
 

WORKING PAPER 
DIPARTIMENTO DI ECONOMIA PUBBLICA 

 
 
 
 
 

Working Paper n.121 
 

Gian Galeazzo Impicciatore, Luca Panaccione e  
Francesco Ruscitti 

Intertemporal Equilibrium and Walras’ Theory of 
Capital: a Projection Based Approach  

 

 
 
 
 

Roma, Maggio 2009 
 
 

 
 

SAPIENZA UNIVERSITA’ DI ROMA 



INTERTEMPORAL EQUILIBRIUM
AND WALRAS�THEORY OF

CAPITAL: A PROJECTION BASED
APPROACH�

G. Impicciatorey L. Panaccionez F. Ruscittix

April 22, 2009

Abstract

In this paper we analyze the intertemporal competitive equilibrium of
a walrasian model of capital accumulation. We prove the existence
of equilibria by generalizing a result of Todd (1979). We overcome
the indeterminacy in savings allocation to multiple types of capital
goods by introducing a decreasing-return-to-scale storage technology.
We �nally verify that, for stored capital goods, equality of rates of
returns is satis�ed in equilibrium.
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1 Introduction

Walras� models of pure exchange and production economies provided for
decades the underpinning of contemporary general equilibrium theory (see
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Walras (1926), lectures III and IV). However, the original walrasian theory
of savings and capital accumulation (see Walras (1926), lecture V; which
the two previous lectures were meant to be instrumental to) has been left
outside of the mainstream economic analysis. References to it, if any at all,
have been made to criticize its controversial aspects.

Indeed, some of the features of Walras theory seem to lend support to this at-
titude. First of all, because of the absence of an explicit temporal indexation
of the variables, the time-frame of the original Walras�theory is left to the
reader�s interpretation. In particular, it remains an open question whether
the model that describes the walrasian theory of capital accumulation is sta-
tic (that is, related to a single period) or dynamic, and, in the latter case, if
it pertains to the short run or long run.

Moreover, since consumers can only invest their savings in capital goods, and
are interested in the total return of their savings, capital goods are perceived
as perfect substitutes. It follows that it was impossible forWalras to formalize
savings decisions by means of well de�ned individual capital good�(demand)
functions.

Hence, in order to close the general equilibrium system and ensure consis-
tency of individuals choices, Walras imposed an explicit condition of equality
of capital goods�rates of return. Since consistency also requires equality of
expectations on these rates, it is also necessary to impose static expectations
on prices for services of capital goods throughout the whole planning period.

However, in equilibrium there is no guarantee that these conditions are always
met with equality for all capital goods. Thus, it is customary to conclude
that the original walrasian model is not coherent and thus it is ill-suited for a
long run equilibrium theory (see, for instance, Eatwell (1987) and Garegnani
(1990)).1

In this paper our goal is threefold: �rst, to revise the walrasian theory of
savings and capital using a contemporary approach. Second, to overcome
the afore-mentioned controversial aspects and �nally, to show that it can
represent a very general, coherent and microfunded theory of long run com-
petitive equilbrium. In order to do so, we propose a reinterpretation of the
original walras�theory of capital accumulation in a context where:

� time is explicitly taken into account in the formulation of the model;
1On these aspects, see also Impicciatore and Rossi (1982) and Montesano (2008).
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� consumers�choices of capital goods can be represented by well de�ned
(demand) functions, so that aggregation of savings in the �ctitious good
E (see Walras (1926), lecture V) is no longer required;

� equality of capital goods�rates of return emerges endogenously in equi-
librium.

Finally, a comment on the approach we take to proving the existence of an
intertemporal competitive equilibrium is in order. As we must work with a
linear technology, equilibrium prices must guarantee non-positive pro�ts in
the production sector. Therefore, they must lie in a subset of the unitary
simplex. Therefore, in this framework the equilibrium set is di¤erent from
that demand functions are de�ned on. To overcome the problems related
to a direct application of the Brower (or Kakutani) theorem, we use a pro-
jection criterion. However, since we assume strongly monotone preferences,
the standard approach for the application of this criterion (see Todd (1979)
and Kehoe (1980)) has to be extended to take into account prices on the
boundary of the price simplex, where the net demand is not de�ned.

The paper is structured as follows: in section 2 we brie�y discuss the relation
to the existing literature. The environment is described in section 3. In
section 4 the storage technology is discussed at length. Consumers�optimal
choices are derived in section 5. The production sector is formalized in section
6. In section 7 we de�ne the notion of intertemporal equilibrium and we state
the main result about the existence of equilibria. The characterization of the
equilibrium rates of returns is examined in section 8. Finally, the proof of the
existence of intertemporal competitive equilibria is relegated to the appendix.

2 Relation to the literature

The �rst rigorous analysis of the walrasian model of capital accumulation
is due to Morishima (1964), Morishima (1977). Then, this theory has been
revisited in a temporary equilibrium framework (see Diewert (1977)), and in
the same temporal con�guration as Diewert�s model under the assumption
that capital goods are owned by the �rms (see Impicciatore and Rossi (1982)).

In contrast, in what follows we introduce a complete array of Arrow-Debreu
forward markets (intertemporal equilibrium market structure). In particular,
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we assume that there exist both current and forward markets for consumption
and capital goods, as well as for labor and capital goods services.

Moreover, we follow in Walras�footstep by assuming that each consumer has
initial endowments of capital goods whose services are supplied to the pro-
duction sector in the current period. Consistently with the original walrasian
approach, we also assume that consumers can purchase currently produced
capital goods in order to sell their services (on forward markets) in the future
period. So, note that in our model consumers own the capital goods.

