt , τβt ) ∼ Γ(0.001, 0.001)

IP : β0 ∼ N(6.84, 1/1.432), MKA0 ∼ N(15.33, 0.4057)

τMKAt ∼ Γ(21.91, 22.03), τβt ∼ Γ(2.42, 2.2)

In the informative case, E[Γ] is estimated taking the AR(1) point estima-

tion, and V[Γ] is estimated as 0.2 ∗ E[Γ].
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AR(1) NIP IP

MD 6.72 7.67

P 4618 1.03

PD 4624.72 8.70

Table 3.6: MKA2011: TVAR(1) NIP/IP Deviance

n.iter 1Ml MKA - NIP

Node Mean Sd 5% 50% 95%

µ̂2011 19.831 0.874 18.401 19.826 21.277

ŝy 2.597 15.831 0.040 0.346 9.805

β̂[1] 1.036 4.224 0.420 1.119 1.725

β̂[2] 1.038 1.729 0.962 1.114 1.276

β̂[3] 1.065 1.741 0.985 1.151 1.278

β̂[4] 1.015 4.182 0.420 1.143 1.752

ŝβ 0.563 6.240 0.030 0.100 1.349

MKA - IP

Node Mean Sd 5% 50% 95%

µ̂2011 19.95 30.39 -28.02 20.02 68.10

ŝy 1.020 0.113 0.854 1.010 1.220

β̂[1] 4.023 1.475 1.832 3.888 6.654

β̂[2] 1.120 0.775 0.996 1.120 1.246

β̂[3] 1.151 0.770 1.041 1.152 1.260

β̂[4] 1.149 1.623 -1.613 1.153 3.921

ŝβ 1.600 0.754 0.752 1.433 3.034

Table 3.7: TVAR(1) NIP/IP on MKA 2011

Results mime the previous model.

84



One year forecasting: A1 2011 prevision

A1 2011 relies on already available local quantities:

ARS=4*1448+3*8721+2*9322+6097=56696

KT=1.09

TDC=86.406

KA= 1858/86.406
17.37 =1.24

From the previous section, the estimations for S and MKA are (5◦ and

95◦ percentile in squared brackets):

Ŝ=3920434 [3724412, 4116456]
ˆMKA = 19.83 [18.40, 21.27]

These values leads to an estimation for A1 2011 of:

A12011 = 3.27 [3.01, 3.51]

corresponding to a reduction of 477,36Me[795.6Me, 183.6Me].
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3.5.2 Long term prevision

Long term prevision corresponds to the second year prediction of national

quantities, S2012 and MKA2012, and to the first year prediction of local quan-

tities, TEA2010/11, NE2010/11 and ARSX,2009/10.

Two year forecasting: the S and MKA 2012 cases

Since only one year observation is available for S, the same normal ap-

proximation as for 2011 estimation will be used with the same parameters.

The reason is that, having no clue about what is going on, whether S will

increase or decrease, leaving prediction unchanged is preferred.

Mean p05 p95

S2012 3920434 3724412 4116456

Table 3.8: S 2012 estimation and C.I.

For the MKA2011 second year estimation, the same AR(1) and TVAR(1)

models with respect to MKA2010 will be used.

Let us start with the AR(1) model.

The following are deviance and summaries tables for AR(1) model:

AR(1) NIP IP

MD 6.71 7.68

P 5708 1.03

PD 5714.71 8.71

Table 3.9: MKA 2012: AR(1) NIP/IP Deviance

There is a huge model penalty term for non informative prior model.
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n.iter 1M MKA - NIP

Node Mean Sd 5% 50% 95%

µ̂2012 22.35 5130.39 17.90 22.35 28.26

ŝ 2.691 31.657 0.201 0.584 6.227

β̂ 1.134 1.416 1.012 1.134 1.256

MKA - IP

Node Mean Sd 5% 50% 95%

µ̂2012 19.83 0.87 18.40 19.82 21.26

ŝ 1.010 0.109 0.848 1.000 1.204

β̂ 1.141 0.050 1.059 1.141 1.224

Table 3.10: MKA 2012: AR(1) NIP/IP prevision

Results are quite different. The non informative model shows abnormal

values for µ̂2012 and its standard deviation as well as the standard deviation

and the credible interval of ŝ. Whereas in the informative case, estimated

quantities are the same as 2011 ( ˆMKA = 19.83 [18.40, 21.27]).

Table 3.11 and 3.12 show results for TVAR(1) model:

AR(1) NIP IP

MD 3.24 8.56

P 542026 1.54

PD 542029.24 10.10

Table 3.11: MKA 2012: TVAR(1) NIP/IP Deviance
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n.iter 1M MKA - NIP

Node Mean Sd 5% 50% 95%

µ̂2012 75,61 483,9 3.562 22.91 79.52

ŝmka 4.818 64.228 0.040 0.351 10.497

β̂2012 1.171 29.690 0.182 1.147 2.116

ŝβ 0.891 22.843 0.030 0.104 1.654

MKA - IP

Node Mean Sd 5% 50% 95%

µ̂2012 76.52 177.84 -18.20 27.86 319.68

ŝmka 1.020 0.112 0.855 1.010 1.218

β̂2012 1.153 2.479 -2.751 1.154 5.052

ŝβ 1.590 0.737 0.759 1.425 2.970

Table 3.12: MKA2011/12: TVAR(1) NIP/IP prevision

An huge NIP penalty factor deletes every comment on the results. Also

with informative priors elicitation the model leads to poor estimations,

standard deviations are too high and credible intervals too large (sometimes

inadmissible like -18.20). Due to its robustness, the median is preferable to

the mean.

One year forecasting: the TEA case

The first local quantity is going to be estimated is the number of teachers

who taught “base“and “characteristics“courses during A.Y. 2011/201213,

TEA, on the basis of the the total number of teachers, TTEA. The following

table and graph show time series on both TEA and TTEA.

13actually this quantity is no longer a random variable because its valued has been deter-

minate, but it is not yet in our possession and needs to be estimated.
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A.Y. TEAt TTEAt C.Y.

2006/07 1967 2194 2006

2007/08 1909 2140 2007

2008/09 1979 2195 2008

2009/10 1859 2112 2009

2010/11 1667 1988 2010

2011/12 - 1674 2011

Table 3.13: TEA, TTEA data

Clearly TEA follows the same pattern of TTEA, but the last year TTEA

observation had a more rapid decreasing. The model takes care of that,

conditioning on TTEA using a binomial model (with TEA as number of

successes on TTEA trials) instead of a normal model.
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The model is:

MBIN =


TEAt ∼ Bin(θ,TTEAt), t = 1, 2, 3, 4, 5, 6

TTEAt = f (TTEAt−1)

NIP : θ ∼ B(1, 1)

IP : θ ∼ B(141.1, 18.92)

Since the estimation regards TEA2011/12 conditioned to the known value

TTEA2011, the second equation doesn’t need to be explicated. Informative

prior parameters come from empirical mean success rate, 0.881.

The induced DAG is the following:

α β

θ

TEAt−1 TEAt TEAt+1

TTEAt−1 TTEAt TTEAt+1

Figure 3.4: TEA2010/11: binomial model

Both parametrizations return the same values, meaning non informative

prior is legitimated, so they are displayed once.

Deviance table:
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AR(1) NIP/IP

MD 85.3

P 1.01

PD 86.3

Table 3.14: TEA2011/12: Binomial model NIP/IP Deviance

n.iter 1M TEA - NIP/IP

Node Mean Sd 5% 50% 95%

µ̂2011/12 1478.44 14.18 1454.00 1477.00 1500.00

θ̂ 0.883 0.003 0.877 0.883 0.888

Table 3.15: TEA2011/12: binomial model NIP/IP prevision

Allowing time varying θ leads to the following model:

MTVAR(1) =



TEAt ∼ Bin(θt,TTEAt), t = 1, 2, 3, 4, 5

TTEAt = f (TTEAt−1)

logit(θt) = bt

bt ∼ N(µt, τ)

µt = βµt−1

NIP : {β, µ1} ∼ N(0, 1.0e − 6), τ ∼ Γ(0.001, 0.001)

Only non informative prior is used. The induced DAG is:
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βi

µi,t µi,t+1

τi

bi,t bi,t+1

θi,t θi,t+1

TEAi,t TEAi,t+1

TTEAi,t TTEAi,t+1

logit logit

Figure 3.5: Induced DAG from TEA TVAR(1) model
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Results:

AR(1) NIP

MD 41.5

P 4.82

PD 46.32

Table 3.16: TEA2009/10: TVAR(1) NIP/IP Deviance

n.iter 1M TEA - NIP

Node Mean Sd 5% 50% 95%

TEA 1407.36 89.11 1288.00 1416.00 1509.00

θ1 0.898 0.006 0.888 0.898 0.908

θ2 0.892 0.006 0.882 0.893 0.902

θ3 0.898 0.007 0.887 0.898 0.909

θ4 0.878 0.007 0.867 0.879 0.890

θ5 0.842 0.008 0.828 0.842 0.855

θ6 0.841 0.053 0.771 0.847 0.900

β̂ 0.943 0.071 0.891 0.946 0.999

s 0.206 0.196 0.070 0.163 0.460

Table 3.17: TEA2009/10: TVAR NIP/IP prevision

The estimate value is lower than the fixed effect model, because of the

θt negative trend.

One year forecasting: the TDC case

The second quantity to estimate is TDC, the total number of degree courses.

It depends upon new enrolments and on a threshold (TDC =
∑ NEi

Ti
). Data

from A.Y. 2006/2007 to 2009/2010 come from the national registry of stu-
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dents, whereas A.Y. 2010/11 comes from University of Palermo registry.

The time series below shows a clear negative serial trend with a marked

jump in 2009/10.

A.Y. TDC

2007/08 134

2008/09 124

2009/10 86.41

2010/11 80.96

Table 3.18: TDC data

On average, during the last 4 years, TDC has been decreasing by 15%

per year.

An AR(1) model with a normal approximation for TDCt is used.

The model is as follows:

MAR1 =


TDCt ∼ N(µt, τ), t = 1, 2, 3, 4

µt = βTDCt−1

NIP : β ∼ N(0, .001), τ ∼ Γ(0.001, 0.001), TDC0 ∼ N(0, 0.001)

IP : β ∼ N(−19.6, 0.0136) τ ∼ Γ(28.47, 0.2677), TDC0 ∼ N(140, 0.1537)

parameter values for the informative prior arise assuming a 95% range

based on a linear model estimation (frequentist estimation), E(TDC0) is at

a glance a values on the trend, τ(TDC0) parameters arises from method of

moments.

The true causal DAG shows a further relationship between enrolments

and (teen) population (the first is a fraction of the second):
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TDCt−1 TDCt

N̄Et−1 N̄Et

¯POPt−1 ¯POPt

β

Figure 3.6: TDC: AR(1) model
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Results:

NIP IP

MD 35.9 77

P 17.1 1.52

PD 53.0 78.52

Table 3.19: TDC2011/12 AR(1) NIP/IP Deviance

n.iter 1M TDC - NIP

Node Mean Sd 5% 50% 95%

µ̂2011/12 72.70 20.22 52.76 72.70 92.69

ŝ 27.924 38.863 9.278 19.250 70.123

β̂ 0.841 0.234 0.611 0.84 1.073

TDC - IP

Node Mean Sd 5% 50% 95%

µ̂2011/12 72.988 1.284 70.886 72.984 75.104

ŝ 3.020 0.284 2.592 2.998 3.521

β̂ 0.845 0.015 0.820 0.845 0.869

Table 3.20: TDC2011/12: AR(1) NIP/IP prevision

The two models estimate the same mean and slope but (as expected)

different variability. The decreasing estimate depends on both new enrol-

ments decreasing (as highlighted in 3.29) and on a continuing educational

offer reformulation.
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One year forecasting: the TARS case

The last quantity needed to be estimated is TARS, namely the sum, for each

degree course group, of active and regular students (ARS).

TARS is the crucial variable for A1 determination. To stress the importance,

two different estimating methods are used: the first employs the normal

distribution, the second the binomial distribution.

Table 3.21 shows a four-year time series on ARS for each group. The next

plot depicts an evident ongoing decreasing trend in all groups. During the

last 4 years, group A decreased by 9.5%, B by 9.4%, C by 6.7%, D by 2.0%.

A.Y. ARSA ARSB ARSC ARSD

2006/07 1598 10070 10049 6651

2007/08 1576 10261 10460 6660

2008/09 1532 9981 10162 6342

2009/10 1448 8721 9322 6097

Table 3.21: ARS 4 year time series
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Figure 3.7: ARS time series for {A,B,C,D} groups
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The first model is:

MAR1 =



ARSx,t ∼ N(µx,t, τx), t = 1, 2, 3, 4; x = {A,B,C,D}

µx,t = βxARSx,t−1

NIP : βx,ARSx,0 ∼ N(0, .001), τx ∼ Γ(0.001, 0.001)

IP : βA ∼ N(−49.4, 1/((9.892) ∗ 4)) βB ∼ N(−432.7, 1/((2322) ∗ 4))

βC ∼ N(−247.9, 1/((1982) ∗ 4)) βD ∼ N(−198, 1/((49.12) ∗ 4))

τA ∼ Γ(957.9, 0.6226), τB ∼ Γ(334.2, 0.03527),

τC ∼ Γ(761.7, 0.07619), τD ∼ Γ(1004, 0.156),

ARSA,0 ∼ N(1538, 1/(49.712)), ARSB,0 ∼ N(9758, 1/(5262)),

ARSC,0 ∼ N(9998, 1/(3622)), ARSD,0 ∼ N(6438.5, 1/(203.22))

Informative priors on βX and ARSX,0 come from frequentist linear model

estimations, τx from the method of moments.

The causal diagram the following:

OBSERVED

LATENT

TARSt TARSt+1

STDt STDt+1

βt

Figure 3.8: Spurious association between TARSt and TARSt+1
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NIP IP

MD 833 6229

P 4 4

PD 837 6223

Table 3.22: TARS: AR(1) NIP/IP Deviance

β estimates, and obviously means, are similar for both models, whereas

as expected informative prior bring to lower variability, sometimes too low

as for β’s standard deviation.
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n.iter 1M ARS - NIP

Node Mean Sd 5% 50% 95%

A µ̂2012 1401.0 491.6 633.9 1401.3 2167.2

B µ̂2012 8329 2908 3786 8330 12863

C µ̂2012 9089 3063 4306 9091 13865

D µ̂2012 5920 2063 2692 5921 9141

A : ŝ 850.9 358.5 480.8 766.7 1495.6

B : ŝ 5385 2271 3045 4853 9456

C : ŝ 5366 2263 3032 4837 9421

D : ŝ 3541 1494 2002 3192 6220

A : β̂ 0.968 0.339 0.438 0.968 1.497

B : β̂ 0.955 0.334 0.434 0.955 1.475

C : β̂ 0.975 0.329 0.462 0.975 1.487

D : β̂ 0.971 0.338 0.441 0.971 1.487

ARS - IP

Node Mean Sd 5% 50% 95%

A µ̂2012 1402.274 0.559 1401.354 1402.274 1403.194

B µ̂2012 8335.91 20.26 8302.59 8335.91 8369.25

C µ̂2012 9098.42 11.94 9078.80 9098.41 9118.06

D µ̂2012 5926.043 2.935 5921.215 5926.043 5930.870

A : ŝ 1.050 0.017 1.023 1.050 1.079

B : ŝ 40.648 1.111 38.865 40.624 42.519

C : ŝ 22.666 0.411 22.001 22.660 23.352

D : ŝ 5.464 0.086 5.324 5.462 5.607

A : β̂ 0.968 0.000 0.968 0.968 0.969

B : β̂ 0.956 0.002 0.952 0.956 0.960

C : β̂ 0.976 0.001 0.974 0.976 0.978

D : β̂ 0.972 0.000 0.971 0.972 0.978

Table 3.23: ARS: AR(1) NIP/IP prevision
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Next model allows for time-varying β parameters. The model is:

MTVAR1 =


ARSx,t ∼ N(µx,t, τx), t = 1, 2, 3, 4; x = {A,B,C,D}

µx,t = βx,tARSx,t−1

βx,t ∼ N(βx,t−1, τβ)

NIP : {βx,t,ARSx,0} ∼ N(0, .001), {τx, τβ} ∼ Γ(0.001, 0.001)

Only non informative priors are used. Again β standard deviations are

too low.