Since agents�actions are taken at two di¤erent points in time, we introduce
a novel feature: we assume that consumers have to store capital goods in
order to supply their services to the production sector in the next period.
We stress that this hypothesis has two main advantages: on the one hand
it is a realistic assumption. On the other hand, the storage technology is
a device that enables us to derive continuous demand functions for capital
goods. It also enables us to overcome the indeterminacy of savings across
multiple types of capital goods. Ultimately, equality of capital goods�rates
of return emerges endogenously in equilibrium rather than being posited at
the outset.

3 The environment

Time is discrete, and the horizon is �nite with two periods, labelled t = 0; 1.
In each period there are C perishable consumption goods indexed by c =
1; 2; :::; C, and denoted by the vector xt = (:::; xt;c; :::). In each period there
are J labor/leisure services indexed by j = 1; 2; :::; J , and denoted by the
vector lt = (:::; lt;j; :::); there areM capital goods indexed by m = 1; 2; :::;M ,
and denoted by the vector kt = (:::; kt;m; :::), as well as a consistent number
of capital goods�services.

Goods and services are traded on two markets. Currently produced con-
sumption and capital goods, along with labor/leisure services and capital
services from existing capital goods (inherited from the past), are traded on
current markets. Consumption goods to be produced at t = 1, labor/leisure
services at t = 1, and services of currently produced capital goods, that will
be available at t = 1, are traded on forward markets.

There is a �nite number of consumers indexed by h = 1; :::; H. We assume
that capital goods are not consumed, nor do they a¤ect agents�preferences.
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Hence, consumers� preferences are de�ned on the consumption set Xh =
R2(C+J)+ , and are represented by an utility function uh : Xh ! R. We posit
the following assumption:

Assumption 1.3.: For each h 2 f1; 2; :::; Hg, uh : Xh ! R is con-
tinuous, strictly increasing, and strictly quasi-concave. Moreover, for each
h 2 f1; 2; :::; Hg ; for each l2R2J+ , and each �uh 2 R, we have that:�

x2R2C+ : uh (x; l) = �uh
	
� R2C++:

We stick to the original Walras�approach by assuming that at t = 0 each
consumer has initial endowments of labor/leisure services �lh0 2 RJ+n f0g and
capital goods �kh 2 RM+ n f0g. The following relations hold:X

h

�lh0 =
�l0 2 RJ++, and

X
h

�kh = �k 2 RM++

Similarly, we assume that at t = 1 each consumer is endowed with la-
bor/leisure services �lh1 2 RJ+n f0g that satisfy:X

h

�lh1 =
�l1 2 RJ++:

At t = 0 services from owned capital goods are inelastically supplied. La-

bor/leisure services
�
lh0 ; l

h
1

�
, consumption goods

�
xh0 ; x

h
1

�
, and currently pro-

duced capital goods kh are supplied and demanded according to the utility
and pro�t maximization problems that will be studied in sections 5 and 6.

Since, at t = 1, capital goods are required to undertake production, capital
goods purchased at t = 0 are stored for one period; at t = 1 their ser-
vices along with labor/leisure services, which have been sold at t = 0 on
forward markets, are supplied to the production sector. Moreover, consump-
tion goods, purchased at t = 0 on forward markets, are delivered from the
production sector.

In what follows p = (p0; p1) 2 R2C+ denotes current and future consumption
goods prices, w = (w0; w1) 2 R2J+ denotes current and future labor/leisure
services prices, v = (v0; v1) 2 R2M+ denotes current and future capital goods
services prices, and q 2 RM+ denotes the price vector of capital goods produced
at t = 0. We let:
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� = (p0; p1; q; w0; v0; w1; v1) 2 RN+
denote the list of Arrow-Debreu prices, with N = 2(C + J) + 3M .

There is a representative �rm. This is without loss in generality, given the
assumption of constant returns-to-scale (see section 6). The �rm operates
both at t = 0 and t = 1, using labor and capital services as inputs. At t = 0
the �rm produces both consumption and capital goods. Notice, though, that
at t = 1 the �rm only produces consumption goods. This is so because
consumers do not wish to consume capital goods, and t = 1 is the last period
(�nite time-horizon). We let y0 2 RC+2M+J denote a current production
plan, and y1 2 RC+M+J denote a future production plan. Therefore, y =
(y0; y1) 2 RN denotes an intertemporal production plan.
For the sake of simplicity, we assume that capital goods used in the produc-
tion process totally depreciate at the end of each period.

4 The storage technology

Unlike in the original Walras�approach, we introduce a storage technology.
This assumption is not only reasonable, but it also enables us to derive
continuous demand functions for capital goods. Moreover, by virtue of the
storage technology assumption, we can pin down endogenously a no-arbitrage
condition on capital goods returns (see section 8). This stands in contrast
to the original Walras�formulation in which the no-arbitrage condition was
imposed and not derived.
Notice that storage is required only for currently produced and purchased
capital goods, since capital goods existing at t = 0 totally depreciate at the
end of the period, after production is undertaken.
We assume that consumers are endowed with individual storage technologies,
formalized as follows:

De�nition 1.4. For each h 2 f1; 2; :::; Hg and each capital good m 2
f1; 2; :::;Mg, the storage function �hm : R+ ! R+ maps any feasible quantity
of the capital good currently purchased and stored into the quantity of services
available for supply to the production sector at t = 1.