NIP

MD 308

P 10.7

PD 318.7

Table 3.24: TARS: TVAR(1) NIP deviance
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ARS - NIP

Node Mean Sd 5% 50% 95%

A µ̂2012 1371.3 1394.8 -766.1 1370.1 3509.8

B µ̂2012 7625 8396 -5278 7621 20533

C µ̂2012 8543 8978 -5247 8547 22316

D µ̂2012 5876 5862 -3113 5866 14894

A : ˆsARS 1.767 2.974 0.578 1.201 4.402

B : ˆsARS 1.768 3.078 0.578 1.201 4.408

C : ˆsARS 1.768 2.874 0.578 1.203 4.421

D : ˆsARS 1.753 2.681 0.577 1.199 4.390

A : β̂1 0.912 0.879 -0.514 0.929 2.278

A : β̂2 0.986 0.002 0.984 0.986 0.988

A : β̂3 0.972 0.002 0.970 0.972 0.974

A : β̂4 0.945 0.002 0.943 0.945 0.947

A : β̂5 0.947 0.963 -0.529 0.946 2.424

B : β̂1 0.941 0.879 -0.488 0.959 2.307

B : β̂2 1.019 0.000 1.019 1.019 1.019

B : β̂3 0.973 0.000 0.972 0.973 0.973

B : β̂4 0.874 0.000 0.873 0.874 0.874

B : β̂5 0.874 0.963 -0.605 0.874 2.354

C : β̂1 0.960 0.880 -0.467 0.978 2.328

C : β̂2 1.041 0.000 1.041 1.041 1.041

C : β̂3 0.972 0.000 0.971 0.972 0.972

C : β̂4 0.917 0.000 0.917 0.917 0.918

C : β̂5 0.916 0.963 -0.563 0.917 2.394

D : β̂1 0.925 0.877 -0.498 0.942 2.289

D : β̂2 1.001 0.000 1.001 1.001 1.002

D : β̂3 0.952 0.000 0.952 0.952 0.953

D : β̂4 0.961 0.000 0.961 0.961 0.962

D : β̂5 0.964 0.961 -0.511 0.962 2.443

A : ŝβ 0.867 0.418 0.457 0.764 1.613

B : ŝβ 0.869 0.417 0.458 0.766 1.616

C : ŝβ 0.868 0.418 0.458 0.765 1.615

D : ŝβ 0.867 0.416 0.458 0.764 1.612

Table 3.25: Stats TVAR(1) NIP on ARS
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One year forecasting: the TARS case again

The second estimation method uses the following equations:

MBin =



TARS = 4ARSA + 3ARSB + 2ARSC + ARSD

ARSx,t ∼ Bin(θx,STDx,t), t = 1, 2, 3, 4; x = {A,B,C,D}

STDx,t = f (STDx,t−1)

NIP : θx ∼ B(1, 1)∀x

IP : θA ∼ B(111.8, 57.9), θB ∼ B(96.7, 97.22),

θC ∼ B(193.6, 215.9), θD ∼ B(1316, 1453)

ARS is interpreted as depending on two sources: one is quantitative, the

total number of students STD, and the other qualitative, θ, featuring all

possible conditions helping or preventing acquiring the status (e.g. stu-

dent ability, course difficulty, ecc). Since STD is treated as a parameter for

TARS, the model doesn’t make use of the third equation. θ informative

prior parameters come from the method of moments on empirical ratios.

Both parametrization return the same results, so they are displayed once.

NIP/IP

MD 833

P 3.99

PD 836.99

Table 3.26: TARS: AR(1) NIP/IP Deviance
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n.iter 1M ARS - NIP/IP

Node Mean Sd 5% 50% 95%

A : ˆARSA 1707.21 27.33 1662.00 1707.00 1752.00

B : ˆARSB 9162.34 75.14 9039.00 9162.00 9286.00

C : ˆARSC 8397.23 73.21 8277.00 8397.00 8518.00

D : ˆARSD 5779.95 60.97 5680.00 5780.00 5880.00

A θ̂A 0.658 0.005 0.650 0.658 0.666

B θ̂B 0.501 0.002 0.498 0.501 0.504

C θ̂C 0.472 0.002 0.469 0.472 0.475

D θ̂D 0.475 0.002 0.472 0.475 0.479

Table 3.27: Stats NIP/IP on ARS Binomial model

Two years forecasting: A1 2012 prevision

Now everything is ready for the long term prediction. Every involved

quantity is shown in the next table:

Var Mean p05 p95 Model 2011 2010

S 3920434 3724412 4116456 N(1µ,1σ) 3920434 3920434

MKA 22.35 17.9 28.26 AR(1) - NIP 19.83 17.37

TEA 1478 1454 1500 Bin NIP/IP 1667 1858

TDC 72.98 70.88 75.10 AR(1) IP 80.96 86.41

ARSA 1402 1401 1403 Bin IP 1448 1494

ARSB 8335 8302 8369 Bin IP 8721 9844

ARSC 9098 9078 9118 Bin IP 9322 9960

ARSD 5926 5921 5930 Bin IP 6097 6223

A1 2.96 3.37 2.57 3.27 3.66

Table 3.28: A1 2012 estimation and C.I.

A1 2010 observed value was 3.66, the estimation for 2011 is 3.22 and
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for 2012 is 2.96[2.57, 3.37]. This discouraging result comes from an overall

decreasing of A1 factors and calls for new policies.

106



3.6 A1 Causal analysis

Causal analysis deals with prediction under intervention. What this task

is useful for? It is crucial for policy evaluation. For example an interest-

ing question could be: what is going to be the effect on A1 of taking an

intervention such that TARS is going to increase to, say, 3%? Notice this is

different from the question: what is going to be the effect on A1 of predict-

ing an ARS to increase by 3%. This is because observations are compatible

with diagnostic reasoning: TARS increased because the number of students

did, and likely, new enrolments too. But if new enrolments increase, KA

will decrease. Whereas actions are not compatible with diagnostic reason-

ing: TARS increased because students earned more CFU, the number of

students remained the same, KA too. Only the first scenario involves NE.

Another example demonstrates that models useful for making predic-

tions are not always acceptable for causal purposes. It can be safely as-

sumed, taking an action on TTEAt has effect on TTEAt+1 because of the

identity TTEAt+1 = TTEAt + INt+1−OUTt+1, being TTEAt on the right hand

side means it is a direct causal factor of TTEAt+1, and iteratively TTEAt−k(>0)

affects TTEAt+1 only through TTEAt, that is TTEAt−k is an indirect causal

factor of TTEAt+1. Due to a linearisation operation 14, that model can be

arranged as an AR(1), that is, such model can be used both for prediction

and for intervention. But, this is not always the case: let us suppose to

predict NEt+1 on the basis of NEt. New enrolments at time t are not part of

new enrolments at time t+1 so, the identity NEt+1 = NEt + INt+1−OUTt+1 is

no longer valid, and a AR(1) model cannot be interpreted as a causal model
15 but it can as prevision model). This entails, even though NEt could be a

good predictor of NEt+1, it cannot be a causal factor of NEt+1: applying a

14TTEAt+1 = TTEAt + INt+1 −OUTt+1, INt+1 = ktTTEAt + rt, OUTt+1 = k′tTTEAt + r′t leads

to TTEAt+1 = TTEAt + (ktTTEAt + rt) − (k′tTTEAt + r′t) = βtTTEAt + εt
15such as NEt+1 = kPOPt+1 (k ∈ [0, 1], POPt+1 = POPt + INt+1 − OUTt+1, where POP is

the total population in a range of ages (e.g 18-29) and INt+1, OUTt+1 are people entering and

leaving that range.
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policy on NEt given no hints about what NEt+1 i s going to be. Basically the

correlation is spurious ??.

3.6.1 Intervening on NE. Policy evaluation: Is it useful in-
creasing new enrolments?

This section deals with causal effects and counterfactuals in order to eval-

uate an intervention on the system, namely a new enrolments increasing

policy16. Before implementing it, next figure shows how the mechanism

works:

U2010 A1.2010 U = 2011 A1.2011

NE09/10 TARS08/09 NE10/11 TARS09/10

ANE08/09 OARS08/09 ANE09/10 OARS09/10

Figure 3.9: A1 Two years Causal DAG

The graph is built as follows: A1 2010 depends on ARS08/09, NE09/10

(through KA) and on other variables jointly labelled U2010. ARS08/09 is the

sum of active new enrolments17, ANE08/09, and other regular active stu-

dents, OARS08/09. The same structure holds for A1 2011.

Every exogenous variable is connected by a bi-directed arc, with the next

year same variable, e.g. ANE08/09 e ANE09/10, highlighting the spurious
16NE depends on university external factors, such as teenage population, fees or family

income level.
17new enrolments are necessarily regular.
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dependence. Note that ANE09/10 depends on NE09/10
18.

An intervention aiming to increase new enrolments has two opposite ef-

fects: one leads to an A1 decrease, by decreasing KA (NE is the denomina-

tor), the other leads to an A1 increase, because increasing NE increases in

probability ANE which in turn increases ARS and finally A1. But how the

following graph shows, these two effects have an impact on two different

years.

U2010 A1.2010 U = 2011 A1.2011

Do(NE09/10 ) := +10% TARS08/09 NE10/11 TARS09/10

ANE08/09 OARS08/09 ANE09/10 [Do(NE)] OARS09/10

-

+

+

+

Figure 3.10: Causal effect of NE09/10 on {A12010, A12011}

Clearly, it is impossible to evaluate the causal effect of NE09/10 by only

looking at the difference between A12010 and A12011, because they depend

on other time varying quantities.

How do we solve this effect in order to make comparison? Counterfactuals

are required. We will rephrase the question: what A1 2010 would be had

NE09/10 increased by 10% and had ANE08/09 equal to ANE09/10? In this way,

by virtually changing the indicator definition, turning back the effect of NE

on ARS to the same year of NE on KA, the model is able to evaluate the
18probabilistically could be a binomial ANE09/10 ∼ BIN(θ,NE09/10)
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double opposite effect jointly and answer the question.

U2010 A1.2010

Do(NE09/10 + 10%) TARS08/09

ANE08/09 := ANE09/10 OARS08/09

-

+ +

+

Figure 3.11: Counterfactual effect of NE09/10 on A12010

In the light of these arguments, let’s perform the computation:

• Observed A1 2010=3.66;

• Direct effect19 A1 2010[NE09/10 := +10%] = 3.54;

• Counterfactual effect A1 2010[NE09/10 := +10%,ANE08/09 := ANE09/10] =

3.69.

The counterfactual value is higher than the observed one, meaning the

increasing policy is advantageous (in the counterfactual world).

3.6.2 Searching weak TARS performances

Let us start describing the student population. The next table shows the

number of students, new enrolments and graduates by academic year:

19Pearl (2001)
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A.Y. STD NE GR

2006/07 54577 10189 5763

2007/08 57324 10424 5827

2008/09 57858 9503 6440

2009/10 56390 8519 6973

2010/11 50830 7496 7076(on 28/11/11)

Table 3.29: Students by A.Y.

Students have been increasing from 2006 to 2008, followed by a slight

decreasing in 2009 and after that, a strong decline in 2010. The latter could

be the effect of the generalized introduction in 2009/2010 of a barrier to

entry . New enrolments have been decreasing from 2007 to 2010 by a rate

of approximately 10%. Graduates have been increasing every year. Stu-

dent population is decreasing due to the jointly effect of decreasing NE and

increasing GR. All indicator factors depending on it (e.g. TARS, A2 TEO

and EFF) have to take into account of this.

From now on, we are going to consider only A.Y. 2009/2010 student

population, because it is the last data available. Group A is the smallest

with 4% students, followed by D with 23%, B and C are quite similar with

35% and 38%.

G A B C D

%STD 4.3 34.8 37.7 23.3

Table 3.30: Students by group - A.Y. 2009/2010

40% are male, with a large difference for group B and C.
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Ge \ Gr A B C D T

F 54.0 44.1 72.0 64.9 59.4

M 46.0 56.0 28.0 35.1 40.6

T 4.3 34.8 37.7 23.3 100

Table 3.31: Students by gender for each group - A.Y. 2009/2010

Faculty distribution between groups is more dispersed. Group A has

students belonging only to Medicine. Group B is split between 7 Faculties,

the most represented being Engineering, Science and Architecture. Group

C is split between 5 Faculties, the most represented being Arts and Hu-

manities, Educational Science and Economics. Group C is split between 5

Faculties, the most represented being Law and Arts and Humanities.

It turns out that the group completely depends on the Faculty, but not vice

versa.

Fac Prevalent Group %STD ∈ PG

Agriculture B 100

Architecture B 100

Arts and Humanities C 71.7

Economics C 90.2

Educational Science C 79.1

Engineering B 100

Law D 100

Medicine A 60.1

Pharmacy B 100

Political Science D 73.5

Science B 99.5

Sport Science C 100

Table 3.32: most represented groups by Faculty, A.Y. 2009/2010
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Table above reads 71.7% of Arts and Humanities students belong to

group C.

Group Prevalent Fac %STD∈PF

A MED 100

B ENG-SCI-ARC 76.7

C AH - ES - EC 89.7

D LAW - AH - ES 86.5

Table 3.33: most represented Faculties by group A.Y. 2009/2010

Table above reads 76.7% group B students belong to group ENG-SCI-

ARC Faculties.

Let us get started with regular and active students analysis. ARS unveils

the great mass of out-of-course students as a typical Italian phenomenon.

RS \ G A B C D T

No 27.6 43.4 42.9 39.6 41.6

Yes 72.4 56.6 57.1 60.4 58.4

T 4.3 34.8 37.6 23.3 100

Table 3.34: Regular Students by Group

58.4% of students are regulars, irrespective of gender. Percentage in-

creases to 72.4% in group A.
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AS \ G A B C D T

No 20.0 22.7 25.7 25.0 24.2

Yes 80.0 77.3 74.3 75.0 75.28

T 4.3 34.8 37.6 23.3 100

Table 3.35: Active Students by Group

75.8% of students are active, 78.12% female, 80% for group A.

ARS \ S F M T

OC 41.56 41.72 41.63

AR 47.23 42.61 45.37

IR 11.21 15.66 13.00

T 59.4 40.6 100

41.6% of students are active and regular, both male and female, 60.1%

for group A.

ARS \ G A B C D T

OC 27.6 43.4 42.9 39.6 41.63

RA 60.1 44.4 43.9 46.5 45.37

RI 12.2 12.2 13.2 14.0 13.00

T 4.3 34.8 37.7 23.3 100

Table 3.36: Active and Regular students by group

It can’t be performed an intervention on actual out-of-course students,

because it is an ultimate status. They are, probably, students living in cam-

pus, using university service, paying fees but no more fund increaser. It
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can be intervened upon Regular students preventing them to become out-

of-course.

But the main point is regular inactive students, 13% of students (22.17% of

only regular students) taking no exams for the entire year. It’s a transversal

phenomena taking place uniformly in each group. Here it is the variable

need to be intervened on.

An increasing in the number of active and regular students must have

a combination of two sources:

• one quantitative, namely an increasing of the numbers of students

(STD);

• the other qualitative, namely their capacity of acquiring more CFUs

θARS
20.

First source explains ARS increasing as a diagnostic evidence of students

increasing21, hence it cannot be considered an intervention on ARS (at most

on STD).

Second source explains ARS increasing as a diagnostic evidence of a higher

student capacity in acquiring CFU, θARS, and that doesn’t have any effect

on the number of students, leading to a pure causal effect on A1.

20there is a controversy about wheter student quality can be represented by a quantitative

feature as passing more and more exams because it can derive by less strict policy, that is

allowing low quality student to get more exams.
21and in particular of new enrolments so leading a back-door (Pearl, 2000) effect on KA.

Therefore ARS increasing has a causal direct effect on A1 and at the same time a spurious

effect, through KA denominator, on A1.
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3.7 Indicator A2

Indicator A2 aims to measure student abilities to earn the credits required

each year by the Degree Course. This capacity is measured by the ratio

(R) between the actual CFU earned (EFF) and the teoric of CFU to be

earned (TEO) in one academic year. The latter is typically 60 per year,

the former a part of it. Similar to A1, the ratio is computed separately for

the 4 degree course groups. The credit acquisition different capabilities

between groups is taken into account by dividing such ratio by the national

median value of each group (Median(R) or MR). This results in a coefficient

ranging around 1. Finally, this coefficient multiplies the number of actual

credits again, turning the indicator in a number that is a proxy for university

dimension22. In other words, A2 is an indicator based on the number of CFU

earned multiplied by a coefficient which depends on the greater or lesser

propensity to acquire such credits compared to a theoretical maximum

(TEO) and to an external reference value (the national median). Empirically,

based on 2010 data, it was found that coefficient had a minimum of about

0.65 and a maximum of 1.50 and, about 50% of the coefficients range in

(0.87, 1.12).

3.7.1 A2 Structural equations and induced DAG

The formalization of A2, as defined by the Ministy of University, is shown

by the following system:

22The Italian evaluation agency blog defines it as rough and productivist.

http://cronaca.anvur.it/2010/09/produttivita-e-produttivismo.html
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A2



RX = 100 EFFX
TEOX

, X = {A,B,C,D}

R∗X = {R1,X, ...,R53,X}

MRX = Median({RX,R∗X})

WCFUX = RX
MRX

EFFX

I = WCFUA + WCFUB + WCFUC + WCFUD

S =
∑54

i=1 Ii = I +
∑53

i=1 I = I + S∗

A2 = 100 I
S

Notice that the indicator actually doesn’t depend directly on TEO be-

cause WCFUX = RX
MRX

TEOX = 1
MRX

EFFX
TEOX

TEOX = EFFX
MRX

. Moreover, TEO and

EFF are both function of the number of students (STD): TEO = 60STD and

EFF = µSTD, where µ represents average credits earned by students par

year. Usually µ is computed a posteriori by the ratio EFF
STD , so it turns out the

latter equation can not be used for prevision purpose and it will be replaced

with EFF ∼ Bin(θ,TEO) where θ ∈ [0, 1] is representing (the unobservable)

student abilities to earn credits or, in general, every condition may help (or

prevent) that acquisition. Notice that R is the estimate of θ23.

As usual, local and national variables, {S∗, I} and {R∗, R}, could be correlated

due to common national factors. These remarks add other equations to the

system: 
TEOX = 60STDX

EFFX ∼ Bin(θX,TEOX)

Corr(S∗, I) , 0

Corr(R∗X,Rx) , 0

The induced DAG is represented in Figure 3.12:

23what is the difference between R and θ? θ is perceived as the quality of students, as a

”cause” of a high o low credits achievement. This quantity is actually an abstraction, not

directly observable, and, maybe, not exactly measurable. R is its palpable expression, a rough

measure, the ”effect” of a high or low quality. This dichotomy between R and θ allows to

explain contradictory cases such as ”good students” with ”poor results”.
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S∗ S A2

I

WCFUX

R∗X MRX RX

TEOX EFFX

STDX θX

60

Figure 3.12: A2 induced DAG
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In order to use adequate statistical techniques, Table 3.37 distinguishes

quantities which are already known and which have to be estimated at a

fixed time (in bold). National quantities are labelled with the same year as

A2:

Year T T+1 T+2

Quantity RT AT RT AT RT AT

EFF 2009 01/01/10 2010 01/01/11 2011 01/01/12

TEO 2008/09 01/01/09 2009/10 01/01/10 2010/11 01/01/11

MR 2010 12/10 2011 12/11 2012 12/12

S 2010 12/10 2011 12/11 2012 12/12

A2 2010 12/10 2011 12/11 2012 12/12

Table 3.37: A2 Reference Time and Available Time

It turns out that for A2 2010 estimate, all quantities are known, for 2011

local quantities, EFF and TEO are known, while for 2012 all quantities

except TEO have to be estimated. Let us start with 2010 results.

3.7.2 A2 2010 results

The following quantities provided A2 2010 results:

A22010



EFF={63767,450706,428157,269522}

TEO={105300,1110160,1231877,776298}

R={60.56, 40.60, 34.76, 34.72}

MR={59.7, 43.5,38.6,37.1}

I=1122225.29

S=40656680.44

A2=2.76

University of Palermo indicator value, 2.76, is the tenth among all uni-

versities. Compared with A1 value, 3.66, A2 shows its weakness. It is
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a quite insufficient result, as it leaps to the eye a poor capacity in earning

credits: except for group A, the other groups have a ratio between achieved

and teoric credits less than the national median, on average less than 3%.

3.8 A2 retrospective analysis

This section uses counterfactuals in order to know what A2 2010 would be,

had some of its components be different from observed.

The observed A2 2010 value is 2.76.

Q1 What A2 would have been had it computed today?

A1 A2 would be 2.95. This counterfactual aims to discover delay in data

entry by enquiring the same database twice. The first refers to the

indicator official computation time, the second to the present time.

The difference between these two values is interpreted as the data

entry (or errors) delay cost. In 2010 this was 232.56Me, a quite high

price.

Q2 What A2 would be had the local ratio, R, at least equal to the national

median value, Median(R)?

A2 A2 would be equal to 2.98, which means an allocation increasing of

269.28Me. This counterfactual shows efforts have to be made to get

a pass-mark, by forcing equality only for those R values which are

less the the median value, the others remain intact. Section 3.10.2

provides a policy to reach this goal.

Q3 What A2 would be had all teoric CFU acquired by each university?

A3 A2 would be equal to 3.20, which means an increasing of 538.56Me.

This counterfactual translates into a definition of A2 equal to TEO∑54
i=1 TEOi

,

that is transforming the indicator proportional to the number of en-

rolled, a merely university dimension indicator.
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Q4 What A2 would be had EFF increased by 1%?

A4 A2 would be 2.82, this means every increasing of 1% in EFF would lead

an increasing of 0.6 in A2, that is a gain of 73,44Me.

3.9 A2 previsional analysis

Next task is to make a prediction on A2. According to Table 3.37, this task

is split in two subtasks: a short term prevision, namely one year forecast,

for which only national quantities need to be estimated, and a long term

prevision, namely two year forecast, for which both national and local data

have to be estimated.

3.9.1 Short term prevision

In order to predict A2 2011 only national quantities, S and MRX are needed,

because local quantities, EFFX and TEOX are already available, as they refer

to C.Y. 2010 and A.Y. 2009/2010.

Table 3.38 shows one year difference for EFF, TEO and R:
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A2 2010 A2 2011 ∆%

EFFA 63767 59090 -7.33

TEOA 105300 120838 14.76

RA 60.56 48.07 -12.49

EFFB 450706 411626 -8.67

TEOB 1110160 1129270 1.72

RB 40.60 36.45 -4.15

EFFC 428157 418220 -2.32

TEOC 1231877 1239947 0.66

RC 34.76 33.73 -1.03

EFFD 269522 268540 -0.36

TEOD 776298 760860 -1.99

RD 34.72 35.29 0.57

Table 3.38: A2 {EFF, TEO, R} one year difference

There was a marked worsening of EFF for all groups and, except for

group D, also R decreased. The worst percentage reduction was for group

A, albeit it represents only 4.3% of students. Group B got a slight reduction

but it represents almost 35% of students so this reduction had a wide

negative effect on A2. These variations would indicate a reduction for 2011

and, assuming invariance on national quantities, S = Ŝ2010 and MRX =

ˆMRX,2010, they lead to a value of 2.50, corresponding to a temporary loss of

318,24Me.

Next task is providing one year forecasting for S and Median(R).

One year forecasting: the S case

Figure 3.13 shows graphically how a simple AR(1) model on St is able to

hide complex relation between its factors.

122



St St+1

Īt MKAt MKAt+1 Īt+1

K̄At K̄At+1

¯TARSt ¯TEAt ¯TEAt+1 ¯TARSt+1

N̄Et N̄Et+1

¯STDt ¯STDt+1

β

Figure 3.13: The spurious association between St and St+1
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However having only one observation available, estimation is per-

formed using the normal approximation.

The model is:

S


S2011 ∼ N(µ̂, σ̂)

µ̂ = k1Sobs
2010

σ̂ = k2σ(Iobs
2010)

{k1, k2} ∈ {0.95, 1, 1.05}

Where Sobs
2010 is the S observed value in 2010, and σ(Iobs

2010) is the empirical stan-

dard deviation among all 54 I values in 2010. k1, and k2 are two coefficients

useful for sensitivity analysis.

Table 3.39 shows a simulation with 1 million samples.

n.iter=1Ml S 2011

Min 25% 50% Mean 75% Max

0.95µ̂, 0.95σ̂ 35970434 38193587 38634265 38633906 39081025 40794750

0.95µ̂ , σ̂ 36317998 38155047 38618797 38621280 39086423 41099934

µ̂, 0.95σ̂ 38265309 40216123 40653516 40657186 41093949 43015965

µ̂, σ̂ 37689367 40189597 40660970 40658456 41131302 43125385

1.05µ , σ̂ 40194152 42224726 42698360 42692497 43157456 45412835

µ̂, 1.05σ̂ 38008765 40180217 40673394 40664743 41150794 43411202

1.05µ̂ , 1.05σ̂ 39607079 42205980 42689397 42687213 43173425 45372949

Table 3.39: Simulation table For SA2 2011

This simulation offers a grid of values inside which S should hopefully

be. Summaries helps on deciding whether a value, e.g. 42000000, belongs

to (1.05µ , σ̂) but not to (0.95µ , σ̂).

One year forecasting: the MR case

Figure 3.14 shows the causal DAG the between MRt and MRt+1
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M̄Rt M̄Rt+1

R̄t R̄t+1

¯TEOt ¯EFFt ¯EFFt+1 ¯TEOt+1

¯STDt ¯STDt+1

θ̄t θ̄t+1

β

Figure 3.14: The spurious association between M̂Rt and M̂Rt+1
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Also in this case only one observation is available and then the normal

approximation is used.

The model is:

MR


MRX ∼ N(µ̂X, σ̂X) X = {A,B,C,D}

µ̂X = k1MRobs
X,2010

σ̂X = k2σ(Robs
X,2010)

{k1, k2} ∈ {0.95, 1, 1.05}

Where MRobs
X,2010 is the MRX 2010 observed value, and σ(Robs

X,2010) is the 2010

empirical standard deviation among the 54 values of R.

As for the S case the next table provides a grid of values to choose from as

MR estimation points.

Table 3.40 shows simulation results:
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n.iter=1Ml Median(R) Group A

MR2010 Min 25% 50% Mean 75% Max

0.95 ˆ̂µ, 0.95ŝd 45.84 54.64 56.67 56.67 58.63 67.38

0.95 ˆ̂µ , ŝd 45.93 54.68 56.67 56.73 58.73 67.99
ˆ̂µ, 0.95ŝd 47.51 57.74 59.68 59.68 61.63 69.38

µ̂, sd 48.85 57.55 59.65 59.66 61.72 71.43

1.05 ˆ̂µ, ŝd 50.16 60.63 62.70 62.68 64.72 72.92
ˆ̂µ, 1.05ŝd 48.72 57.58 59.71 59.73 61.83 72.95

1.05 ˆ̂µ, 1.05ŝd 51.31 60.55 62.72 62.69 64.82 75.28

n.iter=1Ml Median(R) Group B

MR2010 Min 25% 50% Mean 75% Max

0.95 ˆ̂µ, 0.95ŝd 33.64 39.93 41.34 41.33 42.79 48.88

0.95 ˆ̂µ , ŝd 32.95 39.83 41.31 41.30 42.82 49.86
ˆ̂µ, 0.95ŝd 34.99 42.05 43.48 43.50 44.93 50.97

ˆ̂µ, ŝd 33.99 42.04 43.52 43.51 45.01 51.44

1.05 ˆ̂µ, ŝd 36.72 44.17 45.68 45.68 47.20 54.43
ˆ̂µ, 1.05ŝd 34.34 41.95 43.47 43.50 45.06 51.66

1.05 ˆ̂µ, 1.05ŝd 36.35 44.10 45.64 45.66 47.21 55.33

n.iter=1Ml Median(R) Group C

MR2010 Min 25% 50% Mean 75% Max

0.95 ˆ̂µ, 0.95ŝd 33.64 39.93 41.34 41.33 42.79 48.88

0.95 ˆ̂µ , ŝd 29.64 35.36 36.67 36.67 37.98 43.93
ˆ̂µ, 0.95ŝd 31.13 37.32 38.60 38.60 39.87 45.81

ˆ̂µ, ŝd 30.62 37.24 38.56 38.59 39.91 47.40

1.05 ˆ̂µ, ŝd 32.92 39.23 40.56 40.54 41.85 47.14
ˆ̂µ, 1.05ŝd 30.54 37.19 38.60 38.58 39.94 48.18

1.05 ˆ̂µ, 1.05ŝd 33.25 39.16 40.54 40.55 41.94 48.31

n.iter=1Ml Median(R) Group D

MR2010 Min 25% 50% Mean 75% Max

0.95 ˆ̂µ, 0.95ŝd 33.64 39.93 41.34 41.33 42.79 48.88

0.95 ˆ̂µ , ŝd 27.71 33.98 35.22 35.25 36.54 42.26
ˆ̂µ, 0.95ŝd 30.03 35.87 37.08 37.08 38.27 43.04

ˆ̂µ, ŝd 31.06 35.84 37.09 37.11 38.41 45.10

1.05 ˆ̂µ, ŝd 31.52 37.70 38.97 38.96 40.23 46.00
ˆ̂µ, 1.05ŝd 28.63 35.77 37.10 37.10 38.41 45.06

1.05 ˆ̂µ, 1.05ŝd 31.47 37.63 38.97 38.97 40.32 46.31

Table 3.40: Simulation table For Median(R)A2 2011
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One year forecasting: A2 2011 prevision

After these two simulation tasks, every quantity necessary to make a pre-

diction on A2 2011 is known or estimated. The S estimation is chosen by

the mean and the couple (Min, Max) of N(µ, σ), namely the forth row of

Table 3.39:

S = 40658456[37689367, 43125385]

The same choice is made for Median(R) (see Table 3.40):

Median(R)A=59.66 [48.85,71.43]

Median(R)B=43.51 [33.99,51.44]

Median(R)C=38.59 [30.62, 47.40]

Median(R)D=37.11 [31.06, 45.10]

The known values are:

EFF={58090,411626,418220,268540}

TEO={120838,1129270,1239947,760860}24

The prevision and the credibility interval are:

A22011=2.49 [1.94, 3.35]

In respect with A2 2010 there could be a lost of 330.48Me [-1003.68Me,+̇722.16Me].

The credibility interval seems to be too large so also the couple (25%,

75%) of N(µ, σ) is chosen:

24not negligible differences was discovered between local and national registry in order

to compute EFF and TEO. In this section national registry data are used because they are

“official“, in the prevision section a time series on local registry data will be used instead.
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S=40658456 [37689367,43125385]

Median(R)A=59.66 [57.55, 51.72]

Median(R)B=43.51 [42.04, 55.01]

Median(R)C=38.59 [37.24, 39.91]

Median(R)D=37.11 [35.84, 38.41]

The alternative credibility interval is tighter:

A22011=2.49 [2.40, 2.61]

In respect with A2 2010 there could be a lost of 330.48Me [440,64Me,1̇83,6Me].

It has to be noticed as an asymmetric interval for A2 comes from sym-

metric intervals for both Median(R) and S.

3.9.2 Long-term prevision

Long-term prevision refers to predicting A2 for 2012. This aim is achieved

estimating both national quantities, S and Median(R), and the local quantity

EFF, while TEO is already known (see Table 3.37).

Having only one past observation on {S, Median(R)} the same results from

the previous section are used for the estimation. Whereas in estimating EFF

two different models are used: one is an AR(1) with normal approximation,

since it contains only temporal information about EFF. The other model is a

binomial model which adds information driven by TEO (as EFF parameter).