In compact notation, the storage technologies are denoted by:

�h(kh) =
�
�h1(k

h
1 ); :::; �

h
m(k

h
m); :::; �

h
M(k

h
M)
�
:
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We assume that the storage technology exhibits decreasing returns-to-scale.
That is, increasing the quantity of stored capital goods leads to a less than
proportional increase in the quantity of services available for sale at t = 1 .
Formally, each function �hm is assumed satisfy the following assumption:

Assumption 1.4. (STRICT CONCAVITY AND SATURATION): For each
h 2 f1; 2; :::; Hg and each m 2 f1; 2; :::;Mg , there exists a k̂hm > 0 such that

�hm :
h
0; k̂hm

i
! R+ is continuous, strictly concave, strictly increasing, and

di¤erentiable on
�
0; k̂hm

�
; moreover, �hm (0) = 0, �

h
m(k

h
m) 6 khm, and

lim
khm!(k̂hm)

�

�hm

�
k̂hm

�
� �hm

�
khm
�

k̂hm � khm
= 0

Remark 1.4. The assumption that �hm(k
h
m) 6 khm, for each 0 � khm �

k̂hm, captures the idea that we are dealing with a storage technology. The
assumption of concavity is standard and mathematically handy. The existence
of a saturation point, k̂hm, is justi�ed in terms of factors, such as warehouses,
with �xed and limited capacity. Given the time-frame of the model, we assume
that it is not possible to adjust capacity at t = 0. Clearly, there is no incentive
to relax the capacity constraint at t = 1. Hence, we do not formalize these
underlying factors of production, although they can be invoked to motivate
the above assumption.

5 The consumer�s problem

In the remainder of the paper, �kh also denotes the quantity of services that
household h can supply from initial endowments of capital goods. We let
xh = (xh0 ; x

h
1) 2 R2C+ and lh = (lh0 ; l

h
1 ) 2 R2J+ .

Each consumer takes the price vector � as given, and chooses a bundle
(xh; lh; kh) 2 R2(C+J)+M+ that maximizes his utility. The consumer is subject
to the storage capacity constraint, and the budget constraint. The latter
is given by a single inequality by virtue of the institutional arrangement in
place (Arrow-Debreu forward markets). Formally, each consumer seeks the
solution to the following problem:
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max
(xh;lh;kh)�0

uh(xh; lh)

s:t: : (1.5)

p � xh + w � lh + q � kh 6 v0 � �kh + w � �lh + v1 � �h(kh) ;
0 � kh � k̂h

where k̂h =
�
k̂h1 ; ::::; k̂

h
M

�
. Recall that, since by assumption services �kh are

inelastically supplied to the market, income v0 � �kh depends only on market
prices. Income from future capital services depends not only on their prices,
v1, but also on prices of currently purchased capital goods, since q in�uences
the quantity of capital goods that consumers purchase and store. Clearly,
maximization problem (1:5) can be rearranged as follows:

max
(xh;lh;kh)�0

uh(xh; lh)

s:t: : (2.5)

p � xh + w � lh 6 v0 � �kh + w � �lh + v1 � �h(kh)� q � kh ;
0 � kh � k̂h

By virtue of strict monotonicity of preferences (Assumption 1.3.), it should
be clear that the above program (2:5) can be solved in two steps: �rst, given
(q; v1), choose kh so as to maximize v1 ��h(kh)�q �kh subject to 0 � kh � k̂h;
then, choose (xh; lh) so as to maximize uh given (p; w; v0) and the optimal
choice of purchased capital goods.

5.1 Demand for capital goods

In this paragraph we study the �rst step in the consumers� problem. As
mentioned above, given (q; v1) the generic consumer chooses kh to solve the
following problem:
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max
k̂h>kh>0

v1 � �h(kh)� q � kh (1.5.1)

By virtue of Assumption 1.4., it is easy to see that the relevant necessary
and su¢ cient conditions for an interior optimum are:

v1 �r�h(kh)� q = 0 (2.5.1)

where the symbol � denotes the component-wise product of two vectors,
and r�h(kh) is the vector of derivatives d�hm=dkhm for each h and m. When
(q; v1) 2 R2M+ n f0g; the solution to the above problem is a function to be
denoted  h : R2M+ nf0g �! RM , which is continuous by the Berge�s maximum
theorem and Assumption 1.4. When vm1 = qm = 0 for some m; the demand
for capital good m is actually multivalued as in this case khm can take any
value in the interval [0; k̂hm]. To deal with this fact, we introduce the function
k̂h = 	h(q; v1) : R2M+ �! RM de�ned as follows: for ever m;

k̂hm = 	
h
m(q; v1) , (4.5.1)

where 	hm(q; v1) is the continuous extension of  
h
m to R2M+ , whose existence

it guaranteed since all assumptions of Theorem 4.7 in Nikaido (1968, p.72)
are satis�ed. In what follows, we will refer to 	h as the virtual demand of
capital. Let us now de�ne:

F h(q; v1) := max
0�kh�k̂h

�
v1 � �h(kh)� q � kh

�
(3.5.1)

and notice that, in any case, F h de�ned in (3:5:1) is continuous, homogeneous
of degree one and F h � 0.

5.2 Demand for consumption goods and labor/leisure

In the second step of maximization problem (2:5), given F h(q; v1) and (p; w; v0),
the generic consumer chooses (xh; lh) to solve:
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max
(xh;lh)�0

uh(xh; lh)

s:t: p � xh + w � lh 6 v0 � �kh + w � �lh + F h(v1; q) : (1.5.2)

By virtue of strong monotonicity of preferences, prices for consumption goods
and labor/leisure services must be strictly positive. Moreover, the budget
constraint holds with equality. Hence, hereafter we shall restrict attention
to (p; w) � 0. Since in this case the budget set is compact and convex (see
Lemma 1.5.2. below), the utility function is continuous and strictly quasi
concave (see Assumption 1.3.), and F is homogeneous of degree one, the
above problem has a solution

�
xh(�); lh(�)

�
with properties that are summa-

rized in the following lemma:

Lemma 1.5.2. For every h 2 f1; 2; :::; Hg , the demand function
�
xh(�); lh(�)

�
is continuous and homogeneous of degree zero.

Proof: by virtue of Assumption 1.3. and Berge�s maximum theorem, it will
su¢ ce to show that the budget constraint correspondence is compact valued
and continuous. The homogeneity of degree zero of the demand functions is
a straightforward consequence of the homogeneity of degree one of F h (see
above). Our proof draws on Ok (2007), but we slightly adapt it to take into
account two features of the budget constraint in problem (1:5:2): not all
prices are necessarily strictly positive; a continuous function of prices, F h,
appears in the right-hand-side member of the budget constraint.