There are 4 past observations available of EFF and 5 of TEO as next table

shows.
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Group A B C D

C.Y. EFF TEO EFF TEO EFF TEO EFF TEO

2007 83812 137700 445258 1121425 467251 1191768 286846 823675

2008 85460 138720 464396 1176342 446935 1300068 284244 824275

2009 80925 140040 485369 1200322 453291 1315793 285205 815055

2010 68755 144538 447691 1177122 435225 1273776 278938 787166

2011 - 155536 - 1096819 - 1066124 - 728777

Table 3.41: EFF and TEO by Year and group

One year forecasting: the EFF Normal model

As well as for modelling A1 factors, the prediction is based on temporal

variation of the quantity to be estimated. Both non informative and infor-

mative priors are used. The model is:

MAR1
EFF =



EFFt,g ∼ N(µt,g, τg), t = 1, 2, 3, 4, g = {A,B,C,D}

µt,g = βgEFFt−1,g

NIP : βg ∼ N(0, .001), τg ∼ Γ(0.001, 0.001), EFF0,g ∼ N(0, 0.001), ∀g

IP : EFF0,1 ∼ N(79738, 1.313e − 08), EFF0,2 ∼ N((460679, 2.185e − 09)

EFF0,3 ∼ N(450675, 4.211e − 09), EFF0,4 ∼ N(283808, 6.413e − 08)

β0,1 ∼ N(39.70, 1/1.89), β0,2 ∼ N(229.4, 1/4.6)

β0,3 ∼ N(224.38, 1/3.38), β0,4 ∼ N(141.303, 1/0.891)

τ1 ∼ Γ(148.4, 0.001861), τ2 ∼ Γ(824.3, 0.001789)

τ3 ∼ Γ(1521, 0.003374), τ4 ∼ Γ(9182, 0.03235)

Informative priors come from: EFF0 is the average of 4 year observed

values, τ from the method of moments, and β from a linear regression of

EFF on time.

Results:
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NIP IP

MD 431 23580

P 10.7 8.1

PD 441.7 23588.1

Table 3.42: EFF2011/12 AR(1) NIP/IP deviance
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n.iter 1M EFF - NIP

Node Mean Sd 5% 50% 95%

A: µ̂2011/12 64432 23152 28022 64521 100826

B: µ̂2011/12 445855 142515 221784 447763 668658

C: µ̂2011/12 425268 147864 195582 424612 656994

D: µ̂2011/12 275362 93479 128503 276138 422055

A: ŝ 45038 18942 25267 40552 78903

B: ŝ 237815 98872 134371 215189 414788

C: ŝ 248782 105400 140187 224539 438113

D: ŝ 152757 66987 86687 137142 268332

A: β̂ 0.937 0.337 0.408 0.938 1.466

B: β̂ 0.996 0.318 0.495 1.000 1.494

C: β̂ 0.977 0.340 0.449 0.976 1.510

D: β̂ 0.987 0.335 0.461 0.990 1.513

EFF - IP

Node Mean Sd 5% 50% 95%

A: µ̂2011/12 64696 274 64246 64696 65147

B: µ̂2011/12 447673.2 645.1 446611.9 447673.2 448733.3

C: µ̂2011/12 424866.4 206.3 424526.9 424866.5 425205.7

D: µ̂2011/12 276358.13 21.25 276323.15 276358.13 276393.10

A: ŝ 575.36 23.61 537.96 574.53 615.51

B: ŝ 1161.76 20.24 1128.96 1161.47 1195.51

C: ŝ 374.3 4.8 366.5 374.3 382.3

D: ŝ 37.674 0.197 37.352 37.673 37.998

A: β̂ 0.941 0.004 0.934 0.941 0.948

B: β̂ 1.000 0.001 0.998 1.000 1.002

C: β̂ 0.976 0.000 0.975 0.976 0.977

D: β̂ 0.991 0.000 0.991 0.991 0.991

Table 3.43: EFF2011/12: AR(1) NIP/IP estimation
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Mean values for µ2011/2012 follow the trend coming out from past obser-

vations: decreasing in all areas. β coefficients give information about the

strength of such trend. β standard deviations are too narrow.

One year forecasting: the EFF binomial model

Another way of formalizing EFF is with a binomial model. EFFt,i can be

thought as the number of successes on TEOt,i trials, the probability of suc-

cess being θt,i, representing the student abilities and/or university facilities

in earning credits. i represents the area and t the time. However, for first

approximation, the model assumes a constant θ across time.

Both non informative and informative conjugate priors are used. Parame-

ters for Beta distributions are derived with the method of moments. The

model is:

MBin
EFF =


EFFi,t ∼ Bin(θi,TEOi,t), t = 1, 2, 3, 4 i = {A,B,C,D}

NIP : θi ∼ Beta(1, 1) ∀i

IP : θA ∼ Beta(58.67, 44.34) θB ∼ Beta(1650, 2536)

θC ∼ Beta(242.8, 440.2) θD ∼ Beta(9023, 16805)

The induced DAG is:
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EFFt EFFt+1

TEOt TEOt+1

Figure 3.15: The spurious association between EFFt and EFFt+1
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Both models lead to the same estimations so only one is showed.

AR(1) NIP/IP

MD 18569

P 4

PD 18573

Table 3.44: EFF: fixed effects binomial model. NIP/IP deviance

n.iter EFF - NIP/IP

Node Mean Sd 5% 50% 95%

A ˆ̂EFF2011 88428.8 220.6 88066.0 88429.0 88792.0

B ˆ̂EFF2011 432306.5 568.3 431372.0 432307.0 433241.0

C ˆ̂EFF2011 378222.6 543.7 377328.0 378223.0 379116.0

D ˆ̂EFF2011 254550.4 450.4 253809.0 254550.0 255292.0

A : θ̂ 0.569 0.001 0.567 0.569 0.570

B : θ̂ 0.394 0.000 0.394 0.394 0.395

C : θ̂ 0.355 0.000 0.354 0.355 0.355

D : θ̂ 0.349 0.000 0.349 0.349 0.350

Table 3.45: EFF: fixed effects binomial model. NIP/IP estimation

EFF estimations are quite different from the normal model. Except

for group A for which the value is higher, all other groups get a lower

prevision. θ estimations are the R average among the 4 year observations.

There are suspicious null standard deviations. An huge value of MD calls

for a further investigation.

Figure 3.16 shows EEF, TEO and R time series by group. Two consider-

ations on R: there are clear systematic trends, and patterns don’t look like

any of their two sources, EFF and TEO, meaning the knowledge of only

one quantity among EFF and TEO is insufficient for prediction on R.
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Figure 3.16: Time series on {EFF, TEO, R}
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To take into account systematic variations on R it is used a binomial

model with time-varying parameter θx (on logit scale, Congdon (2006) pag

122), for which RX is an estimation.

The model is:

MTVAR
EFF =



EFFt ∼ Bin(θt,TEOt), t = 1, 2, 3, 4, 5

TEOt = f (TEOt−1)

logit(θt) = bt

bt ∼ N(µt, τ)

µt = βµt−1

NIP : {β, µ1} ∼ N(0, 0.001), τ ∼ Γ(0.001, 0.001)

IP : β1 ∼ N(0.374, 1.133), β2 ∼ N(1.03, 11.48)

β3 ∼ N(1.079, 8.381), β4 ∼ N(0.979, 98.581)

µ1,1 ∼ N(0.417, 6.797), µ1,2 ∼ N(−0.401, 51.068)

µ1,3 ∼ N(−0.504, 22.009), µ1,4 ∼ N(−0.637, 112.420)

τ1 ∼ Γ(0.9292, 0.04717), τ2 ∼ Γ(0.9687, 0.002862)

τ3 ∼ Γ(0.9544, 0.007514), τ4 ∼ Γ(0.9898, 0.001185)

Informative prior parameters come from non informative prior model out-

come.

The induced DAG is shown in figure 3.17:
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Figure 3.17: EFF time-varying binomial model induced DAG
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Also for this model both non informative and informative prior lead to

the same estimations, so results are shown once.

AR(1) NIP/IP

MD 236

P 16

PD 252

Table 3.46: EFF: time-varying effects binomial model. NIP/IP deviance

n.iter EFF - NIP/IP

Node Mean Sd 5% 50% 95%

A ˆ̂EFF2011 81249 17584 54493 81060 109198

B ˆ̂EFF2011 423307 57833 352769 421306 498846

C ˆ̂EFF2011 348081 86355 243324 341004 471634

D ˆ̂EFF2011 259726 26463 232870 258903 286714

A : θ̂2011 0.522 0.113 0.350 0.521 0.702

B : θ̂2011 0.386 0.053 0.322 0.384 0.455

C : θ̂2011 0.326 0.081 0.228 0.320 0.442

D : θ̂2011 0.356 0.036 0.320 0.355 0.393

A : β̂ 0.390 1.233 -1.013 0.527 1.190

B : β̂ 1.023 0.278 0.817 1.038 1.226

C : β̂ 1.071 0.420 0.806 1.101 1.328

D : β̂ 0.974 0.185 0.907 0.983 1.055

A : ŝ 0.354 0.301 0.129 0.279 0.808

B : ŝ 0.101 0.131 0.031 0.066 0.280

C : ŝ 0.167 0.228 0.051 0.108 0.481

D : ŝ 0.064 0.102 0.020 0.042 0.162

Table 3.47: EFF: time-varying effects binomial model. NIP/IP estimation
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With respect to the fixed effect, this model provides lower estimation

points for EFF (except for group D). Moreover the θ estimation is relative

only to the forecast year (actually it is a real forecast instead of an average

within the period of observation as for the fixed effect model), and the MD

returns to an acceptable value.

Two year forecasting: A2 2012 prevision

Now prediction can be fulfilled. For S and MRX the same 2011 estimation

values are used:

S=40658456 [37689367,43125385]

Median(R)A=59.66 [57.55, 61.72]

Median(R)B=43.51 [42.04, 45.01]

Median(R)C=38.59 [37.24, 39.91]

Median(R)D=37.11 [35.84, 38.41]

For EFF estimation the time-varying binomial model is used:

EFFA=81058 [62834, 99763]

EFFB=420689 [378187, 463038]

EFFC=340883 [274670, 409420]

EFFD=258906 [245242, 272680]

All these quantities lead to an estimation of:

A22012=2.18 [1.74,2.38]

with a lost respect to 2010 (2.76) of 709.92Me[1248.48Me,465.12Me] This

discouraging result comes jointly from a reduction in TEO in the last year

(see Table 3.41), which is a EFF parameter, and from a general negative

trend in R (see Figure 3.16).
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3.10 A2 Causal analysis

This section answers two capital questions: what variables does it need

to intervene upon? and how much time does it need to move up in the

ranking? These questions are going to be dealt with separately. From the

definition formula it is clear that increasing EFF is more beneficial than

decreasing TEO, because EFF is a squared term whereas TEO is linear.

Moreover TEO depends on the number of students (by a coefficient equal

to 60), which in turn depends mainly on three features: new enrolments,

graduates and drop-outs. These are governed by their own rules and needs

their own policy, and none of them is directly related with FFO, e.g. new

enrolments depend on family incomes, drop-outs depend on educational

offer students relationship, graduates regards the whole student carriers.

EFF on the other hand is directly related to student characteristics and year

by year educational offer sustainability, and can be investigated in the light

of them.

The next section is dedicated to the search of weak performances, meaning

which are the student characteristics and educational offer features with

the lowest value of R. This search gives the idea about where it is useful to

intervene upon.

The last section offers to decision-makers a three-year plan aimed to posi-

tioning the University of Palermo in the median position of the ranking.

3.10.1 Searching weak R performances

Starting from the efficiency on acquiring CFU, namely R = EFF
TEO , table 3.48

shows by area R negative performances both in terms of one year difference

and respect to the national median.
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RA RB RC RD

R2010 60.6 40.6 34.8 34.7

R2011 47.6 38.0 34.2 35.4

R2011 − R2010 -13 -2.6 -0.6 0.7

Median2010 59.7 43.5 38.6 37.1

R2011 −Median2010 -12.1 -5.5 -4.4 -2.3

Table 3.48: RA2 and Median(R)A2 by group

From now on, tables refer to C.Y. 2011 data. Table 3.49 shows females

get always better results then males. This is a quite settled result.

Gender RA RB RC RD

F 48.12 40.43 36.84 36.52

M 46.92 36.13 27.26 33.40

Table 3.49: RA2 by group and gender

Table 3.5025 shows lower values in Bachelor rather than in other type of

courses.

RA RB RC RD

MA - 51.8 56.3 50.2

MALT 47.6 47.9 - 40.0

MA old - 51.4 44.7 37.4

BA - 33.7 31.2 31.1

Table 3.50: RA2 by group and type of degree course

25BA= Bachelor, MA=master, MA old= Master old classification, MALT= long term (4/5/6

years) master
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Table 3.51 adds to the table above information on year of enrolment26:

percentage of acquired CFU increases with years of enrolments, first year

is always the worst case (expect for group A), in particular for bachelors.

261C= first year regular, 1FC=first year out-of-course, oth=other years of enrolment
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A

MA MALT MA old BA

1C - 45.58 - -

2C - 35.57 - -

3C - 33.98 - -

>3C - 54.40 - -

1FC - - - -

2FC - 38.33 - -

Oth - 51.19 - -

B

MA MALT MA old BA

1C 47.95 37.78 37.45 29.43

2C 78.55 50.19 61.26 36.68

3C - 44.03 - 47.62

>3C - 60.87 - 25.00

1FC - 0.00 - 41.39

2FC - - - 31.78

Oth 52.22 44.77 41.45 20.95

C

MA MALT MA old BA

1C 49.87 - 74.22 29.52

2C 84.08 - 57.05 37.61

3C - - - 42.07

>3C - - - 40.34

1FC - - - 37.75

2FC - - - 27.85

Oth 16.25 - 33.33 17.61

D

MA MALT MA old BA

1C 50.41 26.231 - 32.37

2C 51.11 33.942 39.06 45.36

3C - 40.629 - 46.73

>4C - 49.024 - 0.00

1FC - 4.444 - 36.69

2FC - 25.000 - 26.35

Oth 0.00 55.754 36.62 15.61

Table 3.51: RA2 by group, type of degree course and year of enrolment
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Next table shows the dramatic plague of students with no credits

achieved throughout one year:

Area A B C D

No CFU 18.68 19.04 23.30 23.59

Table 3.52: Percentage of zero-credit students by area

3.10.2 Intervening on R

From the previous section it emerges a non encouraging situation, R val-

ues are in general lower than the national median. Figure 3.18 shows R

variability among degree courses.

Figure 3.18: Degree Courses RA2 by groups
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Given this status, one aim could be setting a policy to reach, in an limited

number of years, the median value MR of the area. Thus each year, every

degree course compares R and MR and according to the difference defines

its new target T, namely the new value it must reach:

C1) if R ≥MR then T ≥ R;

C2) if 0.95MR ≤ R < MR then T ≥MR;

C3) if 0.90MR ≤ R < 0.95MR then T ≥ 1.05R;

C4) if R < 0.90MR then T ≥ 1.1R;

The rules above are interpreted as follows: when the ratio is higher than

the median, no effort is required, except not reducing its value. When the

ratio is less than the median but not more than 5%, the effort required is to

catch up the median. When the ratio is between 90% and 95% then degree

courses have to increase it at least by 5%. Finally, when the ratio is smaller

than the median by 10%, the ratio must be increased at least by 10%. This

procedure, if satisfied, reaches the goal in no more than three years.

The table 3.76 shows for three consecutive years the percentage of degree

courses in each class and the value of A227:

Year C1 C2 C3 C4 A2

2010 38.6 12.0 14.6 34.8 2.76

2011 40.3 11.4 8.9 39.4 2.81

2012 53.1 2.9 12.3 31.7 2.90

2013 56.0 3.1 13.7 27.1 2.97

Table 3.53: Percentage of target classes degree courses by area and year

The induced DAG is shown in figure 3.30:

272010 and 2011 got a different number of degree courses; 2011-13 assume it constant. TEO,

MR and S are assumed constant.
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Rt MRt Rt+1 MRt+1

Ct Ct+1

Figure 3.19: Act on EFF policy DAG

Only a word about the link Ct → Rt+1. The class Ct doesn’t be interpreted

as a (direct) factor of Rt+1 because Rt+1 depends on EFFt+1 and TEOt+1. The

link represents the “intervention requirement “: if Ct ∈ {2, 3, 4} then an

intervention either on EFF or on TEO is needed. Given that the DAG

marginalizes on both {EFFt+1,TEOt+1}, the link becomes direct.

In A.Y. 2010/2011 University of Palermo took (at least) two actions in

order to increase EFF: 80 tutoring contracts and several remedial courses

for the so called ”hard to pass teaching”, namely where students have prob-

lems to pass. Such interventions is called AOE (act on EFF).

The causal effect of AOF on EFF can be computed as the difference between

the EFF predicted value, using data collected in past years when AOF did

not occur, and the EFF 2011 observed value when AOF did. Unfortunately

that value will be known in late 2012 (due to delay in data entry) and so

only the predicted value can be computed (as done). What is important to

underline now is the causal assumption that the difference between pre-

diction and observation (under intervention) is interpreted as the causal

effect of AOF on FF without any possible empirical verifiability, that is we

are in the field of counterfactual assumptions formalized by the potential

outcomes (Rubin, 2005).

147



3.11 Indicator B1

Indicator B1 belongs to the set of indicators which deals with scientific

research quality. It is defined as the percentage of researchers positively

evaluated in national projects (PRIN) during years 2006-2009, weighted by

the ratio of success of the scientific area.

The National evaluation agency, Anvur, criticized the double use of the

same evaluation: universities already receive fund based on positive eval-

uation of research projects PRIN, through the financed projects, so why

allocating again fund based on the same evaluation?28

Formally it is defined as the ratio, (Ri), between the mean of positively

evaluated researchers in a 4-year period (PEi) and the mean of the total

number of researcher during the same period, (TTEAi), for each of the 14

scientific areas, i. This ratio is then divided by the national median, (MRi),

and multiplied again by TTEAi, obtaining the local value per area, Ii. Then

final value is obtained by adding up for all areas (I) and finally normalized

by dividing for the sum of all 54 university (S).

Replacing PE and TTEA with EFF and TEO, the formula translates into indi-

cator A2, that means all remarks already made about A2, e.g. university-size

depending, and the same analysis structure still holds for B1.

3.11.1 B1 Structural equations and induced DAG

The formal definition of B1 is depicted by the following structural equa-

tions system:

28http://cronaca.anvur.it/2010/12/alla-ricerca-di-un-premio.html
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B1



i = 1, ..., 14 = area

TTEAi =
TTEA05,i+TTEA06,i+TTEA07,i+TTEA08,i

4

PEi =
PE05,i+PE06,i+PE07,i+PE08,i

4

Ri = 100 PEi
TTEAi

R∗i = {R1,i, ...,R53,i}

MRi = Median({Ri,R∗i })

I =
∑14

i=1
Ri

MRi
TTEAi =

∑14
i=1

PEi
MRi

S =
∑54

k=1 Ik = I +
∑53

i=k Ii = I + S∗

B1 = 100 I
S

Notice that the indicator actually doesn’t depend directly on TTEA be-

cause I = R
MR TTEA = 1

MR
PE

TTEA TTEA = PE
MR .

As for the previous indicator, PEi may be modelled as the number of suc-

cesses in TTEAi trials, θi being the probability of success, that is the set

of conditions may facilitate or make difficult to be positively evaluated.

TTEAi,t is a function of time 29, but since the statistical models employed

either marginalize on it or act conditioned on it, the functional form doesn’t

need to be further investigated. As usual, (I,S∗) and (Ri,R∗i ) can be corre-

lated due to national common causes.

Such considerations translate in other equations to be added to the system:
TTEAi,t = f (TTEAi,t−1)

PEi,t ∼ Bin(θi,TTEAi,t)

Corr(S∗, I) , 0

Corr(R∗i ,Ri) , 0

The induced DAG is represented in figure 3.20:

29through the formula TTEAt = TTEAt−1 + INt−OUTt where INt and OUTt are respectively

new enrolled researchers and retirements.
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S∗ S B1

I

R∗i MRi Ri

TTEAi PEi

TTEAi,05 TTEAi,06 TTEAi,07 TTEAi,08 PEi,05 PEi,06 PEi,07 PEi,08

θi

Figure 3.20: B1 induced DAG
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Table 3.54 shows three-year allocations schema, that is which quantities

are known and which have to be estimated (in bold) in order to compute

B1. National data are labelled with the same year as B1:

Year T T+1 T+2

Quantity RT AT RT AT RT AT

TTEA 2005-08 01/01/09 2006-2009 01/01/10 2007-2010 01/01/11

PE 2005-08 4/10 2006-2009 11/11 2007-2010 -

MR 2010 12/10 2011 12/11 2012 12/12

S 2010 12/10 2011 12/11 2012 12/12

B1 2010 12/10 2011 12/11 2012 12/12

Table 3.54: B1 Reference Time & Available Time

As usual, quantities responsible for B1 2010 are already known and

ready for a retrospective analysis. For 2011 estimate only national quantities

are needed, while for 2012 TTEA is the only known quantity. Let us start

with 2010 results.

3.11.2 B1 2010 results

In 2010, the University of Palermo achieved the following results:
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Area TTEA(05-08) PE(05-08) R MR R-MR Ii

01 83.5 30.25 36.2 43 -6.8 70,89

02 68.25 33.75 49.5 51 -1.5 65,68

03 108 52.75 48.8 55 -6.2 95,18

04 43.5 15.75 36.2 49 -12.8 31,89

05 187 60.75 32.5 49 16.5 123,67

06 378.75 79 20.9 27 -6.1 291,97

07 122.75 64 52.1 50 2.1 128,00

08 198.756 101.25 50.9 51 -0.1 197,62

09 17.5 96.5 54.1 53 1.1 180,84

10 180.25 61 33.8 36 -2.2 167,26

11 168.5 45.5 27.0 37 -10.0 124,19

12 172.25 45.5 26.4 31 -4.6 146,92

13 106.5 35 32.9 33 -0.1 104,74

14 45.5 13 28.6 34 -5.4 38,22

T 2.042 734 35.9 - - I=1767.06

(S=53937.25)

Table 3.55: B1 2010 quantities

B1=3.28 is the ninth among all universities. The local rate exceeds the

median value only in two areas, while in three areas it is inferior at least

of 10%. These poor results compared with the quite high value of the in-

dicator give the intuition that the university size effect operated. In the

retrospective section this intuition will be confirmed.

3.12 B1 retrospective analysis

This section highlights possible delays or errors in data entry or other

hypothetical (counterfactual) conditions able to explain what actions would
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have be performed to increase the indicator.

Q1 What B1 would have been had it computed today (namely was there a

measurement error)?

A1 B1 would be 3.30. The official value is 3.28 meaning there was a little

delay or errors in data entry in PEi values. Actually, this indicator is

unlikely to be subject to errors of this kind.

Q2 What B1 would be had the local ratio equal at least to the national

median?

A2 B1 would be 3.78 corresponding to an increasing allocation of 814,97Me.

Q3 what B1 would be had all universities achieved 100% PE?

Q4 B1 would be 3.57. This counterfactual correspond to a definition of B1 =

100
∑14

i=1 TTEAi∑14
i=1

∑54
k=1 TTEAi,k

, that is depending only on the university dimension.

Q4 what B1 would be had Ri not multiplied by TTEAi?

A4 B1 would be 1.66. This counterfactual correspond to a definition of B1 =

100
∑

i
Ri

MRi∑
i,k

Ri,k
MRi,k

, that is erasing the university dimension effect. Notice that

the observed value 3.28, is closer to 3.57 (Q3) than to 1.66, confirming

the dimension effect.

Q5 what B1 would be had PEi increased by 1%?

A5 B1 would be 3.30, meaning every increasing of 1% in PEi would lead

an increasing of 0.2 in B1, that is a gain of 332,64Me

3.13 B1 previsional analysis

As for previous indicators, after checking the past, the most urgent task is

predicting the future. In the next section national quantities will be forecast

one year ahead in order to make prediction on B1 2011.
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3.13.1 Short-term prevision

Table 3.56 compares the mean of positive evaluated researchers in two

subsequent four-year periods related with B1 2010 and B1 2011 with the

aims of evaluating differences in performances. The last column measures

the difference between the number of researchers on 2009 and on 2005,

because two consecutive indicators depend on it.

Area PE(05-08) PE(06-09) 2-1 ∆=(2-1)/1 % PE09-PE05

01 30.25 26 -4.25 -14.38 -19

02 33.75 33.25 -0.50 -1.48 -1

03 52.75 51 -1.75 -3.32 -9

04 15.75 15.25 -0.50 -3.17 -2

05 60.75 55 -5.75 -9.47 -6

06 79 69.75 -9.25 -11.70 -38

07 64 55.75 -8.25 -12.89 -34

08 101.25 86 -15.25 -15.06 -63

09 96.5 85.75 -10.75 -11.14 -41

10 61 57 -4 -6.56 -16

11 45.5 51.25 5.75 12.64 24

12 45.5 41.75 -3.75 -8.24 -17

13 35 28.25 -6.75 -19.29 -27

14 13 15 2 15.38 7

Table 3.56: B1 2010 national variables - one year difference

Two areas only increased the average of positively evaluated researchers.

In the other ten areas, there were substantial decrements, on average by

8%. This would lead, had θ and MR equal to 2010 observed value, to a

prevision for B1 2011 of 3.02, which means a temporary loss of 449.07Me.

Next table highlights how only little areas (in terms of PEi) increased their

PEi, while as dimension grew, loss increased too.
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Quartile Q1 Q2 Q3 Q4

PE (13,34.1] (34.1,49.1] (49.1,63.2] (63.2,101]

E(∆|Q) 40.422 -9.012 -32.472 -50.871

Table 3.57: B1 2010 national variables - one year difference

One year forecasting: the S case

Figure 3.21 shows the casual diagram involving §t and §t+1.

St St+1

Īt Īt+1

M̄Rt M̄Rt+1

R̄t P̄Et P̄Et+1 R̄t+1

¯TTEAt ¯TTEAt+1

β

Figure 3.21: The spurious association between St and St+1

However being only one observation available, the normal approxima-

tion is used.
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The model is:

S


θ2011 ∼ N(µ̂, σ̂)

µ̂ = k1Sobs
2010

σ̂ = k2σ(Iobs
2010)

{k1, k2} ∈ {0.95, 1, 1.05}

Where Sobs
2010 is the 2010 S observed value, and σ(Iobs

2010) is the empirical stan-

dard deviation among all 54 I values for 2010. Next table shows summaries

form 1M samples drawn from such model:

n.iter=1Ml S 2011

§2011 Min 25% 50% Mean 75% Max

0.95µ, 0.95sd 46583 49076 49560 49566 50059 52671

0.95µ , 1sd 46786 49029 49572 49565 50090 52336

1µ, 0.95sd 49438 51680 52179 52179 52683 55482

1µ, 1sd 49282 51641 52168 52165 52685 55125

1.05µ, 1sd 52074 54272 54793 54794 55315 57846

1µ, 1.05sd 49335 51632 52180 52169 52705 55272

1.05µ, 1.05sd 51178 54227 54788 54782 55332 57789

Table 3.58: Simulation table for §B1 2011

One year forecasting: the MR case

The model is the same as for S:

MRi


MRi,2011 ∼ N(µ̂i, σ̂i) 1 = {1, ..., 14}

µ̂i = k1MRobs
i,2010

σ̂i = k2σ(MRobs
i,2010)/2

{k1, k2} ∈ {0.95, 1, 1.05}

Where MRi,obs
2010 is the MRi observed value in 2010, and σ(MRi,obs

2010)/2 is the

empirical standard deviation among all 54 MRi values for 2010 divided by
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2 (ad hoc imputation).

The causal diagram is:

M̄Rt M̄Rt+1

R̄t R̄t+1

P̄Et P̄Et+1

¯TTEAt ¯TTEAt+1

β

Figure 3.22: The spurious association between M̂Rt and M̂Rt+1

It follows the simulation table for all 14 areas:
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n.iter=1Ml MR 2011 AREA 1

θ2011 Min 25% 50% Mean 75% Max

0.95µ, 0.95sd 22.48 37.46 40.77 40.78 44.12 65.14
0.95µ , 1sd 20.66 37.47 40.91 40.90 44.45 59.07
1µ, 0.95sd 25.97 39.79 43.04 43.06 46.27 61.34

1µ, 1sd 25.13 39.46 42.97 42.99 46.43 64.51
1.05µ, 1sd 25.05 41.72 45.20 45.19 48.74 65.62
1µ, 1.05sd 23.06 39.36 43.05 43.06 46.77 62.39

1.05µ, 1.05sd 23.29 41.54 45.19 45.15 48.83 65.65

n.iter=1Ml MR 2011 AREA 2

θ2011 Min 25% 50% Mean 75% Max

0.95µ, 0.95sd 30.83 45.13 48.51 48.45 51.75 67.50
0.95µ , 1sd 29.97 44.97 48.47 48.42 51.85 67.11
1µ, 0.95sd 31.54 47.73 51.05 51.05 54.42 68.04

1µ, 1sd 34.79 47.57 51.06 51.09 54.65 71.66
1.05µ, 1sd 31.58 50.11 53.56 53.53 57.01 72.77
1µ, 1.05sd 30.95 47.38 5 0.96 51.00 54.67 71.00

1.05µ, 1.05sd 33.04 49.79 53.55 53.48 57.19 73.31

n.iter=1Ml MR 2011 AREA 3

θ2011 Min 25% 50% Mean 75% Max

0.95µ, 0.95sd 35.29 48.72 52.30 52.21 55.63 70.80
0.95µ , 1sd 32.76 48.77 52.16 52.15 55.58 71.47
1µ, 0.95sd 35.06 51.65 55.04 55.03 58.43 72.60

1µ, 1sd 37.50 51.59 55.03 55.00 58.52 73.78
1.05µ, 1sd 39.47 54.25 57.73 57.73 61.20 75.26
1µ, 1.05sd 32.78 51.34 55.00 54.99 58.61 77.91

1.05µ, 1.05sd 35.44 54.16 57.67 57.74 61.44 79.75

n.iter=1Ml MR 2011 AREA 4

θ2011 Min 25% 50% Mean 75% Max

0.95µ, 0.95sd 28.56 43.27 46.57 46.54 49.84 65.12
0.95µ , 1sd 26.90 42.88 46.45 46.42 49.99 66.61
1µ, 0.95sd 29.48 45.78 49.06 49.05 52.35 69.08

1µ, 1sd 30.14 45.45 48.97 48.93 52.40 68.66
1.05µ, 1sd 28.74 48.09 51.56 51.49 54.95 73.64
1µ, 1.05sd 25.94 45.22 48.85 48.98 52.70 71.73

1.05µ, 1.05sd 30.89 47.81 51.52 51.54 55.24 71.54

n.iter=1Ml MR 2011 AREA 5

θ2011 Min 25% 50% Mean 75% Max

0.95µ, 0.95sd 28.52 43.28 46.63 46.62 49.92 64.74
0.95µ , 1sd 27.00 43.13 46.52 46.57 50.07 66.20
1µ, 0.95sd 29.73 45.68 49.09 49.04 52.34 67.16

1µ, 1sd 31.91 45.59 48.99 49.04 52.46 68.73
1.05µ, 1sd 29.21 47.99 51.50 51.51 55.00 70.47
1µ, 1.05sd 25.91 45.32 49.03 49.01 52.66 69.45

1.05µ, 1.05sd 30.71 47.80 51.44 51.46 55.04 73.05

n.iter=1Ml MR 2011 AREA 6

θ2011 Min 25% 50% Mean 75% Max

0.95µ, 0.95sd 6.753 22.343 25.597 25.641 28.961 42.956
0.95µ , 1sd 6.095 22.122 25.577 25.598 29.057 45.509
1µ, 0.95sd 7.763 23.700 26.957 26.990 30.302 45.330

1µ, 1sd 7.919 23.568 27.064 27.057 30.511 45.024
1.05µ, 1sd 9.546 24.864 28.331 28.334 31.880 48.671
1µ, 1.05sd 7.003 23.233 26.938 26.940 30.610 46.461

1.05µ, 1.05sd 6.453 24.707 28.431 28.381 32.010 50.098

Table 3.59: Simulation table for Median(R)B1 2011 AREA 1-6
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n.iter=1Ml MR 2011 AREA 7