Consider problem (1:5:2) above, and de�ne:

A =
�
� 2 RN+ : (p0; p1; w0; w1)� 0

	
.

Let B : A � R2(C+J)+ be the budget constraint correspondence. We �rst
show that B is upper hemi-continuous and compact valued as follows (see
Aliprantis and Border, 2006, Theorem 17.20). Pick an arbitrary � 2 A, so
(p; q; w0; v0; w1; v1) = � 2 RN+ with (p0; p1; w0; w1) � 0. Let

�
�n;

�
xhn; l

h
n

�	
satisfy (�n) � A, limn!1 �n = �, and

�
xhn; l

h
n

�
2 B (�n) for each n, that is:

pn �xhn+wn � lhn � v0n � �kh+wn ��lh+F h(v1n ; qn), with
�
xhn; l

h
n

�
� 0, for each n.
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Since (pin) converges to p
i > 0, for i = 1; 2; :::; 2C, and (wjn) converges to

wj > 0, for j = 1; 2; :::; 2J , then we must have pi� = inf fpin : n 2 Ng > 0 for
each i, and also wj� = inf fwjn : n 2 Ng > 0 for each j. Since F h is continuous,
then:

lim
n!1

In = v0n � �kh + wn � �lh + F h(v1n ; qn) = I = v0 � �kh + w � �lh + F h(v1; q)

with I > 0 (since w � 0 and F h � 0). Hence, I� = sup fIn : n 2 Ng < 1.
Now note that, for each n, we have:

p� � xhn + w� � lhn � pn � xhn + wn � lhn � In � I�

therefore, for each n,
�
xhn; l

h
n

�
2 S, where:

S =
n
(x; y) 2 R2(C+J)+ : p� � x+ w� � y � I�

o
.

Clearly S is closed and bounded, and therefore there exists a subsequence,
say

�
xhnk ; l

h
nk

�
, converging to some

�
xh; lh

�
2 R2(C+J)+ . But then, by virtue of

continuity, we get:

p � xh + w � lh = lim
k!1

�
pnk � xhnk + wnk � lhnk

�
� lim

k!1
Ink = I

that is,
�
xh; lh

�
2 B (�). Thus, B is upper hemicontinuous and compact

valued on A.

Next we prove that B is lower hemicontinuous on A. Pick an arbitrary � 2 A,
so (p; q; w0; v0; w1; v1) = � 2 RN+ with (p0; p1; w0; w1) � 0. Assume, by way
of obtaining a contradiction, that B is not lower hemicontinuous at �. Thus,
there exists an open set in R2(C+J)+ , say O, with B (�) \ O 6= ?, such that
for every open neighborhood of � in A, say T , there exists a x 2 T satisfying
B (x) \ O = ?. But then we can �nd a sequence (�n) that converges to �
in A, and such that B (�n) \ O = ? for each n. Now pick any

�
xh; lh

�
2

B (�) \O. Since O is open in R2(C+J)+ , it follows that �
�
xh; lh

�
2 B (�) \O

for � 2 (0; 1) close enough to 1. We distinguish two cases: (i)
�
xh; lh

�
= 0.

(ii)
�
xh; lh

�
2 R2(C+J)+ n f0g. In case (i), for each n we have:
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pn � xh + wn � lh = 0 � v0n � �kh + wn � �lh + F h(v1n ; qn)

Hence
�
xh; lh

�
2 B (�n) \ O, which is a contradiction. In case (ii), since

(p0; p1; w0; w1)� 0 and
�
xh; lh

�
2 R2(C+J)+ n f0g, then:

(p; w) � �
�
xh; lh

�
= �

�
p � xh + w � lh

�
<

p � xh + w � lh � v0 � �kh + w � �lh + F h(v1; q)

Therefore, by virtue of continuity, for n large enough we must have:

(pn; wn) � �
�
xh; lh

�
< v0n � �kh + wn � �lh + F h(v1n ; qn)

that is, �
�
xh; lh

�
2 B (�n) \O, which is a contradiction.�

For each h 2 f1; 2; :::; Hg, we now de�ne the virtual net demand function as
follows:

ẑh :
�
� 2 RN+ : (p; w)� 0

	
�! RN ; with

ẑh = (xh(�) ; k̂h(q; v1) ; l
h
0 (�)� �lh0 ;��kh ; lh1 (�)� �lh1 ;��h(k̂h(q; v1)));

with k̂h = 	h(q; v1);

where we recall that N = 2(C+J)+3M . Clearly, when q � 0, we have that
	h(q; v1) =  h(q; v1) and virtual net demand ẑh coincides with net demand
zh(�): Since preferences are strongly monotone, the budget set in problem
(1:5:2) holds with equality. Thus, for each ẑh = ẑh(�) we have that � � ẑh = 0 .
Summing across all consumers yields:

� �
X
h

ẑh = � � ẑ = 0 ; (2.5.2)

which represents the version of the Walras�law suitable for the economy at
hand. It should be noted that homogeneity of degree zero of  h and Lemma
1.5.2. imply that for each h 2 f1; 2; :::; Hg, ẑh is homogeneous of degree
zero. Finally, we remark that if �

�
is a price vector with some zero element

corresponding to the sub-components p and/or w, then ẑh(�
�
); hence z(�

�
);

is not well de�ned. In this case, the usual boundary conditions apply.
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6 The production sector

The production sector is characterized by a �xed-coe¢ cients technology.
Current and future consumption goods, and current capital goods are pro-
duced using current and future services, respectively. Following Walras
(1926), we assume that there is a single activity for each good which is
produced. In addition to the production activities, we suppose that there
exists one free disposal activity for each good and service and that the tech-
nology satis�es the assumption of irreversibility. Let Q = 4(C +M) + 2J .
The production sector can be represented by the following N �Q matrix:

B =
�
P �I

�
;

where P is a N � (2C +M) matrix of production activities, and I is the
N �N identity matrix of free disposal activities. Note that P can be further
decomposed as follows:

P =

266664
IC0 � �
� IC1 �
� � IM

WC
0 � WK

0

� WC
1 �

377775 ;

where ICt is the C � C output (identity) matrix for consumption goods at
period t, with t = 0; 1. IM is theM �M output (identity) matrix for capital
goods at t = 0; WC

t is the (J +M) � C matrix of input coe¢ cient for the
production of consumption goods at t , with t = 0; 1;WK

0 is the (J +M)�M
matrix of input coe¢ cients for the production of capital goods at t = 0. The
dots denote matrices of suitable dimension with all entries equal to zero. We
also let:

WC
t =

264 a1t
... act

... aCt

b1t
... bct

... bCt

375 ;

where act = (ac;1t ; :::a
c;j
t ; :::a

c;J
t ) and bct = (bc;1t ; :::b

c;m
t ; :::bc;Mt ) are the input

coe¢ cients for labor and capital services, respectively, used in the production
of consumption good c in period t . Similarly, we let:
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WK
0 =

264 a10
... am0

... aM0

b10
... bm0

... bM0

375 ;

where am0 = (a
m;1
0 ; :::am;j0 ; :::am;J0 ) and bm0 = (b

m;1
0 ; :::bm;m

0

0 ; :::bm;M0 ) denote the
input coe¢ cients for labor and capital services, respectively, used in the
production of capital good m at t = 0 . We assume that, for all t; c;m, input
coe¢ cients are non-positive. Clearly,

Y =
n
B�y : �y 2 RQ+

o
(*)

is the production set of the representative �rm (�y 2 RQ+ is a vector of non-
negative activity levels). We posit two fairly natural assumptions on the
activity-analysis matrix B:
Assumption 1.6. (NO OUTPUTS WITHOUT ANY INPUTS):�

B�y 2 RN : �y � 0; B�y � 0
	
= f0g :

Assumption 2.6. (CURRENT AND FUTURE INDISPENSABILITY):
For every capital good m produced at t = 0, there exists some j such that
am;j0 < 0. For every capital good m, there is some consumption good c,
produced at t = 1, such that bc;m1 < 0.
It is well-known that with constant returns to scale a solution to the �rm�s
pro�t maximization problem exists only for those prices for which unitary
pro�ts of each activity are non-positive. Therefore, any candidate equilibrium
price vector � must satisfy the condition:

�B 6 0 ; (2.6)

where 0 2 RQ . For every � satisfying (2:6) the supply of the representative
�rm is given by y = B�y 2 RN , with �y 2 RQ+:Clearly, if � satis�es (2:6) ,
so does �� for � > 0. Hence, the supply correspondence is homogeneous
of degree zero in � . Clearly, if some activity makes negative pro�ts at the
prevailing prices, the �rm does not activate it at all. Therefore, positive
activity levels can arise in equilibrium only if pro�ts are zero.
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7 Intertemporal equilibrium

We know, from the discussion in paragraphs 5 and 6, that ẑh is homogeneous
of degree zero, and so is the supply correspondence of the representative �rm.
Thus, we can normalize prices as follows:

�N�1
+ := f� 2 �N�1 : (p; w)� 0g (1.7)

where:

�N�1 := f� 2 RN+ :
X
n

�n = 1g

is the unitary simplex in RN : De�ne now the aggregate virtual net demand
function ẑ as follows:

ẑ : �N�1
+ �! RN ; with ẑ =

X
h

ẑh:

Recall that prices must satisfy condition (2:6) in order for the representative
�rm�s supply to be well-de�ned. With this in mind, we are now ready to
introduce the notion of equilibrium.

De�nition 1.7. A vector (��; �y�) 2 �N�1
+ � RQ+ constitutes a virtual com-

petitive equilibrium if: (i) ẑ = B�y�; (ii) ẑ =
P

h ẑh:(�
�); (iii) ��B 6 0.

Remark 1.7. Since the matrix B includes the negative identity matrix, and
�y� 2 RQ+, condition (i) asserts that supply is greater than or equal to aggregate
demand on each market, and we have market clearing on any market for
which the price is positive. Walras� law (see 2.5.2 above) and condition
(i) imply that ��B�y� = 0. In other words, at prices ��, �y� maximizes the
representative �rm�s pro�t. Clearly, ẑ =

P
h ẑh:(�

�) is the condition that
each consumer optimizes at prices ��.

However, we are ultimately interested in actual equilibria. Therefore, we
need to study when the virtual net demand coincides with the actual one,
that is when 	h(q; v1) =  h(q; v1): Since this case happens when q � 0; we
introduce the following subset of the unitary simplex:

�N�1
++ = f� 2 �N�1 : (p; w; q)� 0g; (1.7)
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and we propose the following de�nition:

De�nition 2.7. A vector (��; �y�) 2 �N�1
++ � RQ+ constitutes a competitive

intertemporal equilibrium if: (i) z = B�y�; (ii) z =
P

h zh:(�
�); (iii) ��B 6 0.

To identify the conditions that guarantee that q � 0; the following lemma is
of fundamental importance:

Lemma 1.7. Assume that Assumptions 1.3., 1.4, and 2.6. hold. If �� =
(p�; q�; w�0; v

�
0; w

�
1; v

�
1) is an virtual competitive equilibrium price vector, then

(q�; v�1) 2 R2M++.
Proof: Suppose �rst, by way of obtaining a contradiction, that there is some
m such that q�m = 0. Then, condition (iii) in de�nition 1.7. implies that

w�0 � am0 + v�0 � bm0 � 0 (2.7)

But assumption 2.6. implies that (2:7) indeed holds with strict inequality,
that is w�0 �am0 +v�0 �bm0 < 0. Therefore, capital goodm is not produced (�rm�s
pro�t maximization). On the other hand, we know from consumers�problem
(1:5:1) and Assumption 1.4., that the aggregate demand for capital good m
is strictly positive. This contradicts condition (i) in De�nition 1.7. Next,
suppose, by way of obtaining a contradiction, that there is some m such
that v�1m = 0. In this case, it follows from (1:5:1) that aggregate demand
for capital good m is equal to zero. Thus, it follows from Assumption 1.4.
that no service of capital good m is available at t = 1. By Assumption 2.6.,
there exists some consumption good, say c, whose supply, at t = 1, is equal
to zero. So, by virtue of condition (i) in De�nition 1.7., aggregate demand
for consumption good c must be equal to zero as well. But this contradicts
Assumption 1.3. �
Lemma 1.7. implies at least two important consequences. First of all, the
fact that (q; v1) � 0 implies that the rates of return on capital goods will
be well-de�ned. On the relevance of this �nding see, however, section 8:
Secondly, by the same fact it follows that 	h(q; v1) =  h(q; v1) for all h, so
that we can readily state:

Corollary 2.7. Assume that Assumptions 1.3., 1.4, and 2.6. hold. Then, if
a virtual competitive equilibrium exists, it will be a competitive intertemporal
equilibrium.
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As a consequence of the above corollary, it only remains to state our main
result, whose proof is shown in the appendix:

Theorem 1.7. Assume that Assumptions 1.3., 1.4, and 2.6. hold. Then, a
virtual competitive equilibrium exists.

Remark 1.7 If we remove, in this intertemporal framework, the possibility of
storing capital goods with a decreasing returns to scale technology, then, for
a competitive equilibrium to be well de�ned, it is necessary to impose that all
capital goods (if demanded) yield the same return. This would imply, �rst of
all, that every consumer is indi¤erent about the composition of capital stock
purchased, as in the original walrasian model. In the intertemporal equilib-
rium formulation, however, this also implies that the generic consumer is
indi¤erent between purchasing and not purchasing these goods at all. This
happens because, with complete forward markets, current expenditure must be
equal to present-value returns. Hence expenditures on capital goods and rev-
enues from capital services cancel out in the intertemporal budget constraint.
Indeed, if this were not the case, consumers�demand for some capital good
will be either unbounded or null.

Introducing a storage technology enable us to overcome the afore-mentioned
indeterminacies. Moreover, it makes it possible to formalize the demand for
capital goods as well de�ned functions, thus making it possible to simplify
the traditional de�nition of equilibrium. On the other hand, the proof of
existence of equilibrium turns out to be di¤erent from the existing ones in
the related literature (see e.g. Morishima (1964), Morishima (1977) and
Zaghini (1993)).

8 On the rates of return

In a competitive intertemporal equilibrium, purchased and stored capital
goods yield the same (marginal) rate of return to, and across, each consumer.
To see this, note that in equilibrium, if any capital good is purchased and
stored, then the amount of it cannot be equal to the upper bound given
by the storage capacity constraint. For, if this were the case, then it would
follow from Assumption 1.4.2 and optimization problem (1:5:1) that the price
of the capital good at hand would be less than or equal to zero. But this

2Recall that the left-derivative of the storage function at the capacity constraint is
assumed to be zero.
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contradicts Lemma 1.7. In other words, any purchased and stored capital
good is an interior solution to problem (1:5:1) above. Therefore, from the
�rst order necessary and su¢ cient conditions for an interior optimum, we
get:

vm1 r
h
m(k

h
m)

qm
=
vm

0
1 rhm0(khm0)

qm0
=
vm1 r

h0
m(k

h0
m)

qm
=
vm

0
1 rh

0
m0(kh

0
m0)

qm0
= 1 (1.8)

for all m;m0, and h; h
0
, where rh(kh) := r�h(kh) denotes the vector of deriv-

atives d�hm=dk
h
m for each h and m. It is now clear that the equality of (mar-

ginal) rates of return emerges endogenously in equilibrium. It is not imposed
at the outset, unlike in the original Walras�approach. Furthermore, by virtue
of Assumptions 1.3., 1.4., and 2.6, it�s easy to see that in any intertemporal
competitive equilibrium all M capital goods are produced. Therefore, the
intertermporal equilibrium is characterized by uniformity of (marginal) rates
of return. We can reinterpret (1:8) by rearranging it as follows:

vm1
qm

= �hm(k
h
m) for every h;m ; (2.8)

where �hm(k
h
m) = 1=r

h
m(k

h
m) is the (real) marginal cost of capital good m to

household h

It follows from problem (1:5:1) and Assumption 1.4. that km > 0 implies
vm1 > qm. This result is not surprising, and stems from the hypothesis of a
two-period economy and full depreciation of existing capital goods.

Another implication of our assumptions is that consumers with more e¢ cient
storage technologies for some capital good m3 demand relatively more of
capital good m.

It is dubious that our characterization of competitive equilibria conforms to
the notion of long-run equilibrium emphasized by Garegnani and other neo-
ricardian economists of the Cambridge school. However, we stress that in
our model the equilibrium conditions, as well as the capitalistic structure,
are a persistent property of the economy. Indeed, there is no incentive for
markets to re-open in future dates.

3Given any capital good m, one says that consumer h is equipped with a more e¢ cient

storage technology than consumer h
0
, if d�hm=dk

h
m > d�

h
0

m=dk
h
0

m .
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Conceivably, under more general assumptions on preferences and technology,
our conditions (2:8) would not hold in general. For instance, some capital
goods may not be produced in equilibrium. In this case, conditions (1:8)
would fail to hold. Consequently, an intertemporal competitive equilibrium
would not be characterized by full equality of marginal rates of return.