θ2011 Min 25% 50% Mean 75% Max

0.95µ, 0.95sd 29.15 44.16 47.46 47.46 50.82 68.85
0.95µ , 1sd 25.80 43.97 47.42 47.46 50.98 66.93
1µ, 0.95sd 28.22 46.71 50.03 50.01 53.35 68.43

1µ, 1sd 29.55 46.44 49.98 49.95 53.50 71.50
1.05µ, 1sd 30.78 49.03 52.59 52.54 56.01 72.45
1µ, 1.05sd 31.28 46.25 50.00 49.98 53.58 74.59

1.05µ, 1.05sd 30.25 48.79 52.46 52.50 56.11 75.11

n.iter=1Ml MR 2011 AREA 8

θ2011 Min 25% 50% Mean 75% Max

0.95µ, 0.95sd 28.65 45.19 48.57 48.52 51.87 70.84
0.95µ , 1sd 29.46 45.04 48.54 48.49 51.97 68.30
1µ, 0.95sd 31.78 47.61 50.95 50.98 54.30 68.48

1µ, 1sd 32.32 47.57 51.08 51.06 54.53 70.82
1.05µ, 1sd 32.80 50.11 53.60 53.56 57.03 73.16
1µ, 1.05sd 30.22 47.30 51.00 51.01 54.72 73.07

1.05µ, 1.05sd 32.17 49.93 53.50 53.56 57.17 74.25

n.iter=1Ml MR 2011 AREA 9

θ2011 Min 25% 50% Mean 75% Max

0.95µ, 0.95sd 30.61 47.10 50.29 50.35 53.67 66.92
0.95µ , 1sd 32.29 46.78 50.26 50.31 53.87 68.50
1µ, 0.95sd 34.64 49.59 52.87 52.95 56.33 72.68

1µ, 1sd 32.82 49.62 52.99 53.04 56.56 72.72
1.05µ, 1sd 34.20 52.16 55.68 55.68 59.17 75.23
1µ, 1.05sd 33.17 49.25 52.98 52.95 56.57 73.11

1.05µ, 1.05sd 33.81 52.05 55.77 55.75 59.40 73.77

n.iter=1Ml MR 2011 AREA 10

θ2011 Min 25% 50% Mean 75% Max

0.95µ, 0.95sd 13.65 30.86 34.19 34.24 37.62 53.49
0.95µ , 1sd 14.93 30.61 34.17 34.17 37.68 55.92
1µ, 0.95sd 15.31 32.64 35.96 35.94 39.31 57.28

1µ, 1sd 17.11 32.39 35.98 35.93 39.55 53.65
1.05µ, 1sd 14.35 34.32 37.84 37.79 41.35 56.06
1µ, 1.05sd 14.13 32.47 36.08 36.07 39.69 57.10

1.05µ, 1.05sd 19.15 34.23 37.87 37.86 41.50 58.24

n.iter=1Ml MR 2011 AREA 11

θ2011 Min 25% 50% Mean 75% Max

0.95µ, 0.95sd 15.29 31.86 35.15 35.18 38.49 54.34
0.95µ , 1sd 16.34 31.68 35.13 35.15 38.70 56.91
1µ, 0.95sd 18.95 33.67 37.06 37.00 40.33 57.62

1µ, 1sd 19.81 33.51 37.07 37.05 40.54 57.12
1.05µ, 1sd 20.24 35.36 38.92 38.85 42.34 57.11
1µ, 1.05sd 14.60 33.17 36.96 36.95 40.61 60.44

1.05µ, 1.05sd 17.10 35.14 38.87 38.79 42.48 59.94

n.iter=1Ml MR 2011 AREA 12

θ2011 Min 25% 50% Mean 75% Max

0.95µ, 0.95sd 11.00 26.15 29.51 29.50 32.89 48.20
0.95µ , 1sd 8.31 25.96 29.45 29.46 32.95 47.91
1µ, 0.95sd 11.59 27.74 31.10 31.07 34.43 48.60

1µ, 1sd 12.90 27.49 30.95 30.98 34.43 50.35
1.05µ, 1sd 14.07 28.95 32.37 32.43 35.87 52.02
1µ, 1.05sd 11.21 27.45 31.15 31.14 34.84 53.35

1.05µ, 1.05sd 9.959 28.873 32.550 32.523 36.177 52.293

Table 3.60: Simulation table forMedian(R)B1 2011 AREA 7-12
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n.iter=1Ml MR 2011 AREA 13

θ2011 Min 25% 50% Mean 75% Max

0.95µ, 0.95sd 11.16 28.05 31.34 31.36 34.70 49.74
0.95µ , 1sd 7.013 27.848 31.352 31.365 34.904 51.753
1µ, 0.95sd 12.59 29.69 32.93 32.95 36.20 50.95

1µ, 1sd 13.41 29.45 33.05 33.03 36.61 49.86
1.05µ, 1sd 13.44 31.08 34.61 34.63 38.12 54.28
1µ, 1.05sd 12.66 29.43 33.06 33.05 36.63 52.27

1.05µ, 1.05sd 15.45 31.06 34.74 34.69 38.35 54.64

n.iter=1Ml MR 2011 AREA 14

θ2011 Min 25% 50% Mean 75% Max

0.95µ, 0.95sd 13.17 29.02 32.22 32.27 35.54 49.79
0.95µ , 1sd 11.82 28.85 32.32 32.34 35.80 52.16
1µ, 0.95sd 15.46 30.71 33.96 34.01 37.28 53.44

1µ, 1sd 12.92 30.45 33.90 33.95 37.47 52.97
1.05µ, 1sd 15.97 32.12 35.66 35.63 39.11 57.71
1µ, 1.05sd 14.23 30.22 33.97 33.97 37.73 55.44

1.05µ, 1.05sd 15.06 31.95 35.79 35.74 39.51 55.69

Table 3.61: Simulation table for Median(R)B1 2011 AREA 13-14

One year forecasting: B1 2011 prevision

Now every quantity needed to make a prediction on B1 2011 is known. §2011

is estimated with the mean and the couple (Min, Max) of N(µ, σ), namely

the forth row of Table 3.60:

S=52165 (49282, 55125]

Due to the large credential intervals for MR2011, the estimate is performed

with the couple (25pc, 75pc) of N(µ, σ) (see Tables 3.59–3.61):

MRmean={42.99, 51.09, 55.00, 48.93, 49.04, 27.05, 49.95, 51.06, 53.04, 35.93,

37.05, 30.98, 33.03, 33.95}

MR25pc={39.46, 47.57, 51.59, 46.45, 45.59, 23.56, 46.44, 47.57, 49.62, 32.39,

33.51, 27.49, 29.45, 30.45}

MR75pc={46.43, 54.65, 58.52, 52.40, 52.46, 30.51, 53.50, 54.53, 56.56, 39.55,

40.54, 34.43, 36.61, 37.47}
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PE is already known (see Table 3.56):

PE={26,33.25,51,15.25,55,69.75,55.75,86,85.75,57,51.25,41.75,28.25,15}

The final estimate is:

B12011=3.02 [2.63,3.49]

Compared to B1 2010 there is an expected loss of 449.07Me(-1081,08Me, +349272Me].

3.13.2 Long-term prevision

Long term prevision deals essentially with PEi prediction, both because

TTEA is known and because it affects B1 only through PE.

One year forecasting: the PE case

Figures 3.23-3.26 compare TTEAi, PEi and Ri in a 5-year time series, display-

ing that Ri patterns are similar to the PEi ones. This result can be explained

by the low variability of TTEAi compared to PEi as shown in the next table:
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area TTEA PE R

AREA 01 2.302 11.234 12.821

AREA 02 2.408 5.167 8.190

AREA 03 2.588 16.697 14.165

AREA 04 1.095 5.857 13.992

AREA 05 5.32 10.92 5.47

AREA 06 6.107 30.158 7.636

AREA 07 3.421 13.191 10.799

AREA 08 4.494 16.547 7.497

AREA 09 4.324 11.345 6.081

AREA 10 6.107 13.554 7.342

AREA 11 4.147 16.903 9.576

AREA 12 7.436 16.634 8.767

AREA 13 3.564 13.387 11.559

AREA 14 1.517 8.264 17.191

Table 3.62: TTEA, PE and R standard deviations
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Figure 3.23: PEi vs TEAi vs Ri time series - Area 1-4
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Figure 3.24: PEi vs TEAi vs Ri time series - Area 5-8
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Figure 3.25: PEi vs TEAi vs Ri time series - Area 9-12
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Figure 3.26: PEi vs TEAi vs Ri time series - Area 13-14
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In order to make a prediction, a binomial model with fixed effect on θ

is applied on PEi.

The model is:

MBin
PE =



PEi,t ∼ Bin(θi,TTEAi,t), i = 1, ..., 14 t = 1, 2, 3

NIP : θi ∼ Beta(1, 1) ∀i

IP :

θ1 ∼ Beta(3.416, 7.667), θ2 ∼ Beta(13.258, 16.227)

θ3 ∼ Beta(3.266, 4.468), θ4 ∼ Beta(10.526, 19.668)

θ5 ∼ Beta(15.014, 37.587), θ6 ∼ Beta(4.986, 22.411)

θ7 ∼ Beta(7.277, 8.421), θ8 ∼ Beta(6.172, 8.217)

θ9 ∼ Beta(6.713, 7.544), θ10 ∼ Beta(11.426, 26.717)

θ11 ∼ Beta(24.072, 66.305), θ12 ∼ Beta(5.041, 17.743)

θ13 ∼ Beta(2.709, 7.476), θ14 ∼ Beta(2.697, 7.305)

Beta parameters are estimated according to the method of moments.

The induced DAG is:

αi βi

θi

PEi,t PEi,t+1

¯TTEAi,t ¯TTEAi,t+1

Figure 3.27: Spurious association between PEt and PEt+1
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Informative parametrization leads to lower PEi and θi estimates than

the non informative one. Standard deviations of estimates are, instead,

equal.

AR(1) NIP IP

MD 736 891

P 14 13.5

PD 740 904.5

Table 3.63: PE: Binomial model with fixed on θ NIP/IP Deviance
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n.iter PEi - NIP

Node Mean Sd 5% 50% 95%
ˆ̂PEA1,2011 29.521 4.736 22.000 29.000 37.000
ˆ̂PEA2,2011 32.167 4.457 25.000 32.000 39.000
ˆ̂PEA3,2011 49.218 5.604 40.000 49.000 58.000
ˆ̂PEA4,2011 17.338 3.541 12.000 17.000 23.000
ˆ̂PEA5,2011 63.049 7.081 52.000 63.000 75.000
ˆ̂PEA6,2011 78.793 8.525 65.000 79.000 93.000
ˆ̂PEA7,2011 61.585 6.006 52.000 62.000 71.000
ˆ̂PEA8,2011 83.982 7.296 72.000 84.000 96.000
ˆ̂PEA9,2011 91.198 7.247 79.000 91.000 103.000
ˆ̂PEA10,2011 56.699 6.778 46.000 57.000 68.000
ˆ̂PEA11,2011 48.716 6.387 38.000 49.000 59.000
ˆ̂PEA12,2011 40.909 6.046 31.000 41.000 51.000
ˆ̂PEA13,2011 34.60 5.34 26.00 35.00 44.00
ˆ̂PEA14,2011 15.671 3.528 10.000 16.000 22.000

ŝA1 0.356 0.023 0.319 0.355 0.393

ŝA2 0.480 0.026 0.437 0.480 0.524

ŝA3 0.464 0.021 0.429 0.464 0.499

ŝA4 0.394 0.033 0.341 0.394 0.448

ŝA5 0.332 0.015 0.308 0.332 0.357

ŝA6 0.215 0.009 0.200 0.21 5 0.231

ŝA7 0.505 0.020 0.472 0.505 0.537

ŝA8 0.459 0.016 0.433 0.459 0.484

ŝA9 0.518 0.017 0.491 0.518 0.545

ŝA10 0.318 0.015 0.294 0.318 0.343

ŝA11 0.293 0.015 0.269 0.293 0.319

ŝA12 0.241 0.014 0.218 0.240 0.264

ŝA13 0.306 0.019 0.275 0.306 0.338

ŝA14 0.333 0.031 0.283 0.333 0.385

Table 3.64: PE: binomial model with fixed effects on θ NIP estimation
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PEi - IP

Node Mean Sd 5% 50% 95%
ˆ̂βA1,2011 25.573 4.558 18.000 25.000 33.000
ˆ̂βA2,2011 30.093 4.414 23.000 30.000 37.000
ˆ̂βA3,2011 44.983 5.527 36.000 45.000 54.000
ˆ̂βA4,2011 15.32 3.41 10.00 15.00 21.00
ˆ̂βA5,2011 54.317 6.751 43.000 54.000 66.000
ˆ̂βA6,2011 66.683 8.025 54.000 67.000 80.000
ˆ̂βA7,2011 56.432 5.986 47.000 56.000 66.000
ˆ̂βA8,2011 78.827 7.262 67.000 79.000 91.000
ˆ̂βA9,2011 82.868 7.213 71.000 83.000 95.000
ˆ̂βA10,2011 53.296 6.634 43.000 53.000 64.000
ˆ̂βA11,2011 44.29 6.15 34.00 44.00 55.00
ˆ̂βA12,2011 37.645 5.844 28.000 38.000 47.000
ˆ̂βA13,2011 30.027 5.135 22.000 30.000 39.000
ˆ̂βA14,2011 12.746 3.324 7.000 13.000 18.000

ŝA1 0.308 0.022 0.273 0.308 0.344

ŝA2 0.449 0.025 0.407 0.449 0.491

ŝA3 0.424 0.021 0.390 0.424 0.459

ŝA4 0.348 0.030 0.300 0.348 0.398

ŝA5 0.286 0.014 0.263 0.286 0.309

ŝA6 0.182 0.009 0.168 0.182 0.196

ŝA7 0.463 0.019 0.431 0.463 0.495

ŝA8 0.431 0.015 0.406 0.431 0.456

ŝA9 0.471 0.016 0.444 0.471 0.498

ŝA10 0.299 0.014 0.276 0.299 0.323

ŝA11 0.267 0.014 0.244 0.267 0.290

ŝA12 0.221 0.013 0.200 0.221 0.243

ŝA13 0.266 0.018 0.236 0.265 0.296

ŝA14 0.271 0.028 0.226 0.271 0.319

Table 3.65: PE: binomial model with fixed effects on θ IP estimation

Allowing time-varying θi leads to the new model:
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MTVAR
PE =



PEi,t ∼ Bin(θi,t,TTEAi,t), i = 1, ..., 14 t = 1, 2, 3

TTEAi,t = PETTEAi,t−1 + εTTEA,t

logit(θi,t) = bi,t

bi,t ∼ N(µi,t, τi)

µi,t = PEiµi,t−1

NIP : {PE, µ1} ∼ N(0, 1.0e − 6), τ ∼ Γ(0.001, 0.001)

IP :

µ1,1 ∼ N(−0.71640, 1/0.9242
∗ 5), µ1,2 ∼ N(−0.29434, 1/0.48802

∗ 5)

µ1,3 ∼ N(−0.09038, 1/0.94942
∗ 5), µ1,4 ∼ N(−0.56008, 1/0.49422

∗ 5)

µ1,5 ∼ N(−0.5204, 1/0.34232
∗ 5), µ1,6 ∼ N(−1.54504, 1/0.70682

∗ 5)

µ1,7 ∼ N(0.3064, 1/0.60192
∗ 5), µ1,8 ∼ N(0.4714, 1/0.60112

∗ 5)

µ1,9 ∼ N(0.4468, 1/0.63472
∗ 5), µ1,10 ∼ N(−0.848284, 1/0.47192

∗ 5)

µ1,11 ∼ N − 1.4991, 1/0.159662
∗ 5), µ1,12 ∼ N(−1.49289, 1/0.67842

∗ 5)

µ1,13 ∼ N(−0.7432, 1/1.01762
∗ 5), µ1,14 ∼ N(−2.1786, 1/0.91342

∗ 5)

PE1 ∼ N(−0.06296, 1/0.27862
∗ 5),PE2 ∼ N(0.02836, 1/0.14712

∗ 5)

PE3 ∼ N(−0.08767, 1/0.28632
∗ 5),PE4 ∼ N(−0.02802, 1/0.14902

∗ 5)

PE5 ∼ N(−0.1401, 1/0.10322
∗ 5),PE6 ∼ N(−0.01422, 1/0.21312

∗ 5)

PE7 ∼ N(−0.1546, 1/0.18152
∗ 5),PE8 ∼ N(−0.2668, 1/0.18122

∗ 5)

PE9 ∼ N(−0.1945, 1/0.19142
∗ 5),PE10 ∼ N(−0.008475, 1/0.14232

∗ 5)

PE11 ∼ N(0.1569, 1/0.048142
∗ 5),PE12 ∼ N(0.05472, 1/0.20452

∗ 5)

PE13 ∼ N(−0.1391, 1/0.30682
∗ 5),PE14 ∼ N(0.3417, 1/0.27542

∗ 5)

τ1 ∼ Γ(0.41127, 0.8333), τ2 ∼ Γ(0.11414, 0.8333)

τ3 ∼ Γ(0.44013, 0.8333), τ4 ∼ Γ(0.11701, 0.8333)

τ5 ∼ Γ(0.08953, 0.8333), τ6 ∼ Γ(0.23686, 0.8333)

τ7 ∼ Γ(0.21301, 0.8333), τ8 ∼ Γ(0.29461, 0.8333)

τ9 ∼ Γ(0.25644, 0.8333), τ10 ∼ Γ(0.10556, 0.8333)

τ11 ∼ Γ(0.05483, 0.8333), τ12 ∼ Γ(0.22310, 0.8333)

τ13 ∼ Γ(0.52391, 0.8333), τ14 ∼ Γ(0.59772, 0.8333)

Informative prior parameters come from non informative priors. The in-

duced DAG is shown on figure 3.28:
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βi

µi,t µi,t+1

τi

bi,t bi,t+1

θi,t θi,t+1

PEi,t PEi,t+1

TTEAi,t TTEAi,t+1

logit logit

Figure 3.28: Induced DAG from PE DLM model
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AR(1) NIP IP

MD 431 424

P 64.9 66.9

PD 495.9 490.9

Table 3.66: PE: Binomial model with time-varying on θ NIP/IP Deviance
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n.iter PE - NIP

Node Mean Sd 5% 50% 95%
ˆ̂PEA1,2011 32.72 22.42 2.00 30.00 75.00
ˆ̂PEA2,2011 33.885 8.568 21.000 34.000 48.000
ˆ̂PEA3,2011 75.12 19.59 36.00 79.00 101.00
ˆ̂PEA4,2011 16.569 7.552 5.000 16.000 30.000
ˆ̂PEA5,2011 42.49 25.94 12.00 38.00 91.00
ˆ̂PEA6,2011 93.71 81.39 7.00 70.00 278.0
ˆ̂PEA7,2011 59.30 21.74 22.00 59.00 96.00
ˆ̂PEA8,2011 147.23 61.94 0.00 182.00 183.00
ˆ̂PEA9,2011 96.28 49.52 6.00 95.00 175.0
ˆ̂PEA10,2011 61.32 32.86 15.00 57.00 125.00
ˆ̂PEA11,2011 58.74 11.62 42.00 58.00 76.00
ˆ̂PEA12,2011 53.69 37.43 6.00 46.00 133.00
ˆ̂PEA13,2011 39.08 33.09 0.00 30.00 105.00
ˆ̂PEA14,2011 21.707 8.831 7.000 22.000 37.000

θ̂A1 0.325 0.164 0.106 0.354 0.550

θ̂A2 0.467 0.086 0.318 0.479 0.586

θ̂A3 0.483 0.196 0.209 0.437 0.813

θ̂A4 0.361 0.095 0.223 0.355 0.518

θ̂A5 0.276 0.080 0.147 0.288 0.372

θ̂A6 0.195 0.115 0.076 0.199 0.318

θ̂A7 0.472 0.127 0.287 0.495 0.646

θ̂A8 0.501 0.229 0.166 0.494 1.000

θ̂A9 0.483 0.162 0.222 0.499 0.699

θ̂A10 0.308 0.100 0.183 0.303 0.450

θ̂A11 0.282 0.061 0.181 0.282 0.378

θ̂A12 0.238 0.122 0.097 0.223 0.412

θ̂A13 0.281 0.170 0.072 0.319 0.496

θ̂A14 0.311 0.158 0.053 0.314 0.552

Table 3.67: binomial model with time varying effects on θ NIP estimation174



n.iter PE - NIP

Node Mean Sd 5% 50% 95%
ˆ̂βA1,2011 0.540 0.964 -1.107 0.739 1.718
ˆ̂βA2,2011 -0.012 0.914 -1.452 0.062 1.162
ˆ̂βA3,2011 -1.041 0.728 -1.855 -1.151 0.404
ˆ̂βA4,2011 0.794 0.694 -0.546 0.930 1.481
ˆ̂βA5,2011 1.125 0.407 0.700 1.149 1.489
ˆ̂βA6,2011 0.885 0.488 -0.025 0.963 1.348
ˆ̂βA7,2011 -0.053 1.081 -1.394 -0.199 1.610
ˆ̂βA8,2011 -3.387 5.894 -11.801 -3.871 6.106
ˆ̂βA9,2011 -0.332 3.142 -4.559 -0.186 3.132
ˆ̂βA10,2011 0.844 0.603 -0.296 0.942 1.410
ˆ̂βA11,2011 0.840 0.107 0.732 0.848 0.951
ˆ̂βA12,2011 0.803 0.521 -0.250 0.900 1.303
ˆ̂βA13,2011 0.666 1.044 -1.035 0.876 1.830
ˆ̂βA14,2011 0.435 0.402 -0.217 0.486 0.892

ŝA1 1.175 0.711 0.485 1.008 2.391

ŝA2 0.271 0.235 0.041 0.216 0.686

ŝA3 0.422 0.386 0.062 0.324 1.090

ŝA4 0.429 0.415 0.045 0.321 1.160

ŝA5 0.360 0.338 0.069 0.273 0.949

ŝA6 0.992 0.719 0.392 0.783 2.270

ŝA7 0.599 0.348 0.259 0.519 1.194

ŝA8 0.210 0.284 0.030 0.110 0.752

ŝA9 0.611 0.397 0.177 0.536 1.281

ŝA10 0.618 0.450 0.216 0.496 1.407

ŝA11 0.132 0.158 0.028 0.088 0.365

ŝA12 0.923 0.653 0.349 0.738 2.087

ŝA13 1.354 0.833 0.553 1.151 2.804

ŝA14 0.709 0.566 0.124 0.582 1.680

Table 3.68: binomial model with time varying effects on θ NIP estimation175



n.iter PE - IP

Node Mean Sd 5% 50% 95%
ˆ̂PEA1,2011 41.55 21.08 7.00 42.00 76.00
ˆ̂PEA2,2011 33.53 12.44 13.00 34.00 54.00
ˆ̂PEA3,2011 53.07 22.56 16.00 53.00 91.00
ˆ̂PEA4,2011 21.998 9.864 6.000 22.000 38.000
ˆ̂PEA5,2011 94.95 46.55 19.00 95.00 171.00
ˆ̂PEA6,2011 183.2 108.8 15.0 183.0 351.1
ˆ̂PEA7,2011 60.98 23.07 22.00 61.00 99.00
ˆ̂PEA8,2011 91.42 38.35 28.00 91.00 155.00
ˆ̂PEA9,2011 88.01 35.07 29.00 88.00 147.00
ˆ̂PEA10,2011 88.91 41.97 20.00 89.00 158.00
ˆ̂PEA11,2011 83.00 37.12 21.00 83.00 145.00
ˆ̂PEA12,2011 85.15 46.71 10.00 85.00 160.00
ˆ̂PEA13,2011 56.62 31.03 7.00 57.00 106.00
ˆ̂PEA14,2011 23.178 9.498 7.000 23.000 39.000

θ̂A1 0.345 0.173 0.114 0.369 0.655

θ̂A2 0.461 0.116 0.289 0.464 0.638

θ̂A3 0.438 0.173 0.191 0.409 0.682

θ̂A4 0.385 0.136 0.207 0.364 0.633

θ̂A5 0.324 0.141 0.162 0.309 0.647

θ̂A6 0.236 0.182 0.080 0.211 0.709

θ̂A7 0.472 0.134 0.278 0.499 0.657

θ̂A8 0.443 0.144 0.174 0.477 0.618

θ̂A9 0.477 0.140 0.226 0.498 0.663

θ̂A10 0.336 0.139 0.184 0.314 0.637

θ̂A11 0.309 0.135 0.160 0.287 0.627

θ̂A12 0.270 0.171 0.097 0.232 0.680

θ̂A13 0.309 0.184 0.084 0.336 0.680

θ̂A14 0.317 0.169 0.056 0.309 0.603

Table 3.69: binomial model with time varying effects on θ IP estimation176



n.iter PE - IP

Node Mean Sd 5% 50% 95%
ˆ̂βA1,2011 -0.049 0.125 -0.255 -0.049 0.157
ˆ̂βA2,2011 0.029 0.066 -0.079 0.029 0.137
ˆ̂βA3,2011 -0.091 0.128 -0.301 -0.091 0.121
ˆ̂βA4,2011 -0.025 0.067 -0.135 -0.025 0.084
ˆ̂βA5,2011 -0.139 0.046 -0.215 -0.139 -0.063
ˆ̂βA6,2011 -0.001 0.096 -0.159 -0.001 0.156
ˆ̂βA7,2011 -0.158 0.081 -0.291 -0.157 -0.025
ˆ̂βA8,2011 -0.266 0.081 -0.399 -0.266 -0.133
ˆ̂βA9,2011 -0.195 0.085 -0.335 -0.195 -0.055
ˆ̂βA10,2011 -0.004 0.064 -0.109 -0.004 0.101
ˆ̂βA11,2011 0.158 0.022 0.122 0.158 0.194
ˆ̂βA12,2011 0.069 0.092 -0.082 0.069 0.221
ˆ̂βA13,2011 -0.124 0.138 -0.351 -0.124 0.102
ˆ̂βA14,2011 0.372 0.119 0.175 0.373 0.565

ŝA1 1.347 0.522 0.774 1.233 2.293

ŝA2 0.800 0.332 0.450 0.725 1.396

ŝA3 1.009 0.387 0.582 0.924 1.720

ŝA4 1.052 0.456 0.573 0.949 1.863

ŝA5 1.289 0.532 0.730 1.166 2.253

ŝA6 1.867 0.745 1.076 1.699 3.202

ŝA7 0.850 0.340 0.485 0.773 1.467

ŝA8 0.999 0.393 0.575 0.911 1.709

ŝA9 0.926 0.368 0.530 0.842 1.595

ŝA10 1.211 0.498 0.684 1.096 2.120

ŝA11 1.109 0.466 0.623 1.000 1.947

ŝA12 1.587 0.635 0.908 1.445 2.735

ŝA13 1.568 0.586 0.916 1.442 2.631

ŝA14 0.886 0.341 0.502 0.812 1.515

Table 3.70: binomial model with time varying effects on θ IP estimation177



PEi estimates are quite different fro the fixed model.

Two year forecasting: B1 2012 prevision

Now every quantity needed to make an estimation on B1 2012 is known.

For S and MRi estimations the same values of 2011 are used:

S=52165 [49282, 55125]

MRmean={42.99, 51.09, 55.00, 48.93, 49.04, 27.05, 49.95, 51.06, 53.04, 35.93,

37.05, 30.98, 33.03, 33.95}

MR25pc={39.46, 47.57, 51.59, 46.45, 45.59, 23.56, 46.44, 47.57, 49.62, 32.39,

33.51, 27.49, 29.45, 30.45}

MR75pc={46.43, 54.65, 58.52, 52.40, 52.46, 30.51, 53.50, 54.53, 56.56, 39.55,

40.54, 34.43, 36.61, 37.47}

For PE2010 estimation the time-varying binomial model is used:

PEmean={47,33,60,20,74,122,59,115,88,70,69,60,47,23}

PE5pc={8,25,46,6,47,31,41,22,65,29,47,15,7,16}

PE95pc={70,42,74,34,103,256,76,177,112,119,91,123,97,30}

These PE2010 must be averaged out with years 2007-2009 before using for

B1 computation.

B12012=3.6 [2.91, 4.15]

Compared to B1 2010, 3.28, there could be a gain of 532.22Me[-615.38,1446.98].

This countertrend result could be explained by the high variability of PE2010

estimates, responsible for the generalized increases (PE(10)-PE(06) is almost

always positive) and, in particular, for abnormal value in area 6, as shown

in Table 3.71.
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Area PE05−08 PE06−09 PE07−10 ∆2−1% ∆3−2% PE(09)-PE(05) PE(10)-PE(06)

01 30.25 26 33.37 -14.38 22.96 -19 21.4

02 33.75 33.25 33.13 -1.48 -0.36 -1 -0.9

03 52.75 51 47.50 -3.32 -5.26 -9 -19.5

04 15.75 15.25 17.76 -3.17 14.13 -2 5.8

05 60.75 55 63.03 -9.47 12.74 -6 0.0

06 79 69.75 106.60 -11.70 34.57 -38 70.6

07 64 55.75 60.51 -12.89 7.87 -34 18.5

08 101.25 86 83.87 -15.06 2.54 -63 -16.1

09 96.5 85.75 85.77 -11.14 0.02 -41 -2.2

10 61 57 69.04 -6.56 17.44 -16 28.0

11 45.5 51.25 59.95 12.64 14.51 24 12.0

12 45.5 41.75 57.43 -8.24 27.30 -17 35.4

13 35 28.25 39.39 -19.29 28.28 -27 27.4

14 13 15 17.78 15.38 15.64 7 5.8

Table 3.71: 3 year PE values

3.14 B1 Causal analysis

Miming statistics performed on A2, this section aims to answer two ques-

tions: what variable does it need to intervene upon and how much time

does it take to move up to the median position in the ranking?

As it has been already mentioned, the indicator does not depend directly

on TTEA, but only indirectly because TTEA is a parameter in the func-

tion modelling PE ∼ Bin(θ,TTEA). The crucial variable to intervene on is

R, namely the ratio between positively evaluated researcher and the total

number of researcher (by area), that is on a quantity representing the effi-

ciency of the system. Notice that being TEA fixed, an intervention on R is

equivalent to an intervention of PE because of the relation PE = R ∗ TTEA.
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Let us getting started searching weak R performances and after making the

plane.

3.14.1 searching weak R performances

Table 3.72 shows several statistics on R: the difference, absolute and as a

fraction of R, between R and the median MR on 2010. After R 2011 is com-

pared with R 2010 and with MR2010 showing both temporal dynamics and

benchmark comparison. Unfortunately all 12 areas are under the median

value.