This begs the following question: would it be correct to interpret the lack of
equality of marginal rates of return as �the symptom of a deeper de�ciency of
the walrasian conception of capital endowment: that of taking as an indepen-
dent variables initial stocks of capital goods�(see Garegnani (2005, p.423))?
To answer this question, suppose that conditions (2:8), and the correspond-
ing conditions in the original Walras�model, are taken to posit the equality
of rates of pro�ts, much like in Smith and Marshall. That is, let�s say that
the above conditions are to be thought of as �the neoclassical version of
the traditional version of a normal, or "natural" position of the economy ...
on which economic thinking has relied since its conception" (see Garegnani
(2003)). Then, if this is the case, the above criticism would be well grounded
indeed.

However, Garegnani�s viewpoint of the long-run equilibrium is far apart from
the walrsasian paradigm. In line with the walrasian model, which is en-
tirely expressed in terms of demand and supply functions, equations (1:8)
are needed exclusively to determine the optimal quantity of capital goods
chosen by consumers. Likewise, in the original version of Walras�model
equality of rates of return was imposed in order to determine the capital
goods demanded by the consumers, due to the impossibility of deriving well
de�ned demand functions.

Thus, we believe that, even under more general hypotheses, De�nition 2.7.
applies also to the long-run, when preferences and technology should pinpoint
the goods which are scarce and the goods that are not scarce.

Remark 1.8. Since we assume that capital goods totally depreciate, no
arbitrage between old and new capital goods can take place. It follows that, in
general, services of some capital good may be demanded in the current period
and not in the future period, and vice versa.

Remark 2.8 Since strict monotonicity of preferences and assumption 2.6.
are essentially equivalent to the assumptions that rule out free goods in a
standard walrasian models of exchange and production, Lemma 1.7. implies
that the nature of all goods is alike, regardless of how good are identi�ed at
the outset (as consumption or capital goods).
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9 Concluding remarks

The thrust of our contribution is that a standard Arrow-Debreu framework
lends itself to encompass Walras�theory of capital accumulation as a theory
of the long-run. We have argued that whether the capitalistic structure of
the economy is stable or changes over time depends upon the assumptions
on preferences and technology.

One of the main innovations we have introduced is the storage technology.
Consumers funnel savings into investment by means of the storage functions.
No indeterminacy arises in this transformation process, nor is the (quite
contrived) aggregation of savings in a �ctitious commodity necessary. We
envision, therefore, that the storage technology can play a key role in the
extension of Walras�model of capital accumulation to an in�nite-horizon
economy. We believe it is possible to extend the model without con�nying
the analysis to restrictive notions of equilibrium such as a steady-state, or
stationary, equilibrium.

We have shown that the walrasian model can be formalized in terms of well-
de�ned demand functions for all of the goods and services. This renders the
proof of the existence of equilibria more in line with the state of the art in
mainstream general equilibrium theory. We underscore, though, that our
model veers away from a standard equilibrium model in two ways. First, not
all of the goods and services traded a¤ect consumers�preferences. Secondly,
candidate equilibrium price vectors lie in a set di¤erent from the set on which
the demand functions are de�ned. Thus, our proof of existence of equilibria
resorts to techniques more involved than the methods based on Brouwer and
Kakutani �xed point theorems.

Our work should be thought of as the �rst step toward resuming and reviving
the walrasian theory of capital accumulation. We believe that it is worth con-
ducting further research to cast Walras�theory in an overlapping-generation
environment. In such a framework, a sequence of generations that overlap
with one another can provide a compelling motivation for the hypotesis of
given endowments of capital goods.
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10 Appendix

In this section we prove Theorem 1.7. As mentioned, we build on the original
approach of Todd (1979), but we extend it to the case of strongly monotone
preferences. Recall that N = 2(C + J) + 3M and that:

�N�1 =

(
� 2 RN+ :

X
n

�n = 1

)
:

Let us introduce the following subset of �N�1:

�" =
�
� 2 �N�1 : (p; w) � "bu	 ;

where " 2 (0; 1) is a suitably chosen scalar and bu 2 R2(C+J)++ is the unitary vec-
tor.4 The trimmed simplex �" is clearly a convex and compact set. Consider
now the following convex and compact set:

� =
�
� 2 �N�1 : �B 6 0

	
;

and let:

�+ = � \�":

It is fundamental to establish that �+, and hence �, is a non-empty set. To
this end, we propose the following:

Lemma 1.A. If assumption 1:6 holds, then there exists � 2 RN++ such that
�B 6 0.
Proof.The proof is based on an application of the Farkas�Lemma (see for
instance Aliprantis and Border (2006, Corollary 5.85)). For each i = 1; 2; :::N
pick the vector bi = (0; :::0; 1; 0; :::; 0) 2 RN+ where the scalar 1 is the i-th
component of bi. Given Assumption 1:6 it should be clear that the claim
�there exists a vector y 2 RQ+ such that By = bi� is false. Therefore, by
Farkas�Lemma there exists a non-zero vector �i 2 RN that satis�es:

4We choose " according to the following criterion: we compute the maximal supply
for each good and service based on techonolgy and endowment of �xed factors. Then
we identify the prices that make demand for goods and services greater than the above
mentioned capacity limit. Finally we pick the smallest value of " such that each market
dispalys excess demand.
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�iB 6 0 and �ibi = �ii > 0: (2)

Hence, since B includes the negative identity matrix, we must have �i 2 RN+
with �ii > 0 . To �nish the proof de�ne � 2 RN by � =

PN
i=1 �

i and note
that � 2 RN++ and �B =

PN
i=1 �

iB 6 0: For an appropriate choice of " we
�nally have that � 2 �+. �
It is straightforward to see that �+, as the intersection of convex and closed
sets, it is convex, hence connected, and closed. Given this peculiar property
of �+, and those relating �, we can conclude that all the hypothesis in lemma
A.2.3 in Magill and Quinzii (1996, p.121) are satis�ed. Therefore there exists
a continuous function � : �! [0; 1] such that:

�(�) = 1 if � 2 �+

�(�) = 0 if � =2 U � f� 2 � : (p; w)� 0g ;

where U is an open set of � including �+. Next, let us consider the a¢ ne
hull of � :5

T :=
(
� 2 RN :

X
n

�n = 1

)
:

Following Todd (1979), now we introduce on this set the metric projection
map ' : T ! �., which associates to every � 2 T the vector '(�) 2 � closest
to � . This function, that obviously coincides with the identity map of � for
any � 2 �; is continuous (see for instance Aliprantis and Border (2006, pages
247-48)): Next, consider the composition of mappings f : T ! T de�ned by:

f('(�)) = '(�) + ẑ('(�))� ((u � ẑ('(�)))=N)u;

where u is the unitary vector of RN++: Clearly, this function is well de�ned and
continuous whenever ẑ(�) so is, that is, as a consequence of our assumptions,
when (p; w) � 0. The map �('(�)); however, allows us to continuously
extend f('(�)) on T . Thus, picking an arbitrary price vector b� 2 �+, we
de�ne by F : T ! T the function:

5Given a nonempty subset S of a vector space X, the a¢ ne hull of S, is the set of all
a¢ ne combinations of �nitely many members of S, i.e. it is the set de�ned as follows:�P

x2T �(x)x : T 2 P (S)
	
and � 2 RT with

P
x2T �(x) = 1; where P (S) is the class of

all nonempty �nite subsets of S.
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F (�) = �('(�))f('(�)) + (1� �('(�)))(�'(�) + (1� �)b�);
where � 2 (0; 1). This function is always well de�ned and continuous. Indeed,
if '(�) 2 �+; then � = 1 and F (�) = f('(�)); while if f('(�) =2 U (and
therefore not necessarily (p; w)� 0), then � = 0 and F (�) = �'(�)+(1��)b�.
This "machinery" allows us to prove the following proposition:

Lemma 2.A F : T ! T has a �xed point, i.e. there exists a � � 2 T such
that F (� �) = � �

Proof. First note that F is continuous as it is the composition of two con-
tinuous functions. Clearly T is a non-empty subset of RN which is a locally
convex Hausdor¤ topological vector space. Since ' : T ! � is onto, we have
that '(T ) = � . Therefore F (T ) = F ('(T )) = F (�) . But � is compact
and F is continuous, thus F (T ) is a compact subset of T . Now pick any
compact convex subset of T , say C , that contains F (T ) . Since F (�) 2 C
for each � 2 C , we can invoke Corollary 1 in Tian (1991), thus concluding
the proof. �
The next propositions are decisive for the outcome we want to achieve.

Lemma 3.A Under the maintained assumptions, if � � = f('(� �)) then � �

is a virtual competitive equilibrium price vector.

Proof. Suppose there exists a � � 2 T such that f('(� �)) = � � . We claim
that '(� �) is an equilibrium price. To see this, notice that '(� �) solves the
following constrained optimization problem:6

min

�
1

2
(� � � �) � (� � � �) j �B 6 0 ; � � u = 1

�
:

From the Kuhn-Tucker theorem, it follows that there exist y� 2 RQ+ and

 2 R that satisfy:

� � � '(� �) = By� + 
u with '(� �)By� = 0 : (3)

Since f('(� �)) = � � , (3) can be rewritten as follows:

ẑ('(� �))� (u � ẑ('(� �))=N)u = By� + 
u with '(� �)By� = 0 : (4)

6Since B includes the negative identity matrix, it is straightforward to see that if a
price vector � satis�es �B 6 0 then the condition � > 0 is automatically satis�ed.
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Taking in (4) the inner product with '(� �) and using Walras�law yields 
 =
�(u � ẑ('(� �))=N) which plugged back in (4) in turn yields ẑ('(� �)) = By� .
Hence '(� �) is a virtual competitive equilibrium price vector. �
Lemma 4.A Under the maintained assumptions � � is a �xed point of F (�)
if and only if � � is a �xed point of f('(�)).
Proof. Assume �rst that � � = f('(� �)).Then, since ẑ('(� �)) is a well-de�ned
function, it follows that (p�; w�) as elements of the vector � �; are positive.
Moreover by lemma 3:A, '(� �) is an equilibrium price vector. Hence it
satis�es condition (ii) of de�nition 1:7. Therefore it must be that '(� �) 2 �+
and �('(� �)) = 1. Thus, by construction, we have f('(� �)) = � � = F (� �).
Next assume that � � = F (� �). There are two cases to consider: '(� �) 2 �+
and '(� �) =2 U � �+: We will show that only �rst case can arise. Assume
�rst, by way of contradiction, that '(� �) =2 U: In this case �('(� �)) = 0,
hence F (� �) = �'(� �) + (1 � �)b�: But the following system of N equations
in the unknown � :

�'(� �) + (1� �)b� � � � = 0

has no solution except the trivial one '(� �) = b�, which is clearly not possible.
Indeed, to make this point clear, we remark that: (a) if � � =2 �, then �'(� �)+
(1� �)b� 2 � because � is a convex set; (b) if � � 2 �, hence '(� �) = � �from
(1:A) we get (� � 1)� � + (1 � �)b� = 0 that is � � = b�: But this is again
impossible since b� 2 �+ and � � =2 U � �+. Thus we conclude that � � 2 �+
hence �('(� �)) = 1, and therefore � � = f('(� �)). �
We are �nally ready to prove theorem 1.7.
Proof of theorem 1.7. By lemma 2:A there exists � � 2 T such that � � =
F (� �). By virtue of lemma 4:A we have that � � = f('(� �)). Finally, by
lemma 3:A, � � is a virtual competitive equilibrium price vector. �
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