Area R2010 MR2010 1 − 2 1−2
1 % R2011 5 − 1 5−1

1 % 5-2 5−2
5 %

01 36.2 43 -6.8 -18.8 29.0 -7.2 -19.9 -14 -48.3

02 49.5 51 -1.5 -3.0 47.5 -2.0 -4.0 -3.5 -7.1

03 48.8 55 -6.2 -12.7 45.4 -3.4 -7.0 -9.6 -19.7

04 36.2 49 -12.8 -35.4 34.1 -2.1 -5.8 -14.9 -43.7

05 32.5 49 -16.5 -50.8 27.7 -4.8 -14.8 -21.3 -65.5

06 20.9 27 -6.1 -29.2 17.6 -3.3 -15.8 -3.3 -15.8

07 52.1 50 2.1 4.0 43.0 -9.1 -17.5 -7 -14

08 50.9 51 -0.1 -0.2 41.6 -9.3 -18.3 -9.4 -22.6

09 54.1 53 1.1 +2.0 46.7 -7.4 -13.7 -6.3 -13.5

10 33.8 36 -2.2 -6.5 29.6 -4.2 -12.4 -6.4 -21.6

11 27.0 37 -10 -37.0 28.8 1.8 6.3 -8.2 -28.5

12 26.4 31 -4.6 -17.4 21.8 -4.6 -17.4 -9.2 -42.2

13 32.9 33 -0.1 -0.3 24.4 -8.5 -25.8 -8.6 -35.2

14 28.6 34 -5.4 -18.9 31.9 3.3 11.5 -2.1 -6.6

Table 3.72: R2010, R2011, MR2010, differences

Next statistics shows the percentage of researchers, by area, with no

positive evaluations in the 2006-2009 period. Results are discouraging.
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area % no PE

AREA 01 35.7

AREA 02 20.8

AREA 03 14.6

AREA 04 18.2

AREA 05 34.0

AREA 06 52.6

AREA 07 11.6

AREA 08 16.2

AREA 09 6.5

AREA 10 36.2

AREA 11 32.3

AREA 12 35.5

AREA 13 38.9

AREA 14 26.1

Table 3.73: % researchers with no PE in 2006-09 per area

Table 3.74 performs a gender analysis. Last columns shows female

prevalence.
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Area RF RM |RF − RM| 100 ∗ |RF−RM |

R R % F

AREA 01 26.95 30.73 3.78 13.05 28.97 46.5

AREA 02 36.00 51.71 15.71 33.07 47.50 26.8

AREA 03 42.78 46.47 3.69 8.12 45.43 40.1

AREA 04 36.36 33.76 2.60 7.63 34.08 12.3

AREA 05 26.72 28.61 1.89 6.82 27.71 47.6

AREA 06 25.07 15.26 9.81 55.74 17.60 23.9

AREA 07 39.29 43.49 4.20 9.77 42.97 21.6

AREA 08 44.26 40.31 3.95 9.50 41.60 29.5

AREA 09 54.24 46.07 8.17 17.48 46.73 8.0

AREA 10 29.31 29.64 0.33 1.12 29.57 60.2

AREA 11 26.53 30.54 4.01 13.95 28.75 48.1

AREA 12 22.27 21.55 0.72 3.31 21.77 31.0

AREA 13 28.99 22.46 6.53 26.75 24.41 29.8

AREA 14 38.71 27.78 10.93 34.25 31.91 33.0

Table 3.74: % researchers with no PE in 2006-09 per area

3.14.2 Intervening on R

From the previous section it emerges a non encouraging situation, R val-

ues are in general lower than the national median. Figure 3.18 shows R

variability among departments.
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Figure 3.29: RB1 by Departments

No department goes over 60% of researcher positively evaluated.

Finally, these are the number of positive evaluated researchers by area

needed to get the equality:

Area 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE 6 2 7 6 31 24 0 1 0 4 17 8 1 3

Table 3.75: PE needed to get R ≥MR

Given this status, one aim could be setting a policy to reach, in an limited
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number of years, the median value MR of the area. Thus each year, every

degree course compares R and MR and according to the difference defines

its new target T, namely the new value it must reach:

C1) if R ≥MR then T ≥ R;

C2) if 0.95MR ≤ R < MR then T ≥MR;

C3) if 0.90MR ≤ R < 0.95MR then T ≥ 1.05R;

C4) if R < 0.90MR then T ≥ 1.1R;

The rules above are interpreted as follows: when the ratio is higher than

the median, no effort is required, except not reducing its value. When the

ratio is less than the median but not more than 5%, the effort required is to

catch up the median. When the ratio is between 90% and 95% then degree

courses have to increase it at least by 5%. Finally, when the ratio is smaller

than the median by 90%, the ratio must be increased by at least by 10%.

This procedure, if satisfied, reaches the goal in no more than three years.

The table 3.76 shows for three consecutive years the percentage of degree

courses in each class and the value of B130:

Year C1 C2 C3 C4 A2

2011 0 2 9 3 3.02

2012 2 3 8 1 3.34

2013 5 7 2 0 3.63

2013 12 1 1 0 3.84

2014 13 1 0 0 3.96

Table 3.76: Percentage of target classes degree courses by area and year

The counterfactual value (What B1 2011 would be had the local ratio at

least equal to the national median?) is 3.97. Differently from A2 case, where
302010 and 2011 got a different number of researchers; 2011-13 assume it constant. MRi and

S are assumed constant.
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some units (Degree Courses in that case) showed values of R in the C1 class

in the first year, allowing some other units to remain in other classes, the

B1 case showed all 14 areas under the median value, so to reach it all 14

areas needed to get the C1 class.

The induced DAG is shown in the next figure:

Rt MRt Rt+1 MRt+1

Ct Ct+1

Figure 3.30: Act on EFF policy DAG

185





Chapter 4

Conclusion and Future work

This thesis turned around the meaning of the word ”monitoring” FFO

indicators. This word has been assigned 4 separate and interconnected

meanings: describe, retrospectively assess, predict and act.

To describe means using elementary statistical tools such as tables and

graphs to describe the indicator factors in order to take a picture of the state

of the art, past and present, and compare local data with national median

values.

Retrospective assessment means using counterfactuals in the simple fea-

tures of what/if question in order to discover errors or weakness and prepare

correctives for the future.

To make a prediction means to use Bayesian forecasting techniques in order

to give both point and interval estimates up to two years ahead to indicator

factors. One year forecasts are supposed to be more reliable estimates be-

cause local variable were already known, so prediction regarded only two

national variables. Actually one or few observations available were a poor

evidence to establish the degree of stability of those variables. The two

year forecasting was a more difficult task because both local and national

variable were forecast increasing global uncertainty.
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Unlike physics or natural sciences, whose purpose is the discovery of laws,

either deterministic or stochastic, external to human beings and in some

sense eternal, the regularities observed in the social sciences are the result

of human actions, internal to the point of view of the scientist as human

behaviour and mutable, so the art to predicting future values deserves a dif-

ferent paradigm: laws determining a certain outcome can change rapidly

due to modification in behaviours and often are results of several conflict-

ing behaviours of which observed values are only averages.

Much more attention has to be paid to the counterfactual interpretation of

a prediction. A prediction can be summarised as: given what has been ob-

served, e.g. a linear trend, and given some assumptions, e.g. linearity will

still hold in the future, a prevision for Y is y. Now suppose to take an action

A aiming to increase the value of Y, and to observe YA = 1.1y. Normally

the causal effect of A to Y is computed as YA
Y = 1.1, but this effect relies on

the unobserved (counterfactual) variable Y = YĀ, namely the value of Y

had action A not taken, which coincides with the pure prevision of Y.

Turning back to technicalities, particularly difficult was proven the task of

choosing parameters of informative prior distributions, often guided by

intuition, repeated trials or with tricks as to use the empirical data. But

this difficult was overcome because priors are the best way to make models

flexible (even to external interventions) by putting into them extra knowl-

edge.

Another difficulty encountered has been to think constantly about the na-

ture of relationships between variables in terms not only associative but

mainly causal, that is constantly asking ”who is the cause and who is the

effect”. This explained the several times repeated phrase ”spurious asso-

ciation between X and Y” stressing that beyond statistical significance, the

relation was the result of a spurious correlation due to (at least) a third

unobserved variable interpreted as a common cause. But it also helped

greatly in clarifying the role played by variables in relationships, such as

causal or mediator or confounder. This drives directly to the task of acting,
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namely thinking about what changes and what remains invariant when a

decision is taken, an intervention is performed and a shock into the (pre-

intervention) relationships is imposed.

Despite several problems arose, good solutions were taken, but only time

will tell how good they were.

If writing this thesis brought me light about which levers need to be

pulled in order to build statistical and causal models for monitoring the

University of Palermo Ordinary financing Fund, even more dubts and new

ideas occurred. Several future works are in mind and in process, including:

• implementing such monitoring models in the university ICT sys-

tem through client/server applications. Statistical models are useful

but often are matters for initiates, nowadays software engineering

paradigm may help in separate what can be called the “interface“,

and what can be called the “engine“. The latter is represented by

the statistical models, usually running in the background, completely

transparent to the final user. The former, instead, is usually repre-

sented by the output of the statistical models, such as point or interval

estimate, provided in a user-friendly web page;

• so far only variables prescribed by the national set of indicators were

used. The job was: act on factors and see the results on the indicator.

Now a second level analysis is needed: to build regressive models on

the factors, as EFF = f (X,Y,Z, ε) or PE = g(T,K,F,u). This may help

to make more precise previsions on the indicators and to discover

inter-indicator common cause variables;

• generalize the do() operator, see pag. 49;

• it is a matter of the higher importance revisiting both parameters or

functional forms of variables and parent/child relationships on the

basis of new facts, such as new national laws or local decree or an
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unexpected increase in the rate of retirement due to new national

retirement policy, or a decrease in new enrolments due to worse

economical perspective. All this can be done improving elicitation

techniques on the prior parameters on the basis of meetings with

experts or documentary researches.

Exams never end.
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Appendix A

Historical pathway of the

word Cause

A.0.3 Causality in the Antiquity

The etimology of the ancient greek word αιτια or αιτεω can be trans-

late in “to accuse“or “to ask“, showing the primitive meaning was related

with “volontary action which whom the autor is responsable “(Guzzo and

Barone, 1957).1.

The first greek philosopher that spoke about cause was the atomist Leu-

cippo, giving a definition of cause as necessary purely physics connection

between empirical facts, as mechanicistic causes. This definition circum-

scribes cause to physics, only from Newton onwards cause will include

forces between remote objects.

To Plato “everything that arises must be born from a cause, it is impossi-

ble that anything is born without a cause“(Timeo 28A). He distinguished

between first and second (cooperating) casues. Relationships were consid-

ered material.

1Nowdays that term is used in law to indicate “contract “, or “inheritance “(causa mortis)
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The first attempt to systematize the cause is due to Aristotle and peripatetic

schoolmen, throught the famouses four causes (Bunge (1959) pag 32):

1. the material cause (to be essence of something), which provides the

passive receptacle on which the remaining casuses act;

2. the formal cause (when the movement begins), which contributes the

essence, idea, or quality of the thing concerned;

3. the efficient cause (material and substrate), that is the external com-

pulsion that bodies had to obey;

4. the final cause (that for which it acts, the Good), the goal to which

everything strove and which everything served.

The first two were causes of being, the last two of becoming. For Aristotle

to go back to formal cause is the most important task because it exists a link

between cause and demonstration: knowing a fact means showing a proof

of it starting from initial principles (causes).

Stoics and Epicureans link causal determinism with liberty of moral life.

For Stoics causation is equate to fate, causality is perceived as purely me-

chanical and physics.

Skeptics did criticize causation.

For Neoplatonists nothing is uncaused, they focused on the cause as prod-

uct of its own act, causa sui.

A.0.4 Causality in The Middle Ages

Patristic and Scholasticism cleared all the material aspects from the cause

beacuse material was perceived as expression of Evil (Origen).

For Saint Augustine God is causa sui, material objects have been caused by

the rationes aeterne of God.

With Scholasticism cause reached more and more adjectives: appropriate,
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being, ending, immanent, transient, di per se, per accidents, occasional and

so on.

It insisted on the substantial forms and consequently on the immanet cause

(opposed to transitive).

Saint Thomas did inculturate sacred theology in the Aristotelian philos-

ophy, for him causation is realization of potentiality, God as first cause.

Contrary to Neoplatonisms he developped a demonstrative method going

from effects to causes.

Ockam is critical: the Scholasticism axiom according to which the sentence

”the more efficient the more universal the cause is” is rejected by the nom-

inalistic theory that predicated universal is not real and there needs an

empirical knowledge (notitia intuitiva) connecting causes and effects.

A.0.5 Causality in The Modern Age

When Modern Age became, it riduced the problem of efficient causality

on the naturalistc plane, formal and final causes were banished to theo-

logical field, beacuse of impossibility to submit them to experiment. In-

stead the efficient cause dominate because it seemed to have the necessary

requirements to the current paradigma: it is related to the idea of chang-

ing, providing something from something else, the possibility to explain it

mathematically, and to controll it by an experiment. The definitive turning

point was due to the milenstone works of Galileo and in particular to the

central role of the experiment as synthesis between ”sensible experiences”

ans ”necessary demonstrations”, in which temporal aspects and necessary

causation are joined and results are answers of the Nature to human mind

activity. The Galileo’s definition of cause prescibed cause is something nec-

essary and sufficient in order that somethig else be, if cause is then effect

will be, if cause is notthen effect never will (Galilei, 1623). It is a method-

ological definition: let us add a cause to have an effect and let us remove a
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cause to remove the effect.

For Descartes causation is an eternal truth placed in the thought.

For Spinosa every thing is produced by substance and, as finite thing, by

a finite modification of his attributes, then it is transient. Leibniz riduced

causation to principle of sufficient reason (monadology) not demanding

proof or experiment and oriented to moral better (and not for logic neces-

sity).

Bacon and Hobbes drawn attention on inductive searching of causes.

For Locke the ideas of cause and effect come from regularity of a sequence

of events perceived through senses or mediation (Locke, 1847).

Hume refused the a priority and analyticity of cause and focused on his em-

pirical charateristic and on the constancy of sequence. Hume’s definition

of cause is (Hume, 1967): “We may define a cause to be an object, followed

by another, and where all the objects similar to the first are followed by

objects similar to the second. Or in other words where, if the first object

had not been, the second never had existed“.

This definition encompasses a relation between two objects, ordering time

is supposed (the cause must precede th effect)2, similarity means general-

ization, not only a sequence of two ”particular” events but classes of events,

and the last point describes the necessary condition of causation: remov-

ing the cause entails removing the effect. The formers defines the regular

theory of causation, the last defines the counterfactual theory of causation.

Kant interpreted cause as synthetic a priori judgment (Kant, 1929).

Mill resumed empiricism tradition connecting closely cause and induction,

the latter is applicable assuming the former and the former is acceptable on

the base on the induction by simple enumeration. Descartes claimed that

sensations, such as taste or temperature, are caused by the shape and size

of tiny pieces of matter.

2the axioms of Peano explicitely speak about “successor“
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A.0.6 Causality in The Contemporary Age

The XIX century was dominated by classical physics and it defined causal

process as knowning its actual state and all the forces that affect it, it is

possible to infer its future state. The famous Laplace’s Demon: “We may

regard the present state of the universe as the effect of its past and the

cause of its future. An intellect which at a certain moment would know

all forces that set nature in motion, and all positions of all items of which

nature is composed, if this intellect were also vast enough to submit these

data to analysis, it would embrace in a single formula the movements of

the greatest bodies of the universe and those of the tiniest atom; for such an

intellect nothing would be uncertain and the future just like the past would

be present before its eyes“(de Laplace, 1829).

That priciple was extended to other filed of knowledge as Darwinism and

logic Positivism: natural laws are laws of real.

Mach proposed a clearing of the philosophycal concept of cause by substi-

tution with the mathematical object of function.

On the same line Russell: scientific law is dominated by the idea of differ-

ential equation.

The theory of relativity and the quantum mechanism dictated a real rev-

olution both of classic mechanism and concept of cause. In particular the

uncertainty principle of Heisenberg expressed the inapplicability of the de-

terminist criterion of causality to microscopic phenomena.

The contemporary age started with a sort of rejection of the cause, which

can be spotted as scientists against causation:

B. Russell: “The law of causality, I believe, like much that passes muster

along philosopher, is a relic of a bygobe age, surviving like the monarchy

only because it is erroneously supposed to do no har“. (Russell, 1912).

For Pearson causality is an obsolete metapysical idea and it has to be re-

placed with the most general and specid tool as correlation (Pearson, 1892).

Galton (1889):“there was a category borader than causation, namely corre-
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lation, of which causation was only the limit“.

For Granger the main conditions for defining causality are temporal prior-

ity (cause occurs before effect) and that cause need to contain information

about the effect that is not contained in any aother event occurring not later

than itself (Granger, 1980).

Bunge criticises Hume’s definiton of causality and the claim to be the only

category of determination (Bunge, 1959).

In the “A probabilistic Theory of Causality“, Suppes (1970) transferred

Hume’s definition in a pure probabilistic language. Other contemporaries

dealt with causation, (Dawid, 2000), (Rubin, 2005), (Spirtes et al., 2001),

(Cartwright, 2007), I like to end with my favorite, Dr. Judea Pearl who with

visionary and pioneer works on structural equations, graphical models and

countefactuals Pearl (2009) gave a new semantics, formalism and lifeblood

to the word cause.

Finally I would like to underline that the pathway of the word cause fol-

lowed the pattern as our culture, and society in general, passed from pole

of ontological-immanent-metaphysical to the pole of transient-empirical

categories.
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